Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

An Overview of Promising Biomarkers in Cancer Screening and Detection

Author(s): Saba Hasan*

Volume 20, Issue 11, 2020

Page: [831 - 852] Pages: 22

DOI: 10.2174/1568009620666200824102418

Price: $65

Abstract

Applications of biomarkers have been proved in oncology screening, diagnosis, predicting response to treatment as well as monitoring the progress of the disease. Considering the crucial role played by them during different disease stages, it is extremely important to evaluate, validate, and assess them to incorporate them into routine clinical care. In this review, the role of few most promising and successfully used biomarkers in cancer detection, i.e. PD-L1, E-Cadherin, TP53, Exosomes, cfDNA, EGFR, mTOR with regard to their structure, mode of action, and reports signifying their pathological significance, are addressed. Also, an overview of some successfully used biomarkers for cancer medicine has been presented. The study also summarizes biomarker-driven personalized cancer therapy i.e., approved targets and indications, as per the US FDA. The review also highlights the increasingly prominent role of biomarkers in drug development at all stages, with particular reference to clinical trials. The increasing utility of biomarkers in clinical trials is clearly evident from the trend shown, wherein ~55 percent of all oncology clinical trials in 2019 were seen to involve biomarkers, as opposed to ~ 15 percent in 2001, which clearly proves the essence and applicability of biomarkers for synergizing clinical information with tumor progression. Still, there are significant challenges in the implementation of these possibilities with strong evidence in cost-- effective manner.

Keywords: Biomarkers, PD-L1, targeted therapy, clinical trials, p53, EGFR, e-cadherin.

Graphical Abstract

[1]
Matthew, J Biomark. Insights, 2017, 12, 1-7.
[2]
FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource Maryland (2016): Food and Drug Administration-National Institutes of Health Biomarker Working Group, 2016.
[3]
Mishra, A.; Verma, M. Cancer biomarkers: are we ready for the prime time? Cancers (Basel), 2010, 2(1), 190-208.
[http://dx.doi.org/10.3390/cancers2010190] [PMID: 24281040]
[4]
Hala, F.M.K.; Hiba, S.B.A-A. Cancer Biomarkers, Role of Biomarkers in Medicine, Mu Wang and Frank A; Witzmann, IntechOpen, 2016.
[5]
Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol., 2012, 6(2), 140-146.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010] [PMID: 22356776]
[6]
Mehta, S.; Shelling, A.; Muthukaruppan, A.; Lasham, A.; Blenkiron, C.; Laking, G.; Print, C. Predictive and prognostic molecular markers for cancer medicine. Ther. Adv. Med. Oncol., 2010, 2(2), 125-148.
[http://dx.doi.org/10.1177/1758834009360519] [PMID: 21789130]
[7]
Carlomagno, N. Paola Incollingo,1 Vincenzo Tammaro,1 Gaia Peluso,1 Niccolò Rupealta,1 Gaetano Chiacchio,1 Maria Laura Sandoval Sotelo,1 Gianluca Minieri,1 Antonio Pisani,2 Eleonora Riccio,2 Massimo Sabbatini,2 Umberto Marcello Bracale,2 Armando Calogero,1 Concetta Anna Dodaro,1 and Michele Santangelo (2017). Diagnostic, Predictive, Prognostic, and Therapeutic Molecular Biomarkers in Third Millennium: A Breakthrough in Gastric CancerHindawi BioMed Research International; , 2017.
[8]
DurAes, C.; Almeida, G.M.; Seruca, R.; Oliveira, C.; Carneiro, F. Biomarkers for gastric cancer: prognostic, predictive or targets of therapy? Virchows Arch., 2014, 464(3), 367-378.
[http://dx.doi.org/10.1007/s00428-013-1533-y] [PMID: 24487788]
[9]
Italiano, A. Prognostic or predictive? It?(tm)s time to get back to definitions! J. Clin. Oncol., 2011, 29(35), 4718.
[http://dx.doi.org/10.1200/JCO.2011.38.3729] [PMID: 22042948]
[10]
Lin, L-L.; Huang, H-C.; Juan, H-F. Discovery of biomarkers for gastric cancer: a proteomics approach. J. Proteomics, 2012, 75(11), 3081-3097.
[http://dx.doi.org/10.1016/j.jprot.2012.03.046] [PMID: 22498886]
[11]
Wu, Y.; Chen, W.; Xu, Z.P.; Gu, W. PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition. Front. Immunol., 2019, 10, 2022.
[http://dx.doi.org/10.3389/fimmu.2019.02022] [PMID: 31507611]
[12]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[13]
Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med., 2002, 8(8), 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[14]
Davis, A.A.; Patel, V.G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer, 2019, 7(1), 278.
[http://dx.doi.org/10.1186/s40425-019-0768-9] [PMID: 31655605]
[15]
Patel, S.P.; Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther., 2015, 14(4), 847-856.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0983] [PMID: 25695955]
[16]
Du, S.; McCall, N.; Park, K.; Guan, Q.; Fontina, P.; Ertel, A.; Zhan, T.; Dicker, A.P.; Lu, B. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth. OncoImmunology, 2018, 7(4)e1408747
[http://dx.doi.org/10.1080/2162402X.2017.1408747] [PMID: 29632720]
[17]
He, R.; Ding, W.; Viswanatha, D.S.; Chen, D.; Shi, M.; Van Dyke, D.; Tian, S.; Dao, L.N.; Parikh, S.A.; Shanafelt, T.D.; Call, T.G.; Ansell, S.M.; Leis, J.F.; Mai, M.; Hanson, C.A.; Rech, K.L. PD-1 expression in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and large B-cell Richter transformation (DLBCL-RT). Am. J. Surg. Pathol., 2018, 42(7), 843-854.
[http://dx.doi.org/10.1097/PAS.0000000000001077] [PMID: 29762141]
[18]
Yao, H.; Wang, H.; Li, C.; Fang, J.Y.; Xu, J. Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front. Immunol., 2018, 9, 1774.
[http://dx.doi.org/10.3389/fimmu.2018.01774] [PMID: 30105035]
[19]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[20]
Baniak, N.; Senger, J-L.; Ahmed, S.; Kanthan, S.C.; Kanthan, R. Gastric biomarkers: a global review. World J. Surg. Oncol., 2016, 14(1), 212.
[http://dx.doi.org/10.1186/s12957-016-0969-3] [PMID: 27514667]
[21]
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 2014, 513(7517), 202-209.
[http://dx.doi.org/10.1038/nature13480] [PMID: 25079317]
[22]
Raufi, A.G.; Klempner, S.J. Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J. Gastrointest. Oncol., 2015, 6(5), 561-569.
[PMID: 26487950]
[23]
Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol., 2007, 8(3), 239-245.
[http://dx.doi.org/10.1038/ni1443] [PMID: 17304234]
[24]
Fife, B.T.; Pauken, K.E. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann. N. Y. Acad. Sci., 2011, 1217(1), 45-59.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05919.x] [PMID: 21276005]
[25]
You, W.; Shang, B.; Sun, J.; Liu, X.; Su, L.; Jiang, S. Mechanistic insight of predictive biomarkers for antitumor PD?'1/PD?'L1 blockade: A paradigm shift towards immunome evaluation (Review). Oncol. Rep., 2020, 44(2), 424-437. [Review].
[PMID: 32627031]
[26]
Panarese, I.; De Vita, F.; Ronchi, A.; Romano, M.; Alfano, R.; Di Martino, N.; Zito Marino, F.; Ferraraccio, F.; Franco, R. Predictive biomarkers along gastric cancer pathogenetic pathways. Expert Rev. Anticancer Ther., 2017, 17(5), 417-425.
[http://dx.doi.org/10.1080/14737140.2017.1301207] [PMID: 28277834]
[27]
Kythreotou, A.; Siddique, A.; Mauri, F.A.; Bower, M.; Pinato, D.J. PD-L1. J. Clin. Pathol., 2018, 71(3), 189-194.
[http://dx.doi.org/10.1136/jclinpath-2017-204853] [PMID: 29097600]
[28]
de Vicente, J.C.; RodrA-guez-Santamarta, T.; Rodrigo, J.P.; Blanco-Lorenzo, V.; Allonca, E.; GarcA-a-Pedrero, J.M. PD-L1 Expression in Tumor Cells Is an Independent Unfavorable Prognostic Factor in Oral Squamous Cell Carcinoma. Cancer Epidemiol. Biomarkers Prev., 2019, 28(3), 546-554.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0779] [PMID: 30487133]
[29]
Maleki Vareki, S.; GarrigA3s, C.; Duran, I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit. Rev. Oncol. Hematol., 2017, 116, 116-124.
