Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

外泌体作为癌症治疗的天然基因传递载体

卷 20, 期 11, 2020

页: [821 - 830] 页: 10

弟呕挨: 10.2174/1568009620666200924154149

价格: $65

摘要

背景:目前用于癌症治疗的基因治疗载体,例如病毒,非病毒和细菌载体,但是这些常规载体存在某些安全性问题和稳定性问题。外来体是大多数体内和体外细胞类型从多囊泡体分泌到细胞外环境中的大小为40-100 nm的囊泡。作为天然的纳米载体,外泌体具有免疫惰性,生物相容性,并且可以穿过生物屏障,例如血脑屏障,肠屏障和胎盘屏障。 目的:这篇综述集中在外来体作为载体有效地传递基因用于癌症治疗和诊断的作用。将核酸加载到外泌体上的方法,外泌体作为用于基因传递的智能细胞间穿梭体的优势以及作为siRNA,miRNA和簇状规则间隔的短回文重复序列(CRISPR)的基因传递载体的治疗应用以及外泌体的局限性本文将对基因载体作为基因载体进行综述。 方法:通常使用电穿孔和化学转染来制备基因加载的外泌体。 结果:与目前用于全身基因治疗的递送方法相比,外来体介导的递送非常有前途且具有优势。载有治疗性核酸的靶向外泌体可以有效地促进肿瘤增殖的减少,而没有任何不利影响。结论:在不久的将来,外泌体将成为一种有效的传递基因载体,并成为诊断和治疗癌症的生物标志物。