[http://dx.doi.org/10.1016/j.critrevonc.2017.06.001] [PMID: 28693793]
[30]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26, 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[31]
Parsa, A.T.; Waldron, J.S.; Panner, A.; Crane, C.A.; Parney, I.F.; Barry, J.J.; Cachola, K.E.; Murray, J.C.; Tihan, T.; Jensen, M.C.; Mischel, P.S.; Stokoe, D.; Pieper, R.O. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med., 2007, 13(1), 84-88.
[http://dx.doi.org/10.1038/nm1517] [PMID: 17159987]
[32]
Liu, J.; Hamrouni, A.; Wolowiec, D.; Coiteux, V.; Kuliczkowski, K.; Hetuin, D.; Saudemont, A.; Quesnel, B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood, 2007, 110(1), 296-304.
[http://dx.doi.org/10.1182/blood-2006-10-051482] [PMID: 17363736]
[33]
Loke, P.; Allison, J.P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5336-5341.
[http://dx.doi.org/10.1073/pnas.0931259100] [PMID: 12697896]
[34]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: similarities, differences and implications of their inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[35]
Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27(1), 111-122.
[http://dx.doi.org/10.1016/j.immuni.2007.05.016] [PMID: 17629517]
[36]
Escors, D.; Gato-CaAas, M.; Zuazo, M.; Arasanz, H.; GarcA-a-Granda, M.J.; Vera, R.; Kochan, G. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct. Target. Ther., 2018, 3, 26.
[http://dx.doi.org/10.1038/s41392-018-0022-9] [PMID: 30275987]
[37]
Anbiaee, R.; Mojir Sheibani, K.; Torbati, P.; Jaam, H. Abnormal expression of e-cadherin in gastric adenocarcinoma, and its correlation with tumor histopathology and helicobacter pylori infection. Iran. Red Crescent Med. J., 2013, 15(3), 218-222.
[http://dx.doi.org/10.5812/ircmj.4032] [PMID: 23984001]
[38]
Carneiro, P.; Fernandes, M.S.; Figueiredo, J.; Caldeira, J.; Carvalho, J.; Pinheiro, H.; Leite, M.; Melo, S.; Oliveira, P.; SimAes-Correia, J.; Oliveira, M.J.; Carneiro, F.; Figueiredo, C.; Paredes, J.; Oliveira, C.; Seruca, R. E-cadherin dysfunction in gastric cancer--cellular consequences, clinical applications and open questions. FEBS Lett., 2012, 586(18), 2981-2989.
[http://dx.doi.org/10.1016/j.febslet.2012.07.045] [PMID: 22841718]
[39]
Aladin, D.M.K.; Chu, Y.S.; Robinson, R.C.; Dufour, S.; Viasnoff, V.; Borghi, N.; Thiery, J.P. Extracellular domains of E-cadherin determine key mechanical phenotypes of an epithelium through cell- and non-cell-autonomous outside-in signalling. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.17.996181]
[40]
Chan, A.O.O. E-cadherin in gastric cancer. World J. Gastroenterol., 2006, 12(2), 199-203.
[http://dx.doi.org/10.3748/wjg.v12.i2.199] [PMID: 16482618]
[41]
Corso, G.; Carvalho, J.; Marrelli, D.; Vindigni, C.; Carvalho, B.; Seruca, R.; Roviello, F.; Oliveira, C. Somatic mutations and deletions of the E-cadherin gene predict poor survival of patients with gastric cancer. J. Clin. Oncol., 2013, 31(7), 868-875.
[http://dx.doi.org/10.1200/JCO.2012.44.4612] [PMID: 23341533]
[42]
Shiozaki, H; Oka, H; Inoue, M; Tamura, S; Monden, M E-cadherin mediated adhesion system in cancer cells Cancer, 1996, 77, 1605-1613.
[43]
Nagar, B.; Overduin, M.; Ikura, M.; Rini, J.M. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature, 1996, 380(6572), 360-364.
[http://dx.doi.org/10.1038/380360a0] [PMID: 8598933]
[44]
Tamura, G. Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. World J. Gastroenterol., 2006, 12(2), 192-198.
[http://dx.doi.org/10.3748/wjg.v12.i2.192] [PMID: 16482617]
[45]
Ferreira, P.; Oliveira, M.J.; Beraldi, E.; Mateus, A.R.; Nakajima, T.; Gleave, M.; Yokota, J.; Carneiro, F.; Huntsman, D.; Seruca, R.; Suriano, G. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro. Exp. Cell Res., 2005, 310(1), 99-104.
[http://dx.doi.org/10.1016/j.yexcr.2005.07.010] [PMID: 16112667]
[46]
Xin, H.W.; Yang, J.H.; Nguyen, D.M. Sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor requires E-cadherin in esophageal cancer and malignant pleural mesothelioma. Anticancer Res., 2013, 33(6), 2401-2408.
[PMID: 23749888]
[47]
Kanazawa, T.; Watanabe, T.; Kazama, S.; Tada, T.; Koketsu, S.; Nagawa, H. Poorly differentiated adenocarcinoma and mucinous carcinoma of the colon and rectum show higher rates of loss of heterozygosity and loss of E-cadherin expression due to methylation of promoter region. Int. J. Cancer, 2002, 102(3), 225-229.
[http://dx.doi.org/10.1002/ijc.10690] [PMID: 12397640]
[48]
Cheng, C.W.; Wu, P.E.; Yu, J.C.; Huang, C.S.; Yue, C.T.; Wu, C.W.; Shen, C.Y. Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene. Oncogene, 2001, 20(29), 3814-3823.
[http://dx.doi.org/10.1038/sj.onc.1204505] [PMID: 11439345]
[49]
Gofuku, J.; Shiozaki, H.; Tsujinaka, T.; Inoue, M.; Tamura, S.; Doki, Y.; Matsui, S.; Tsukita, S.; Kikkawa, N.; Monden, M. Expression of E-cadherin and alpha-catenin in patients with colorectal carcinoma. Correlation with cancer invasion and metastasis. Am. J. Clin. Pathol., 1999, 111(1), 29-37.
[http://dx.doi.org/10.1093/ajcp/111.1.29] [PMID: 9894451]
[50]
Velikova, G.; Banks, R.E.; Gearing, A.; Hemingway, I.; Forbes, M.A.; Preston, S.R.; Hall, N.R.; Jones, M.; Wyatt, J.; Miller, K.; Ward, U.; Al-Maskatti, J.; Singh, S.M.; Finan, P.J.; Ambrose, N.S.; Primrose, J.N.; Selby, P.J. Serum concentrations of soluble adhesion molecules in patients with colorectal cancer. Br. J. Cancer, 1998, 77(11), 1857-1863.
[http://dx.doi.org/10.1038/bjc.1998.309] [PMID: 9667659]
[51]
Wilmanns, C.; Grossmann, J.; Steinhauer, S.; Manthey, G.; Weinhold, B.; Schmitt-GrAff, A.; von Specht, B.U. Soluble serum E-cadherin as a marker of tumour progression in colorectal cancer patients. Clin. Exp. Metastasis, 2004, 21(1), 75-78.
[http://dx.doi.org/10.1023/B:CLIN.0000017204.38807.22] [PMID: 15065605]
[52]
Weiss, J.V.; Klein-Scory, S.; KA1/4bler, S.; Reinacher-Schick, A.; Stricker, I.; Schmiegel, W.; Schwarte-Waldhoff, I. Soluble E-cadherin as a serum biomarker candidate: elevated levels in patients with late-stage colorectal carcinoma and FAP. Int. J. Cancer, 2011, 128(6), 1384-1392.
[http://dx.doi.org/10.1002/ijc.25438] [PMID: 20473926]
[53]
Okugawa, Y.; Toiyama, Y.; Inoue, Y.; Iwata, T.; Fujikawa, H.; Saigusa, S.; Konishi, N.; Tanaka, K.; Uchida, K.; Kusunoki, M. Clinical significance of serum soluble E-cadherin in colorectal carcinoma. J. Surg. Res., 2012, 175(2), e67-e73.
[http://dx.doi.org/10.1016/j.jss.2011.11.009] [PMID: 22277332]
[54]
Christou, N.; Perraud, A.; Blondy, S.; Jauberteau, M.O.; Battu, S.; Mathonnet, M. E-cadherin: A potential biomarker of colorectal cancer prognosis. Oncol. Lett., 2017, 13(6), 4571-4576.
[http://dx.doi.org/10.3892/ol.2017.6063] [PMID: 28588719]
[55]
Huszno, J.; Grzybowska, E. TP53 mutations and SNPs as prognostic and predictive factors in patients with breast cancer. Oncol. Lett., 2018, 16(1), 34-40. [Review].
[http://dx.doi.org/10.3892/ol.2018.8627] [PMID: 29928384]
[56]
Komarova, E.A.; Chumakov, P.M.; Gudcov, A.V. Molecular genetics of cancerTP53 in cancer origin and treatment. Edited by Cowell JK 9; , 2009, pp. 195-221.
[57]
Kato, S.; Han, S.Y.; Liu, W.; Otsuka, K.; Shibata, H.; Kanamaru, R.; Ishioka, C. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8424-8429.
[http://dx.doi.org/10.1073/pnas.1431692100] [PMID: 12826609]
[58]
Tokino, T.; Nakamura, Y. The role of p53-target genes in human cancer. Crit. Rev. Oncol. Hematol., 2000, 33(1), 1-6.
[http://dx.doi.org/10.1016/S1040-8428(99)00051-7] [PMID: 10714958]
[59]
Sionov, RV; Hayon, IL; Haupt, Y The regulation of p53 growth suppression Madame Curie Bioscience Database [Internet]Landes Bioscience. Austin, TX: 2000–2013,
[60]
National Center for Biotechnology Information: The p53 tumor suppressor proteinGenes and Disease. National Center for Biotechnology Information; Bethesda, MD, USA,
[61]
Hasty, P.; Christy, B.A. p53 as an intervention target for cancer and aging. Pathobiol. Aging Age Relat. Dis., 2013, 3227022013
[http://dx.doi.org/10.3402/pba.v3i0.22702] [PMID: 24124625]
[62]
Kratz, C.P.; Achatz, M.I.; BrugiA"res, L.; Frebourg, T.; Garber, J.E.; Greer, M.C.; Hansford, J.R.; Janeway, K.A.; Kohlmann, W.K.; McGee, R.; Mullighan, C.G.; Onel, K.; Pajtler, K.W.; Pfister, S.M.; Savage, S.A.; Schiffman, J.D.; Schneider, K.A.; Strong, L.C.; Evans, D.G.R.; Wasserman, J.D.; Villani, A.; Malkin, D. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin. Cancer Res., 2017, 23(11), e38-e45.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0408] [PMID: 28572266]
[63]
Lalloo, F.; Varley, J.; Moran, A.; Ellis, D.; O?(tm)dair, L.; Pharoah, P.; Antoniou, A.; Hartley, R.; Shenton, A.; Seal, S.; Bulman, B.; Howell, A.; Evans, D.G. BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur. J. Cancer, 2006, 42(8), 1143-1150.
[http://dx.doi.org/10.1016/j.ejca.2005.11.032] [PMID: 16644204]
[64]
Olivier, M.; LangerA,d, A.; Carrieri, P.; Bergh, J.; Klaar, S.; Eyfjord, J.; Theillet, C.; Rodriguez, C.; Lidereau, R.; BiA"che, I.; Varley, J.; Bignon, Y.; Uhrhammer, N.; Winqvist, R.; Jukkola-Vuorinen, A.; Niederacher, D.; Kato, S.; Ishioka, C.; Hainaut, P.; BA,rresen-Dale, A.L. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin. Cancer Res., 2006, 12(4), 1157-1167.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1029] [PMID: 16489069]
[65]
Varna, M.; Bousquet, G.; Plassa, L.F.; Bertheau, P.; Janin, A. TP53 status and response to treatment in breast cancers. J. Biomed. Biotechnol., 2011, 2011284584
[http://dx.doi.org/10.1155/2011/284584] [PMID: 21760703]
[66]
Wang, Y.; Helland, A.; Holm, R.; Skomedal, H.; Abeler, V.M.; Danielsen, H.E.; TropA(c), C.G.; BA,rresen-Dale, A.L.; Kristensen, G.B. TP53 mutations in early-stage ovarian carcinoma, relation to long-term survival. Br. J. Cancer, 2004, 90(3), 678-685.
[http://dx.doi.org/10.1038/sj.bjc.6601537] [PMID: 14760384]
[67]
LangerA,d, A.; Zhao, H.; Borgan, A~.; Nesland, J.M.; Bukholm, I.R.; Ikdahl, T.; KAresen, R.; BA,rresen-Dale, A.L.; Jeffrey, S.S. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res., 2007, 9(3), R30.
[http://dx.doi.org/10.1186/bcr1675] [PMID: 17504517]
[68]
Chae, B.J.; Bae, J.S.; Lee, A.; Park, W.C.; Seo, Y.J.; Song, B.J.; Kim, J.S.; Jung, S.S. p53 as a specific prognostic factor in triple-negative breast cancer. Jpn. J. Clin. Oncol., 2009, 39(4), 217-224.
[http://dx.doi.org/10.1093/jjco/hyp007] [PMID: 19304743]
[69]
Weisman, P.S.; Ng, C.K.; Brogi, E.; Eisenberg, R.E.; Won, H.H.; Piscuoglio, S.; De Filippo, M.R.; Ioris, R.; Akram, M.; Norton, L.; Weigelt, B.; Berger, M.F.; Reis-Filho, J.S.; Wen, H.Y. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod. Pathol., 2016, 29(5), 476-488.
[http://dx.doi.org/10.1038/modpathol.2016.39] [PMID: 26939876]
[70]
Wattel, E.; Preudhomme, C.; Hecquet, B.; Vanrumbeke, M.; Quesnel, B.; Dervite, I.; Morel, P.; Fenaux, P. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood, 1994, 84(9), 3148-3157.
[http://dx.doi.org/10.1182/blood.V84.9.3148.3148] [PMID: 7949187]
[71]
BA,rresen-Dale, A.L. TP53 and breast cancer. Hum. Mutat., 2003, 21(3), 292-300.
[http://dx.doi.org/10.1002/humu.10174] [PMID: 12619115]
[72]
National Cancer Institute (NCI): NCI dictionary of cancer terms, https://www.cancer.gov/publications/dictionaries/cancer-terms
[73]
Genes and Disease National Center for Biotechnology Information Bethesda, MD, USA: National Center for Biotechnology Information: The p53 tumor suppressor protein, 2012.
[74]
Sionov, RV; Hayon, IL; Haupt, Y Landes Bioscience; Austin, TX: 2000–2013. The regulation of p53 growth suppression Madame Curie Bioscience Database,
[75]
Shi, D.; Gu, W. Dual roles of MDM2 in the regulation of p53. Ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer, 2012, 3(3-4), 240-248.
[http://dx.doi.org/10.1177/1947601912455199] [PMID: 23150757]
[76]
Sakaguchi, K.; Herrera, J.E.; Saito, S.; Miki, T.; Bustin, M.; Vassilev, A.; Anderson, C.W.; Appella, E. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev., 1998, 12(18), 2831-2841.
[http://dx.doi.org/10.1101/gad.12.18.2831] [PMID: 9744860]
[77]
Soussi, T. p53 alterations in human cancer: more questions than answers. Oncogene, 2007, 26(15), 2145-2156. [PubMed: 17401423].
[http://dx.doi.org/10.1038/sj.onc.1210280] [PMID: 17401423]
[78]
Vousden, K.H. Outcomes of p53 activation--spoilt for choice. J. Cell Sci., 2006, 119(Pt 24), 5015-5020.
[http://dx.doi.org/10.1242/jcs.03293] [PMID: 17158908]
[79]
Petitjean, A.; Mathe, E.; Kato, S.; Ishioka, C.; Tavtigian, S.V.; Hainaut, P.; Olivier, M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat., 2007, 28(6), 622-629. [PubMed: 17311302].
[http://dx.doi.org/10.1002/humu.20495] [PMID: 17311302]
[80]
Lu, ML; Wikman, F; Orntoft, TF Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods Clin Cancer Res, 2002, 8, 171-9.