关键词: 外泌体,免疫惰性,生物相容性,基因治疗,癌症,纳米载体。

图形摘要

[1]
Qin, J.; Xu, Q. Functions and application of exosomes. Acta Pol. Pharm., 2014, 71(4), 537-543.
[PMID: 25272880]
[2]
Caby, M.P.; Lankar, D.; Vincendeau-Scherrer, C.; Raposo, G.; Bonnerot, C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol., 2005, 17(7), 879-887.
[http://dx.doi.org/10.1093/intimm/dxh267] [PMID: 15908444]
[3]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[4]
van den Boorn, J.G.; Schlee, M.; Coch, C.; Hartmann, G. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol., 2011, 29(4), 325-326.
[http://dx.doi.org/10.1038/nbt.1830] [PMID: 21478846]
[5]
Yu, L.L.; Zhu, J.; Liu, J.X.; Jiang, F.; Ni, W.K.; Qu, L.S.; Ni, R.Z.; Lu, C.H.; Xiao, M.B. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Res. Int., 2018, 2018, 3634563.
[http://dx.doi.org/10.1155/2018/3634563] [PMID: 30148165]
[6]
Liang, L.G.; Kong, M.Q.; Zhou, S.; Sheng, Y.F.; Wang, P.; Yu, T.; Inci, F.; Kuo, W.P.; Li, L.J.; Demirci, U.; Wang, S. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci. Rep., 2017, 7, 46224.
[http://dx.doi.org/10.1038/srep46224] [PMID: 28436447]
[7]
Alvarez, M.L.; Khosroheidari, M.; Kanchi Ravi, R.; DiStefano, J.K. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int., 2012, 82(9), 1024-1032.
[http://dx.doi.org/10.1038/ki.2012.256] [PMID: 22785172]
[8]
Sharma, P.; Ludwig, S.; Muller, L.; Hong, C.S.; Kirkwood, J.M.; Ferrone, S.; Whiteside, T.L. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J. Extracell. Vesicles, 2018, 7(1), 1435138.
[http://dx.doi.org/10.1080/20013078.2018.1435138] [PMID: 29511460]
[9]
Contreras-Naranjo, J.C.; Wu, H.J.; Ugaz, V.M. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip, 2017, 17(21), 3558-3577.
[http://dx.doi.org/10.1039/C7LC00592J] [PMID: 28832692]
[10]
Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol., 2016, 7(1), 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[11]
Zhang, H.; Chen, J. Current status and future directions of cancer immunotherapy. J. Cancer, 2018, 9(10), 1773-1781.
[http://dx.doi.org/10.7150/jca.24577] [PMID: 29805703]
[12]
Cross, D.; Burmester, J.K. Gene therapy for cancer treatment: past, present and future. Clin. Med. Res., 2006, 4(3), 218-227.
[http://dx.doi.org/10.3121/cmr.4.3.218] [PMID: 16988102]
[13]
Cristiano, R.J. Viral and non-viral vectors for cancer gene therapy. Anticancer Res., 1998, 18(5A), 3241-3245.
[PMID: 9858889]
[14]
Wirth, T.; Ylä-Herttuala, S. Gene therapy used in cancer treatment. Biomedicines, 2014, 2(2), 149-162.
[http://dx.doi.org/10.3390/biomedicines2020149] [PMID: 28548065]
[15]
Coura, R.D.S.; Nardi, N.B. A role for adeno-associated viral vectors in gene therapy. Genet. Mol. Biol., 2008, 31(1), 1-11.
[http://dx.doi.org/10.1590/S1415-47572008000100001]
[16]
Vannucci, L.; Lai, M.; Chiuppesi, F.; Ceccherini-Nelli, L.; Pistello, M. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol., 2013, 36(1), 1-22.
[PMID: 23435812]
[17]
Goswami, R.; Subramanian, G.; Silayeva, L.; Newkirk, I.; Doctor, D.; Chawla, K.; Chattopadhyay, S.; Chandra, D.; Chilukuri, N.; Betapudi, V. Gene therapy leaves a vicious cycle. Front. Oncol., 2019, 9, 297.
[http://dx.doi.org/10.3389/fonc.2019.00297] [PMID: 31069169]
[18]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[19]
Al-Dosari, M.S.; Gao, X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J., 2009, 11(4), 671-681.
[http://dx.doi.org/10.1208/s12248-009-9143-y] [PMID: 19834816]
[20]
Dizaj, S.M.; Jafari, S.; Khosroushahi, A.Y. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res. Lett., 2014, 9(1), 252.
[http://dx.doi.org/10.1186/1556-276X-9-252] [PMID: 24936161]
[21]
Ramamoorth, M.; Narvekar, A. Non viral vectors in gene therapy- an overview. J. Clin. Diagn. Res., 2015, 9(1), GE01-GE06.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[22]
Mellott, A.J.; Forrest, M.L.; Detamore, M.S. Physical non-viral gene delivery methods for tissue engineering. Ann. Biomed. Eng., 2013, 41(3), 446-468.
[http://dx.doi.org/10.1007/s10439-012-0678-1] [PMID: 23099792]
[23]
Cronin, M.; Stanton, R.M.; Francis, K.P.; Tangney, M. Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther., 2012, 19(11), 731-740.
[http://dx.doi.org/10.1038/cgt.2012.59] [PMID: 22996740]