[81]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[PMID: 3597417]
[82]
Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; Watanabe, M.; Nakagama, H.; Yokota, J.; Kohno, T.; Tsuchiya, N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One, 2014, 9(4)e92921
[http://dx.doi.org/10.1371/journal.pone.0092921] [PMID: 24705249]
[83]
Zhang, J.; Raju, G.S.; Chang, D.W.; Lin, S.H.; Chen, Z.; Wu, X. Global and targeted circulating microRNA profiling of colorectal adenoma and colorectal cancer. Cancer, 2018, 124(4), 785-796.
[http://dx.doi.org/10.1002/cncr.31062] [PMID: 29112225]
[84]
Ostenfeld, M.S.; Jensen, S.G.; Jeppesen, D.K.; Christensen, L.L.; Thorsen, S.B.; Stenvang, J.; Hvam, M.L.; Thomsen, A.; Mouritzen, P.; Rasmussen, M.H.; Nielsen, H.J.; A~rntoft, T.F.; Andersen, C.L. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer. J. Extracell. Vesicles, 2016, 5(1), 31488.
[http://dx.doi.org/10.3402/jev.v5.31488] [PMID: 27576678]
[85]
Rapado-GonzAlez, A".; A?lvarez-Castro, A.; LA3pez-LA3pez, R.; Iglesias-Canle, J.; SuArez-Cunqueiro, M.M.; Muinelo-Romay, L. Circulating microRNAs as promising biomarkers in colorectal cancer. Cancers (Basel), 2019, 11(7)E898
[http://dx.doi.org/10.3390/cancers11070898] [PMID: 31252648]
[86]
Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Scalia, M.; Magnano, A.; Caltabiano, R.; Barbagallo, D.; Biondi, A.; Cappellani, A.; Basile, F.; Di Pietro, C.; Purrello, M.; Ragusa, M. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol. Ther. Nucleic Acids, 2018, 12, 229-241.
[http://dx.doi.org/10.1016/j.omtn.2018.05.009] [PMID: 30195762]
[87]
Wang, L.; Duan, W.; Yan, S.; Xie, Y.; Wang, C. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer. Biomed. Pharmacother., 2019, 113108758
[http://dx.doi.org/10.1016/j.biopha.2019.108758] [PMID: 30877883]
[88]
Liu, H.; Ye, D.; Chen, A.; Tan, D.; Zhang, W.; Jiang, W.; Wang, M.; Zhang, X. A pilot study of new promising non-coding RNA diagnostic biomarkers for early-stage colorectal cancers. Clin. Chem. Lab. Med., 2019, 57(7), 1073-1083.
[http://dx.doi.org/10.1515/cclm-2019-0052] [PMID: 30978169]
[89]
Nakai, W.; Yoshida, T.; Diez, D.; Miyatake, Y.; Nishibu, T.; Imawaka, N.; Naruse, K.; Sadamura, Y.; Hanayama, R. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep., 2016, 6, 33935.
[http://dx.doi.org/10.1038/srep33935] [PMID: 27659060]
[90]
Kim, J-H.; Kim, E.; Lee, M.Y. Exosomes as diagnostic biomarkers in cancer. Mol. Cell. Toxicol., 2018, 14, 113-122.
[http://dx.doi.org/10.1007/s13273-018-0014-4]
[91]
Zhang, H.; Deng, T.; Liu, R.; Bai, M.; Zhou, L.; Wang, X.; Li, S.; Wang, X.; Yang, H.; Li, J.; Ning, T.; Huang, D.; Li, H.; Zhang, L.; Ying, G.; Ba, Y. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun., 2017, 8, 15016.
[http://dx.doi.org/10.1038/ncomms15016] [PMID: 28393839]
[92]
Melo, S.A.; Sugimoto, H.; O?(tm)Connell, J.T.; Kato, N.; Villanueva, A.; Vidal, A.; Qiu, L.; Vitkin, E.; Perelman, L.T.; Melo, C.A.; Lucci, A.; Ivan, C.; Calin, G.A.; Kalluri, R. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 2014, 26(5), 707-721.
[http://dx.doi.org/10.1016/j.ccell.2014.09.005] [PMID: 25446899]
[93]
Zhang, L.; Zhang, S.; Yao, J.; Lowery, F.J.; Zhang, Q.; Huang, W.C.; Li, P.; Li, M.; Wang, X.; Zhang, C.; Wang, H.; Ellis, K.; Cheerathodi, M.; McCarty, J.H.; Palmieri, D.; Saunus, J.; Lakhani, S.; Huang, S.; Sahin, A.A.; Aldape, K.D.; Steeg, P.S.; Yu, D. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 2015, 527(7576), 100-104.
[http://dx.doi.org/10.1038/nature15376] [PMID: 26479035]
[94]
Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O?(tm)Connor, S.T.; Li, S.; Chin, A.R.; Somlo, G.; Palomares, M.; Li, Z.; Tremblay, J.R.; Tsuyada, A.; Sun, G.; Reid, M.A.; Wu, X.; Swiderski, P.; Ren, X.; Shi, Y.; Kong, M.; Zhong, W.; Chen, Y.; Wang, S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol., 2015, 17(2), 183-194.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[95]
Zhang, J.; Chen, C.; Hu, B.; Niu, X.; Liu, X.; Zhang, G.; Zhang, C.; Li, Q.; Wang, Y. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling. Int. J. Biol. Sci., 2016, 12(12), 1472-1487.
[http://dx.doi.org/10.7150/ijbs.15514] [PMID: 27994512]
[96]
Huang, Tao; Deng, Chu-Xia Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers Int J Biol Sci., 2019, 15(1), 1-11.
[http://dx.doi.org/10.7150/ijbs.27796]
[97]
Stroun, M.; Anker, P.; Charles, P.; Ledoux, L. Translocation of DNA of bacterial origin in Lycopersicum esculentum by ultracentrifugation in caesium chloride gradient. Nature, 1967, 215(5104), 975-976.
[http://dx.doi.org/10.1038/215975b0] [PMID: 4964238]
[98]
Bendich, A.; Wilczok, T.; Borenfreund, E. Circulating DNA as a possible factor in oncogenesis Science (80-), 1965.
[http://dx.doi.org/10.1126/science.148.3668.374]
[99]
Raghuram, G.V.; Gupta, D.; Subramaniam, S.; Gaikwad, A.; Khare, N.K.; Nobre, M.; Nair, N.K.; Mittra, I. Physical shearing imparts biological activity to DNA and ability to transmit itself horizontally across species and kingdom boundaries. BMC Mol. Biol., 2017, 18(1), 21.
[http://dx.doi.org/10.1186/s12867-017-0098-8] [PMID: 28793862]
[100]
Mittra, I.; Khare, N.K.; Raghuram, G.V.; Chaubal, R.; Khambatti, F.; Gupta, D.; Gaikwad, A.; Prasannan, P.; Singh, A.; Iyer, A.; Singh, A.; Upadhyay, P.; Nair, N.K.; Mishra, P.K.; Dutt, A. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J. Biosci., 2015, 40(1), 91-111.
[http://dx.doi.org/10.1007/s12038-015-9508-6] [PMID: 25740145]
[101]
Wen, F.; Shen, A.; Choi, A.; Gerner, E.W.; Shi, J. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res., 2013, 73(14), 4256-4266.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3287] [PMID: 23722544]
[102]
Trejo-Becerril, C.; PA(c)rez-CArdenas, E.; Taja-Chayeb, L.; Anker, P.; Herrera-Goepfert, R.; Medina-VelAzquez, L.A.; Hidalgo-Miranda, A.; PA(c)rez-Montiel, D.; ChAvez-Blanco, A.; Cruz-VelAzquez, J.; DA-az-ChAvez, J.; Gaxiola, M.; DueAas-GonzAlez, A. Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One, 2012, 7(12)e52754
[http://dx.doi.org/10.1371/journal.pone.0052754] [PMID: 23285175]
[103]
Leon, S.A.; Shapiro, B.; Sklaroff, D.M.; Yaros, M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res., 1977, 37(3), 646-650.
[PMID: 837366]
[104]
Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; Shrager, J.B.; Loo, B.W., Jr; Alizadeh, A.A.; Diehn, M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med., 2014, 20(5), 548-554.
[http://dx.doi.org/10.1038/nm.3519] [PMID: 24705333]
[105]
Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; Antonarakis, E.S.; Azad, N.S.; Bardelli, A.; Brem, H.; Cameron, J.L.; Lee, C.C.; Fecher, L.A.; Gallia, G.L.; Gibbs, P.; Le, D.; Giuntoli, R.L.; Goggins, M.; Hogarty, M.D.; Holdhoff, M.; Hong, S.M.; Jiao, Y.; Juhl, H.H.; Kim, J.J.; Siravegna, G.; Laheru, D.A.; Lauricella, C.; Lim, M.; Lipson, E.J.; Marie, S.K.; Netto, G.J.; Oliner, K.S.; Olivi, A.; Olsson, L.; Riggins, G.J.; Sartore-Bianchi, A.; Schmidt, K.; Shih, M.; Oba-Shinjo, S.M.; Siena, S.; Theodorescu, D.; Tie, J.; Harkins, T.T.; Veronese, S.; Wang, T.L.; Weingart, J.D.; Wolfgang, C.L.; Wood, L.D.; Xing, D.; Hruban, R.H.; Wu, J.; Allen, P.J.; Schmidt, C.M.; Choti, M.A.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N.; Diaz, L.A., Jr Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med., 2014, 6(224)224ra24
[http://dx.doi.org/10.1126/scitranslmed.3007094] [PMID: 24553385]
[106]
Spellman, P.T.; Gray, J.W. Detecting cancer by monitoring circulating tumor DNA. Nat. Med., 2014, 20(5), 474-475.
[http://dx.doi.org/10.1038/nm.3564] [PMID: 24804754]
[107]
Ng, S.B.; Chua, C.; Ng, M.; Gan, A.; Poon, P.S.; Teo, M.; Fu, C.; Leow, W.Q.; Lim, K.H.; Chung, A.; Koo, S.L.; Choo, S.P.; Ho, D.; Rozen, S.; Tan, P.; Wong, M.; Burkholder, W.F.; Tan, I.B. Individualised multiplexed circulating tumour DNA assays for monitoring of tumour presence in patients after colorectal cancer surgery. Sci. Rep., 2017, 7, 40737.
[http://dx.doi.org/10.1038/srep40737] [PMID: 28102343]
[108]
Niu, Z.; Tang, W.; Liu, T.; Xu, P.; Zhu, D.; Ji, M.; Huang, W.; Ren, L.; Wei, Y.; Xu, J. Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer Acta Biochim. Biophys. Sin. (Shanghai), 2018.
[http://dx.doi.org/10.1093/abbs/gmy104]
[109]
Fri, I.; KalmAr, A.; Wichmann, B.; SpisAk, S.; SchAller, A.; BartAk, B.; Tulassay, Z.; MolnAr, B. Cell free DNA of tumor origin induces a ?ometastatic?? expression profile in HT-29 cancer cell line. PLoS One, 2015, 10(7)e0131699
[http://dx.doi.org/10.1371/journal.pone.0131699] [PMID: 26133168]
[110]
Kostyuk, S.V.; Malinovskaya, E.M.; Ermakov, A.V.; Smirnova, T.D.; Kameneva, L.V.; Chvartatskaya, O.V.; Loseva, P.A.; Ershova, E.S.; Lyubchenko, L.N.; Veiko, N.N. Fragments of cell-free DNA increase transcription in human mesenchymal stem cells, activate TLR-dependent signal pathway, and suppress apoptosis. Biochem. Suppl. Ser. B: Biomed. Chem., 2012.
[http://dx.doi.org/10.1134/S1990750812010052]
[111]
Nelson, H.D.; O?(tm)Meara, E.S.; Kerlikowske, K.; Balch, S.; Miglioretti, D. Factors associated with rates of false-positive and false-negative results from digital mammography screening: an analysis of registry data. Ann. Intern. Med., 2016, 164(4), 226-235.
[http://dx.doi.org/10.7326/M15-0971] [PMID: 26756902]
[112]
Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med., 2011, 365(5), 395-409.
[http://dx.doi.org/10.1056/NEJMoa1102873] [PMID: 21714641]
[113]
Aravanis, A.M.; Lee, M.; Klausner, R.D. Next-generation sequencing of circulating tumor DNA for early Cancer detection. Cell, 2017, 168(4), 571-574.
[http://dx.doi.org/10.1016/j.cell.2017.01.030] [PMID: 28187279]
[114]
Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; Hruban, R.H.; Wolfgang, C.L.; Goggins, M.G.; Molin, M.D.; Wang, T.L.; Roden, R.; Klein, A.P.; Ptak, J.; Dobbyn, L.; Schaefer, J.; Silliman, N.; Popoli, M.; Vogelstein, J.T.; Browne, J.D.; Schoen, R.E.; Brand, R.E.; Tie, J.; Gibbs, P.; Wong, H.L.; Mansfield, A.S.; Jen, J.; Hanash, S.M.; Falconi, M.; Allen, P.J.; Zhou, S.; Bettegowda, C.; Diaz, L.A.; Tomasetti, C.; Kinzler, K.W.; Vogelstein, B.; Lennon, A.M.; Papadopoulos, N. Detection and localization of surgically resectable cancers with a multi-analyte blood test Science.(80-), 2018.
[http://dx.doi.org/10.1126/science.aar3247]
[115]
Tian, G.; Li, X.; Xie, Y.; Xu, F.; Yu, D.; Cao, F.; Wang, X.; Yu, F.; Zhong, W.; Lu, S. The early diagnosis in lung cancer by the detection of circulating tumor DNA. bioRxiv, 2017.
[116]
Cohen, P.A.; Flowers, N.; Tong, S.; Hannan, N.; Pertile, M.D.; Hui, L. Abnormal plasma DNA profiles in early ovarian cancer using a non-invasive prenatal testing platform: implications for cancer screening. BMC Med., 2016, 14(1), 126.
[http://dx.doi.org/10.1186/s12916-016-0667-6] [PMID: 27558279]
[117]
Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M. Detection of circulating tumor DNA in early-and late-stage human malignancies Sci. Transl. Med., 2014.
[118]
Samla Gauri and Mohd R.. ctDNA Detection in Microfluidic Platform: A Promising Biomarker for Personalized Cancer Chemotherapy; Ahmad Journal of Sensors, 2020.
[119]
Kinde, I.; Bettegowda, C.; Wang, Y.; Wu, J.; Agrawal, N.; Shih, IeM.; Kurman, R.; Dao, F.; Levine, D.A.; Giuntoli, R.; Roden, R.; Eshleman, J.R.; Carvalho, J.P.; Marie, S.K.N.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Diaz, L.A., Jr Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci. Transl. Med., 2013, 5(167)167ra4
[http://dx.doi.org/10.1126/scitranslmed.3004952] [PMID: 23303603]
[120]
Chan, K.C.A.; Woo, J.K.S.; King, A.; Zee, B.C.Y.; Lam, W.K.J.; Chan, S.L.; Chu, S.W.I.; Mak, C.; Tse, I.O.L.; Leung, S.Y.M.; Chan, G.; Hui, E.P.; Ma, B.B.Y.; Chiu, R.W.K.; Leung, S-F.; van Hasselt, A.C.; Chan, A.T.C.; Lo, Y.M.D. Analysis of plasma Epstein?"Barr virus DNA to screen for nasopharyngeal Cancer. N. Engl. J. Med., 2017, 377(6), 513-522.
[http://dx.doi.org/10.1056/NEJMoa1701717] [PMID: 28792880]
[121]
Bianchi, D.W.; Chudova, D.; Sehnert, A.J.; Bhatt, S.; Murray, K.; Prosen, T.L.; Garber, J.E.; Wilkins-Haug, L.; Vora, N.L.; Warsof, S.; Goldberg, J.; Ziainia, T.; Halks-Miller, M. Noninvasive prenatal testing and incidental detection of occult maternal malignancies JAMA J. Am. Med. Assoc, 2015.
[122]
Amant, F.; Verheecke, M.; Wlodarska, I.; Dehaspe, L.; Brady, P.; Brison, N.; Van Den Bogaert, K.; Dierickx, D.; Vandecaveye, V.; Tousseyn, T.; Moerman, P.; Vanderstichele, A.; Vergote, I.; Neven, P.; Berteloot, P.; Putseys, K.; Danneels, L.; Vandenberghe, P.; Legius, E.; Vermeesch, J.R. Presymptomatic identification of cancers in pregnant women during noninvasive prenatal testing. JAMA Oncol., 2015, 1(6), 814-819.