[24]
Baban, C.K.; Cronin, M.; O’Hanlon, D.; O’Sullivan, G.C.; Tangney, M. Bacteria as vectors for gene therapy of cancer. Bioeng. Bugs, 2010, 1(6), 385-394.
[http://dx.doi.org/10.4161/bbug.1.6.13146] [PMID: 21468205]
[25]
Zhou, Y.; Zhou, G.; Tian, C.; Jiang, W.; Jin, L.; Zhang, C.; Chen, X. Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip. Rev. RNA, 2016, 7(6), 758-771.
[http://dx.doi.org/10.1002/wrna.1363] [PMID: 27196002]
[26]
Rezaie, J.; Ajezi, S.; Avci, Ç.B.; Karimipour, M.; Geranmayeh, M.H.; Nourazarian, A.; Sokullu, E.; Rezabakhsh, A.; Rahbarghazi, R. Exosomes and their application in biomedical field: difficulties and advantages. Mol. Neurobiol., 2018, 55(4), 3372-3393.
[http://dx.doi.org/10.1007/s12035-017-0582-7] [PMID: 28497202]
[27]
Gao, D.; Jiang, L. Exosomes in cancer therapy: a novel experimental strategy. Am. J. Cancer Res., 2018, 8(11), 2165-2175.
[PMID: 30555736]
[28]
Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer, 2012, 12(4), 265-277.
[http://dx.doi.org/10.1038/nrc3258] [PMID: 22437871]
[29]
Zeelenberg, I.S.; Ostrowski, M.; Krumeich, S.; Bobrie, A.; Jancic, C.; Boissonnas, A.; Delcayre, A.; Le Pecq, J.B.; Combadière, B.; Amigorena, S.; Théry, C. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res., 2008, 68(4), 1228-1235.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-3163] [PMID: 18281500]
[30]
De Toro, J.; Herschlik, L.; Waldner, C.; Mongini, C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol., 2015, 6, 203.
[http://dx.doi.org/10.3389/fimmu.2015.00203] [PMID: 25999947]
[31]
Huang, T.; Deng, C.X. Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int. J. Biol. Sci., 2019, 15(1), 1-11.
[http://dx.doi.org/10.7150/ijbs.27796] [PMID: 30662342]
[32]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[33]
Didiot, M.C.; Hall, L.M.; Coles, A.H.; Haraszti, R.A.; Godinho, B.M.; Chase, K.; Sapp, E.; Ly, S.; Alterman, J.F.; Hassler, M.R.; Echeverria, D.; Raj, L.; Morrissey, D.V.; DiFiglia, M.; Aronin, N.; Khvorova, A. Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing. Mol. Ther., 2016, 24(10), 1836-1847.
[http://dx.doi.org/10.1038/mt.2016.126] [PMID: 27506293]
[34]
Li, S.P.; Lin, Z.X.; Jiang, X.Y.; Yu, X.Y. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol. Sin., 2018, 39(4), 542-551.
[http://dx.doi.org/10.1038/aps.2017.178] [PMID: 29417947]
[35]
Faruqu, F.N.; Xu, L.; Al-Jamal, K.T. Preparation of Exosomes for siRNA Delivery to Cancer Cells. 2008. (142), e58814.
[http://dx.doi.org/10.3791/58814]
[36]
Akao, Y.; Nakagawa, Y.; Hirata, I.; Iio, A.; Itoh, T.; Kojima, K.; Nakashima, R.; Kitade, Y.; Naoe, T. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther., 2010, 17(6), 398-408.
[http://dx.doi.org/10.1038/cgt.2009.88] [PMID: 20094072]
[37]
Zhang, Y.; Liu, D.; Chen, X.; Li, J.; Li, L.; Bian, Z.; Sun, F.; Lu, J.; Yin, Y.; Cai, X.; Sun, Q.; Wang, K.; Ba, Y.; Wang, Q.; Wang, D.; Yang, J.; Liu, P.; Xu, T.; Yan, Q.; Zhang, J.; Zen, K.; Zhang, C.Y. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell, 2010, 39(1), 133-144.
[http://dx.doi.org/10.1016/j.molcel.2010.06.010] [PMID: 20603081]
[38]
Lamichhane, T.N.; Raiker, R.S.; Jay, S.M. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol. Pharm., 2015, 12(10), 3650-3657.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00364] [PMID: 26376343]
[39]
Lamichhane, T.N.; Jeyaram, A.; Patel, D.B.; Parajuli, B.; Livingston, N.K.; Arumugasaamy, N.; Schardt, J.S.; Jay, S.M. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell. Mol. Bioeng., 2016, 9(3), 315-324.
[http://dx.doi.org/10.1007/s12195-016-0457-4] [PMID: 27800035]
[40]
Antimisiaris, S.G.; Mourtas, S.; Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics, 2018, 10(4), 218.
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[41]
Wang, T.; Shigdar, S.; Shamaileh, H.A.; Gantier, M.P.; Yin, W.; Xiang, D.; Wang, L.; Zhou, S.F.; Hou, Y.; Wang, P.; Zhang, W.; Pu, C.; Duan, W. Challenges and opportunities for siRNA-based cancer treatment. Cancer Lett., 2017, 387, 77-83.
[http://dx.doi.org/10.1016/j.canlet.2016.03.045] [PMID: 27045474]
[42]