[http://dx.doi.org/10.1001/jamaoncol.2015.1883] [PMID: 26355862]
[123]
Sun, K.; Jiang, P.; Chan, K.C.A.; Wong, J.; Cheng, Y.K.Y.; Liang, R.H.S.; Chan, W.K.; Ma, E.S.K.; Chan, S.L.; Cheng, S.H.; Chan, R.W.Y.; Tong, Y.K.; Ng, S.S.M.; Wong, R.S.M.; Hui, D.S.C.; Leung, T.N.; Leung, T.Y.; Lai, P.B.S.; Chiu, R.W.K.; Lo, Y.M.D. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc. Natl. Acad. Sci. USA, 2015, 112(40), E5503-E5512.
[http://dx.doi.org/10.1073/pnas.1508736112] [PMID: 26392541]
[124]
Gormally, E.; Vineis, P.; Matullo, G.; Veglia, F.; Caboux, E.; Le Roux, E.; Peluso, M.; Garte, S.; Guarrera, S.; Munnia, A.; Airoldi, L.; Autrup, H.; Malaveille, C.; Dunning, A.; Overvad, K.; TjA,nneland, A.; Lund, E.; Clavel-Chapelon, F.; Boeing, H.; Trichopoulou, A.; Palli, D.; Krogh, V.; Tumino, R.; Panico, S.; Bueno-de-Mesquita, H.B.; Peeters, P.H.; Pera, G.; Martinez, C.; Dorronsoro, M.; Barricarte, A.; Navarro, C.; QuirA3s, J.R.; Hallmans, G.; Day, N.E.; Key, T.J.; Saracci, R.; Kaaks, R.; Riboli, E.; Hainaut, P. TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Res., 2006, 66(13), 6871-6876.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4556] [PMID: 16818665]
[125]
Mao, L.; Hruban, R.H.; Boyle, J.O.; Tockman, M.; Sidransky, D. Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res., 1994, 54(7), 1634-1637.
[PMID: 8137272]
[126]
Abel Jacobus Bronkhorst, Vida Ungerer, and Stefan Holdenrieder*(2019)The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect. Quantif., 2019, 17100087
[http://dx.doi.org/10.1016/j.bdq.2019.100087]
[127]
Hirsch, F.R.; Scagliotti, G.V.; Langer, C.J.; Varella-Garcia, M.; Franklin, W.A. Epidermal growth factor family of receptors in preneoplasia and lung cancer: perspectives for targeted therapies. Lung Cancer, 2003, 41(Suppl. 1), S29-S42.
[http://dx.doi.org/10.1016/S0169-5002(03)00137-5] [PMID: 12867060]
[128]
Kris, M.G.; Natale, R.B.; Herbst, R.S.; Lynch, T.J., Jr; Prager, D.; Belani, C.P.; Schiller, J.H.; Kelly, K.; Spiridonidis, H.; Sandler, A.; Albain, K.S.; Cella, D.; Wolf, M.K.; Averbuch, S.D.; Ochs, J.J.; Kay, A.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA, 2003, 290(16), 2149-2158.
[http://dx.doi.org/10.1001/jama.290.16.2149] [PMID: 14570950]
[129]
PA(c)rez-Soler, R.; Chachoua, A.; Hammond, L.A.; Rowinsky, E.K.; Huberman, M.; Karp, D.; Rigas, J.; Clark, G.M.; SantabArbara, P.; Bonomi, P. Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer. J. Clin. Oncol., 2004, 22(16), 3238-3247.
[http://dx.doi.org/10.1200/JCO.2004.11.057] [PMID: 15310767]
[130]
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[131]
Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; Ove, R.; Kies, M.S.; Baselga, J.; Youssoufian, H.; Amellal, N.; Rowinsky, E.K.; Ang, K.K. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med., 2006, 354(6), 567-578.
[http://dx.doi.org/10.1056/NEJMoa053422] [PMID: 16467544]
[132]
Tsao, M-S.; Sakurada, A.; Cutz, J-C.; Zhu, C.Q.; Kamel-Reid, S.; Squire, J.; Lorimer, I.; Zhang, T.; Liu, N.; Daneshmand, M.; Marrano, P.; da Cunha Santos, G.; Lagarde, A.; Richardson, F.; Seymour, L.; Whitehead, M.; Ding, K.; Pater, J.; Shepherd, F.A. Erlotinib in lung cancer - molecular and clinical predictors of outcome. N. Engl. J. Med., 2005, 353(2), 133-144.
[http://dx.doi.org/10.1056/NEJMoa050736] [PMID: 16014883]
[133]
Hirsch, F.R.; Varella-Garcia, M.; Bunn, P.A. Molecular analysis of EGFR gene copy number, EGFR expression and Akt activation status in advanced non-small cell lung cancer treated with gefitinib or placebo (ISEL trial). Clin. Cancer Res., 2006, 11(24)(Suppl.), 9031s. [Abstract A268].
[134]
Hirsch, F.R.; Varella-Garcia, M.; McCoy, J.; West, H.; Xavier, A.C.; Gumerlock, P.; Bunn, P.A., Jr; Franklin, W.A.; Crowley, J.; Gandara, D.R. Southwest Oncology Group. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J. Clin. Oncol., 2005, 23(28), 6838-6845.
[http://dx.doi.org/10.1200/JCO.2005.01.2823] [PMID: 15998906]
[135]
Cappuzzo, F.; Hirsch, F.R.; Rossi, E.; Bartolini, S.; Ceresoli, G.L.; Bemis, L.; Haney, J.; Witta, S.; Danenberg, K.; Domenichini, I.; Ludovini, V.; Magrini, E.; Gregorc, V.; Doglioni, C.; Sidoni, A.; Tonato, M.; Franklin, W.A.; Crino, L.; Bunn, P.A., Jr; Varella-Garcia, M. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl. Cancer Inst., 2005, 97(9), 643-655.
[http://dx.doi.org/10.1093/jnci/dji112] [PMID: 15870435]
[136]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[137]
Paez, J.G.; JAnne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[http://dx.doi.org/10.1126/science.1099314] [PMID: 15118125]
[138]
Maekawa, T.; Imamoto, F.; Merlino, G.T.; Pastan, I.; Ishii, S. Cooperative function of two separate enhancers of the human epidermal growth factor receptor proto-oncogene. J. Biol. Chem., 1989, 264(10), 5488-5494.
[PMID: 2925616]
[139]
Haley, J.D.; Waterfield, M.D. Contributory effects of de novo transcription and premature transcript termination in the regulation of human epidermal growth factor receptor proto-oncogene RNA synthesis. J. Biol. Chem., 1991, 266(3), 1746-1753.
[PMID: 1988448]
[140]
Greenhalgh, J.; Dwan, K.; Boland, A.; Bates, V.; Vecchio, F.; Dundar, Y.; Jain, P.; Green, J.A. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst. Rev., 2016, (5)CD010383
[http://dx.doi.org/10.1002/14651858.CD010383.pub2] [PMID: 27223332]
[141]
Tan, D.S.W.; Yom, S.S.; Tsao, M.S.; Pass, H.I.; Kelly, K.; Peled, N.; Yung, R.C.; Wistuba, I.I.; Yatabe, Y.; Unger, M.; Mack, P.C.; Wynes, M.W.; Mitsudomi, T.; Weder, W.; Yankelevitz, D.; Herbst, R.S.; Gandara, D.R.; Carbone, D.P.; Bunn, P.A., Jr; Mok, T.S.; Hirsch, F.R. The International Association for the Study of Lung Cancer Consensus Statement on Optimizing Management of EGFR Mutation-Positive Non-Small Cell Lung Cancer: Status in 2016. J. Thorac. Oncol., 2016, 11(7), 946-963.
[http://dx.doi.org/10.1016/j.jtho.2016.05.008] [PMID: 27229180]
[142]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[143]
Philip, P.A.; Lutz, M.P. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer. Pancreas, 2015, 44(7), 1046-1052.
[http://dx.doi.org/10.1097/MPA.0000000000000389] [PMID: 26355547]
[144]
Heinemann, V.; Haas, M.; Boeck, S. Systemic treatment of advanced pancreatic cancer. Cancer Treat. Rev., 2012, 38(7), 843-853.
[http://dx.doi.org/10.1016/j.ctrv.2011.12.004] [PMID: 22226241]
[145]
Teplinsky, E.; Muggia, F. EGFR and HER2: is there a role in ovarian cancer? Transl. Cancer Res., 2015, 4, 10.
[146]
Niikura, H.; Sasano, H.; Sato, S.; Yajima, A. Expression of epidermal growth factor-related proteins and epidermal growth factor receptor in common epithelial ovarian tumors. Int. J. Gynecol. Pathol., 1997, 16(1), 60-68.
[http://dx.doi.org/10.1097/00004347-199701000-00010] [PMID: 8986534]
[147]
Siwak, D.R.; Carey, M.; Hennessy, B.T.; Nguyen, C.T.; McGahren Murray, M.J.; Nolden, L.; Mills, G.B. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J. Oncol., 2010, 2010568938
[http://dx.doi.org/10.1155/2010/568938] [PMID: 20037743]
[148]
Einama, T.; Ueda, S.; Tsuda, H.; Ogasawara, K.; Hatsuse, K.; Matsubara, O.; Todo, S.; Yamamoto, J. Membranous and cytoplasmic expression of epidermal growth factor receptor in metastatic pancreatic ductal adenocarcinoma. Exp. Ther. Med., 2012, 3(6), 931-936.
[http://dx.doi.org/10.3892/etm.2012.518] [PMID: 22969995]
[149]
Valsecchi, M.E.; McDonald, M.; Brody, J.R.; Hyslop, T.; Freydin, B.; Yeo, C.J.; Solomides, C.; Peiper, S.C.; Witkiewicz, A.K. Epidermal growth factor receptor and insulinlike growth factor 1 receptor expression predict poor survival in pancreatic ductal adenocarcinoma. Cancer, 2012, 118(14), 3484-3493.
[http://dx.doi.org/10.1002/cncr.26661] [PMID: 22086503]
[150]
Davies, S.; Holmes, A.; Lomo, L.; Steinkamp, M.P.; Kang, H.; Muller, C.Y.; Wilson, B.S. High incidence of ErbB3, ErbB4, and MET expression in ovarian cancer. Int. J. Gynecol. Pathol., 2014, 33(4), 402-410.
[http://dx.doi.org/10.1097/PGP.0000000000000081] [PMID: 24901400]
[151]
de Graeff, P.; Crijns, A.P.; Ten Hoor, K.A.; Klip, H.G.; Hollema, H.; Oien, K.; Bartlett, J.M.; Wisman, G.B.; de Bock, G.H.; de Vries, E.G.; de Jong, S.; van der Zee, A.G. The ErbB signalling pathway: protein expression and prognostic value in epithelial ovarian cancer. Br. J. Cancer, 2008, 99(2), 341-349.
[http://dx.doi.org/10.1038/sj.bjc.6604471] [PMID: 18628764]
[152]
Castellvi, J.; Garcia, A.; Rojo, F.; Ruiz-Marcellan, C.; Gil, A.; Baselga, J.; Ramon y Cajal, S. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer, 2006, 107(8), 1801-1811.
[http://dx.doi.org/10.1002/cncr.22195] [PMID: 16983702]
[153]
Demir, L.; Yigit, S.; Sadullahoglu, C.; Akyol, M.; Cokmert, S.; Kucukzeybek, Y.; Alacacioglu, A.; Cakalagaoglu, F.; Tarhan, M.O. Hormone receptor, HER2/NEU and EGFR expression in ovarian carcinoma--is here a prognostic phenotype? Asian Pac. J. Cancer Prev., 2014, 15(22), 9739-9745.
[http://dx.doi.org/10.7314/APJCP.2014.15.22.9739] [PMID: 25520097]
[154]
Engelstaedter, V.; Boda, J.; VAlklein, C.; Engel, J.; Jeschke, U.; Kirchner, T.; Mayr, D. Lack of prognostic relevance of Her-2/neu, topoisomerase III and EGFR in advanced ovarian carcinoma. Exp. Ther. Med., 2012, 3(5), 828-834.
[http://dx.doi.org/10.3892/etm.2012.481] [PMID: 22969977]
[155]
Despierre, E.; Vergote, I.; Anderson, R.; Coens, C.; Katsaros, D.; Hirsch, F.R.; Boeckx, B.; Varella-Garcia, M.; Ferrero, A.; Ray-Coquard, I.; Berns, E.M.; Casado, A.; Lambrechts, D.; Jimeno, A. European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group (EORTC-GCG); Groupe d?(tm)Investigateurs Nationaux pour les Etudes des Cancers de l?(tm)Ovaire (GINECO); Austrian Arbeitsgemeinschaft fA1/4r GynAkologische Onkologie (A-AGO); National Cancer Research Institute (NCRI); Australia New Zealand Gynaecological Oncology Group (ANZGOG); Mario Negri Gynecologic Oncology group (MaNGO). Epidermal Growth Factor Receptor (EGFR) Pathway Biomarkers in the Randomized Phase III Trial of Erlotinib Versus Observation in Ovarian Cancer Patients with No Evidence of Disease Progression after First-Line Platinum-Based Chemotherapy. Target. Oncol., 2015, 10(4), 583-596.
[http://dx.doi.org/10.1007/s11523-015-0369-6] [PMID: 26004768]
[156]
Wittinger, M.; Vanhara, P.; El-Gazzar, A.; Savarese-Brenner, B.; Pils, D.; Anees, M.; Grunt, T.W.; Sibilia, M.; Holcmann, M.; Horvat, R.; Schemper, M.; Zeillinger, R.; SchAfer, C.; Dolznig, H.; Horak, P.; Krainer, M. hVps37A Status affects prognosis and cetuximab sensitivity in ovarian cancer. Clin. Cancer Res., 2011, 17(24), 7816-7827.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0408] [PMID: 22016507]
[157]
Alshenawy, H.A. Immunohistochemical expression of epidermal growth factor receptor, E-cadherin, and matrix metalloproteinase-9 in ovarian epithelial cancer and relation to patient deaths. Ann. Diagn. Pathol., 2010, 14(6), 387-395.
[http://dx.doi.org/10.1016/j.anndiagpath.2010.05.005] [PMID: 21074685]
[158]
Noske, A.; Schwabe, M.; Weichert, W.; Darb-Esfahani, S.; Buckendahl, A-C.; Sehouli, J.; Braicu, E.I.; Budczies, J.; Dietel, M.; Denkert, C. An intracellular targeted antibody detects EGFR as an independent prognostic factor in ovarian carcinomas. BMC Cancer, 2011, 11, 294.
[http://dx.doi.org/10.1186/1471-2407-11-294] [PMID: 21756326]
[159]
Takeda, M.; Nakagawa, K. Role of EGFR Monoclonal Antibodies in the Management of Non-small Cell Lung Cancer. Curr. Cancer Drug Targets, 2015, 15(9), 792-802.
[http://dx.doi.org/10.2174/156800961509151110143001] [PMID: 26567882]
[160]
Masterson, L.; Moualed, D.; Liu, Z.W.; Howard, J.E.; Dwivedi, R.C.; Tysome, J.R.; Benson, R.; Sterling, J.C.; Sudhoff, H.; Jani, P.; Goon, P.K. De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis of current clinical trials. Eur. J. Cancer, 2014, 50(15), 2636-2648.
[http://dx.doi.org/10.1016/j.ejca.2014.07.001] [PMID: 25091798]
[161]
5. Taberna M, Marisa M, PavA3n MA, Alemany L, Gillison ML, MesA-a R. Human papillomavirus related oropharyngeal cancer. Ann. Oncol., 2017, 28, 2386-2398.
[http://dx.doi.org/10.1093/annonc/mdx304]
[162]
Kalyankrishna, S.; Grandis, J.R. Epidermal growth factor receptor biology in head and neck cancer. J. Clin. Oncol., 2006, 24(17), 2666-2672.
[http://dx.doi.org/10.1200/JCO.2005.04.8306] [PMID: 16763281]
[163]
Mirghani, H.; Amen, F.; Moreau, F.; Guigay, J.; Hartl, D.M.; Lacau St Guily, J. Oropharyngeal cancers: relationship between epidermal growth factor receptor alterations and human papillomavirus status. Eur. J. Cancer, 2014, 50(6), 1100-1111.
[http://dx.doi.org/10.1016/j.ejca.2013.12.018] [PMID: 24424107]
[164]
Lawrence, M.S.; Sougnez, C.; Lichtenstein, L.; Cibulskis, K.; Lander, E.; Gabriel, S.B. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 2015, 517(7536), 576-582.