Kooijmans, S.A.A.; Stremersch, S.; Braeckmans, K.; de Smedt, S.C.; Hendrix, A.; Wood, M.J.A.; Schiffelers, R.M.; Raemdonck, K.; Vader, P. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control. Release, 2013, 172(1), 229-238.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.014] [PMID: 23994516]
[43]
Lu, M.; Xing, H.; Xun, Z.; Yang, T.; Ding, P.; Cai, C.; Wang, D.; Zhao, X. Exosome-based small RNA delivery: Progress and prospects. Asian J. Pharm. Sci., 2018, 13(1), 1-11.
[44]
Li, Z.; Wang, H.; Yin, H.; Bennett, C.; Zhang, H.G.; Guo, P. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci. Rep., 2018, 8(1), 14644.
[http://dx.doi.org/10.1038/s41598-018-32953-7] [PMID: 30279553]
[45]
Yang, T.; Fogarty, B.; LaForge, B.; Aziz, S.; Pham, T.; Lai, L.; Bai, S. Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J., 2017, 19(2), 475-486.
[http://dx.doi.org/10.1208/s12248-016-0015-y] [PMID: 27882487]
[46]
Husmann, K.; Ducommun, P.; Sabile, A.A.; Pedersen, E.M.; Born, W.; Fuchs, B. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells. Biochem. Biophys. Res. Commun., 2015, 464(4), 1222-1227.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.108] [PMID: 26210452]
[47]
Zhang, H.; Wang, Y.; Bai, M.; Wang, J.; Zhu, K.; Liu, R.; Ge, S.; Li, J.; Ning, T.; Deng, T.; Fan, Q.; Li, H.; Sun, W.; Ying, G.; Ba, Y. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci., 2018, 109(3), 629-641.
[http://dx.doi.org/10.1111/cas.13488] [PMID: 29285843]
[48]
Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659), 498-503.
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[49]
Allenson, K.; Castillo, J.; San Lucas, F.A.; Scelo, G.; Kim, D.U.; Bernard, V.; Davis, G.; Kumar, T.; Katz, M.; Overman, M.J.; Foretova, L.; Fabianova, E.; Holcatova, I.; Janout, V.; Meric-Bernstam, F.; Gascoyne, P.; Wistuba, I.; Varadhachary, G.; Brennan, P.; Hanash, S.; Li, D.; Maitra, A.; Alvarez, H. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol., 2017, 28(4), 741-747.
[http://dx.doi.org/10.1093/annonc/mdx004] [PMID: 28104621]
[50]
Wahid, F.; Shehzad, A.; Khan, T.; Kim, Y.Y. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta, 2010, 1803(11), 1231-1243.
[http://dx.doi.org/10.1016/j.bbamcr.2010.06.013] [PMID: 20619301]
[51]
Kaboli, P.J.; Rahmat, A.; Ismail, P.; Ling, K.H. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol. Res., 2015, 97, 104-121.
[http://dx.doi.org/10.1016/j.phrs.2015.04.015] [PMID: 25958353]
[52]
Bach, D.H.; Hong, J.Y.; Park, H.J.; Lee, S.K. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int. J. Cancer, 2017, 141(2), 220-230.
[http://dx.doi.org/10.1002/ijc.30669] [PMID: 28240776]
[53]
Lowry, M.C.; Gallagher, W.M.; O’Driscoll, L. The role of exosomes in breast cancer. Clin. Chem., 2015, 61(12), 1457-1465.
[http://dx.doi.org/10.1373/clinchem.2015.240028] [PMID: 26467503]
[54]
Miller, T.E.; Ghoshal, K.; Ramaswamy, B.; Roy, S.; Datta, J.; Shapiro, C.L.; Jacob, S.; Majumder, S. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem., 2008, 283(44), 29897-29903.
[http://dx.doi.org/10.1074/jbc.M804612200] [PMID: 18708351]
[55]
Kovalchuk, O.; Filkowski, J.; Meservy, J.; Ilnytskyy, Y.; Tryndyak, V.P.; Chekhun, V.F.; Pogribny, I.P. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther., 2008, 7(7), 2152-2159.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0021] [PMID: 18645025]
[56]
Xin, F.; Li, M.; Balch, C.; Thomson, M.; Fan, M.; Liu, Y.; Hammond, S.M.; Kim, S.; Nephew, K.P. Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics, 2009, 25(4), 430-434.
[http://dx.doi.org/10.1093/bioinformatics/btn646] [PMID: 19091772]
[57]
Pan, Y.Z.; Morris, M.E.; Yu, A.M. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol., 2009, 75(6), 1374-1379.
[http://dx.doi.org/10.1124/mol.108.054163] [PMID: 19270061]
[58]
Chen, G.Q.; Zhao, Z.W.; Zhou, H.Y.; Liu, Y.J.; Yang, H.J. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med. Oncol., 2010, 27(2), 406-415.
[http://dx.doi.org/10.1007/s12032-009-9225-9] [PMID: 19412672]
[59]
Sorrentino, A.; Liu, C.G.; Addario, A.; Peschle, C.; Scambia, G.; Ferlini, C. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol. Oncol., 2008, 111(3), 478-486.
[http://dx.doi.org/10.1016/j.ygyno.2008.08.017] [PMID: 18823650]
[60]