[http://dx.doi.org/10.1038/nature14129] [PMID: 25631445]
[165]
Aquino, G.; Pannone, G.; Santoro, A.; Liguori, G.; Franco, R.; Serpico, R.; Florio, G.; De Rosa, A.; Mattoni, M.; Cozza, V.; Botti, G.; Losito, S.; Longo, F.; Staibano, S.; Cuda, G.; Lo Muzio, L.; Sbordone, C.; Bufo, P.; Grimaldi, A.; Caraglia, M.; Di Domenico, M. pEGFR-Tyr 845 expression as prognostic factors in oral squamous cell carcinoma: a tissue-microarray study with clinic-pathological correlations. Cancer Biol. Ther., 2012, 13(11), 967-977.
[http://dx.doi.org/10.4161/cbt.20991] [PMID: 22825335]
[166]
Nicholson, R.I.; Gee, J.M.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer, 2001, 37(Suppl. 4), S9-S15.
[http://dx.doi.org/10.1016/S0959-8049(01)00231-3] [PMID: 11597399]
[167]
Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-293.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[168]
Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017, 169(2), 361-371.
[http://dx.doi.org/10.1016/j.cell.2017.03.035] [PMID: 28388417]
[169]
Watanabe, R.; Wei, L.; Huang, J. mTOR signaling, function, novel inhibitors, and therapeutic targets. J. Nucl. Med., 2011, 52(4), 497-500.
[http://dx.doi.org/10.2967/jnumed.111.089623] [PMID: 21421716]
[170]
Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; Teague, J.W.; Campbell, P.J.; Stratton, M.R.; Futreal, P.A. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res., 2011, 39(Database issue), D945-D950.
[http://dx.doi.org/10.1093/nar/gkq929] [PMID: 20952405]
[171]
Ciuffreda, L.; Di Sanza, C.; Incani, U.C.; Milella, M. The mTOR pathway: a new target in cancer therapy. Curr. Cancer Drug Targets, 2010, 10(5), 484-495.
[http://dx.doi.org/10.2174/156800910791517172] [PMID: 20384580]
[172]
Mayer, I.A.; Arteaga, C.L. The PI3K/AKT Pathway as a Target for Cancer Treatment. Annu. Rev. Med., 2016, 67, 11-28.
[http://dx.doi.org/10.1146/annurev-med-062913-051343] [PMID: 26473415]
[173]
Klempner, S.J.; Myers, A.P.; Cantley, L.C. What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov., 2013, 3(12), 1345-1354.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0063] [PMID: 24265156]
[174]
Li, L.; Liu, D.; Qiu, Z.X.; Zhao, S.; Zhang, L.; Li, W.M. The prognostic role of mTOR and p-mTOR for survival in non-small cell lung cancer: a systematic review and meta-analysis. PLoS One, 2015, 10(2)e0116771
[http://dx.doi.org/10.1371/journal.pone.0116771] [PMID: 25680114]
[175]
Cejka, D.; Preusser, M.; Woehrer, A.; Sieghart, W.; Strommer, S.; Werzowa, J.; Fuereder, T.; Wacheck, V. Everolimus (RAD001) and anti-angiogenic cyclophosphamide show long-term control of gastric cancer growth in vivo. Cancer Biol. Ther., 2008, 7(9), 1377-1385.
[http://dx.doi.org/10.4161/cbt.7.9.6416] [PMID: 18708754]
[176]
Fuereder, T.; Jaeger-Lansky, A.; Hoeflmayer, D.; Preusser, M.; Strommer, S.; Cejka, D.; Koehrer, S.; Crevenna, R.; Wacheck, V. mTOR inhibition by everolimus counteracts VEGF induction by sunitinib and improves anti-tumor activity against gastric cancer in vivo. Cancer Lett., 2010, 296(2), 249-256.
[http://dx.doi.org/10.1016/j.canlet.2010.04.015] [PMID: 20471160]
[177]
Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; Antipin, Y.; Mitsiades, N.; Landers, T.; Dolgalev, I.; Major, J.E.; Wilson, M.; Socci, N.D.; Lash, A.E.; Heguy, A.; Eastham, J.A.; Scher, H.I.; Reuter, V.E.; Scardino, P.T.; Sander, C.; Sawyers, C.L.; Gerald, W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell, 2010, 18(1), 11-22.
[http://dx.doi.org/10.1016/j.ccr.2010.05.026] [PMID: 20579941]
[178]
Reid, A.H.; Attard, G.; Ambroisine, L.; Fisher, G.; Kovacs, G.; Brewer, D.; Clark, J.; Flohr, P.; Edwards, S.; Berney, D.M.; Foster, C.S.; Fletcher, A.; Gerald, W.L.; MA,ller, H.; Reuter, V.E.; Scardino, P.T.; Cuzick, J.; de Bono, J.S.; Cooper, C.S. Transatlantic Prostate Group. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br. J. Cancer, 2010, 102(4), 678-684.
[http://dx.doi.org/10.1038/sj.bjc.6605554] [PMID: 20104229]
[179]
Morgan, T.M.; Koreckij, T.D.; Corey, E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr. Cancer Drug Targets, 2009, 9(2), 237-249.
[http://dx.doi.org/10.2174/156800909787580999] [PMID: 19275762]
[180]
Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci., 2020, 10, 31.
[http://dx.doi.org/10.1186/s13578-020-00396-1] [PMID: 32175074]
[181]
Harwood, F.C.; Klein Geltink, R.I.; O?(tm)Hara, B.P.; Cardone, M.; Janke, L.; Finkelstein, D.; Entin, I.; Paul, L.; Houghton, P.J.; Grosveld, G.C. ETV7 is an essential component of a rapamycin-insensitive mTOR complex in cancer. Sci. Adv., 2018, 4(9)eaar3938
[http://dx.doi.org/10.1126/sciadv.aar3938] [PMID: 30258985]
[182]
Yin, Y.; Hua, H.; Li, M.; Liu, S.; Kong, Q.; Shao, T.; Wang, J.; Luo, Y.; Wang, Q.; Luo, T.; Jiang, Y. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res., 2016, 26(1), 46-65.
[http://dx.doi.org/10.1038/cr.2015.133] [PMID: 26584640]
[183]
Jacinto, E.; Loewith, R.; Schmidt, A.; Lin, S.; RA1/4egg, M.A.; Hall, A.; Hall, M.N. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol., 2004, 6(11), 1122-1128.
[http://dx.doi.org/10.1038/ncb1183] [PMID: 15467718]
[184]
Rispal, D.; Eltschinger, S.; Stahl, M.; Vaga, S.; Bodenmiller, B.; Abraham, Y.; Filipuzzi, I.; Movva, N.R.; Aebersold, R.; Helliwell, S.B.; Loewith, R. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J. Biol. Chem., 2015, 290(24), 14963-14978.
[http://dx.doi.org/10.1074/jbc.M114.627794] [PMID: 25882841]
[185]
Rodriguez-Viciana, P.; Warne, P.H.; Dhand, R.; Vanhaesebroeck, B.; Gout, I.; Fry, M.J.; Waterfield, M.D.; Downward, J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 1994, 370(6490), 527-532.
[http://dx.doi.org/10.1038/370527a0] [PMID: 8052307]
[186]
Xu, J.; Pham, C.G.; Albanese, S.K.; Dong, Y.; Oyama, T.; Lee, C.H.; Rodrik-Outmezguine, V.; Yao, Z.; Han, S.; Chen, D.; Parton, D.L.; Chodera, J.D.; Rosen, N.; Cheng, E.H.; Hsieh, J.J. Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. J. Clin. Invest., 2016, 126(9), 3526-3540.
[http://dx.doi.org/10.1172/JCI86120] [PMID: 27482884]
[187]
Xu, H.; Jiao, Y.; Qin, S.; Zhao, W.; Chu, Q.; Wu, K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp. Hematol. Oncol., 2018, 7, 30.
[http://dx.doi.org/10.1186/s40164-018-0122-9] [PMID: 30534474]
[188]
Xu, H.; Lyu, X.; Yi, M.; Zhao, W.; Song, Y.; Wu, K. Organoid technology and applications in cancer research. J. Hematol. Oncol., 2018, 11(1), 116.
[http://dx.doi.org/10.1186/s13045-018-0662-9] [PMID: 30219074]
[189]
SA"ve, P.; Lai, R.; Ding, K.; Winton, T.; Butts, C.; Mackey, J.; Dumontet, C.; Dabbagh, L.; Aviel-Ronen, S.; Seymour, L.; Whitehead, M.; Tsao, M.S.; Shepherd, F.A.; Reiman, T. Class III beta-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR.10. Clin. Cancer Res., 2007