Zhu, H.; Wu, H.; Liu, X.; Evans, B.R.; Medina, D.J.; Liu, C.G.; Yang, J.M. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem. Pharmacol., 2008, 76(5), 582-588.
[http://dx.doi.org/10.1016/j.bcp.2008.06.007] [PMID: 18619946]
[61]
Blower, P.E.; Chung, J.H.; Verducci, J.S.; Lin, S.; Park, J.K.; Dai, Z.; Liu, C.G.; Schmittgen, T.D.; Reinhold, W.C.; Croce, C.M.; Weinstein, J.N.; Sadee, W. MicroRNAs modulate the chemosensitivity of tumor cells. Mol. Cancer Ther., 2008, 7(1), 1-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0573] [PMID: 18187804]
[62]
Döhner, H.; Fischer, K.; Bentz, M.; Hansen, K.; Benner, A.; Cabot, G.; Diehl, D.; Schlenk, R.; Coy, J.; Stilgenbauer, S. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood, 1995, 85(6), 1580-1589.
[http://dx.doi.org/10.1182/blood.V85.6.1580.bloodjournal8561580] [PMID: 7888675]
[63]
Zhu, W.; Shan, X.; Wang, T.; Shu, Y.; Liu, P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer, 2010, 127(11), 2520-2529.
[http://dx.doi.org/10.1002/ijc.25260] [PMID: 20162574]
[64]
Ji, Q.; Hao, X.; Meng, Y.; Zhang, M.; Desano, J.; Fan, D.; Xu, L. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 2008, 8(1), 266.
[http://dx.doi.org/10.1186/1471-2407-8-266] [PMID: 18803879]
[65]
Xia, L.; Zhang, D.; Du, R.; Pan, Y.; Zhao, L.; Sun, S.; Hong, L.; Liu, J.; Fan, D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer, 2008, 123(2), 372-379.
[http://dx.doi.org/10.1002/ijc.23501] [PMID: 18449891]
[66]
Fang, Y.; Shen, H.; Li, H.; Cao, Y.; Qin, R.; Long, L.; Zhu, X.; Xie, C.; Xu, W. miR-106a confers cisplatin resistance by regulating PTEN/Akt pathway in gastric cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(11), 963-972.
[http://dx.doi.org/10.1093/abbs/gmt106] [PMID: 24108762]
[67]
Fujita, Y.; Kojima, K.; Hamada, N.; Ohhashi, R.; Akao, Y.; Nozawa, Y.; Deguchi, T.; Ito, M. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem. Biophys. Res. Commun., 2008, 377(1), 114-119.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.086] [PMID: 18834855]
[68]
Nakajima, G.; Hayashi, K.; Xi, Y.; Kudo, K.; Uchida, K.; Takasaki, K.; Yamamoto, M.; Ju, J. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 2006, 3(5), 317-324.
[PMID: 18172508]
[69]
Pegtel, D.M.; Cosmopoulos, K.; Thorley-Lawson, D.A.; van Eijndhoven, M.A.; Hopmans, E.S.; Lindenberg, J.L.; de Gruijl, T.D.; Würdinger, T.; Middeldorp, J.M. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. USA, 2010, 107(14), 6328-6333.
[http://dx.doi.org/10.1073/pnas.0914843107] [PMID: 20304794]
[70]
Zhan, T.; Rindtorff, N.; Betge, J.; Ebert, M.P.; Boutros, M. CRISPR/Cas9 for cancer research and therapy. Seminars in cancer biology; Academic Press, 2018.
[71]
Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 2014, 32(4), 347-355.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[72]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[73]
Martinez-Lage, M.; Puig-Serra, P.; Menendez, P.; Torres-Ruiz, R.; Rodriguez-Perales, S. CRISPR/Cas9 for cancer therapy: hopes and challenges. Biomedicines, 2018, 6(4), 105.
[http://dx.doi.org/10.3390/biomedicines6040105] [PMID: 30424477]
[74]
Kim, S.M.; Yang, Y.; Oh, S.J.; Hong, Y.; Seo, M.; Jang, M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Release, 2017, 266, 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[76]
Yang, M.; Wu, S.Y. The advances and challenges in utilizing exosomes for delivering cancer therapeutics. Front. Pharmacol., 2018, 9, 735.
[http://dx.doi.org/10.3389/fphar.2018.00735] [PMID: 30061829]
[77]
Yamashita, T.; Takahashi, Y.; Takakura, Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol. Pharm. Bull., 2018, 41(6), 835-842.
[http://dx.doi.org/10.1248/bpb.b18-00133] [PMID: 29863072]
[78]
Zhou, H.; Yuen, P.S.; Pisitkun, T.; Gonzales, P.A.; Yasuda, H.; Dear, J.W.; Gross, P.; Knepper, M.A.; Star, R.A. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int., 2006, 69(8), 1471-1476.
[http://dx.doi.org/10.1038/sj.ki.5000273] [PMID: 16501490]
[79]
Kibria, G.; Ramos, E.K.; Wan, Y.; Gius, D.R.; Liu, H. Exosomes as a drug delivery system in cancer therapy: potential and challenges. Mol. Pharm., 2018, 15(9), 3625-3633.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00277] [PMID: 29771531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy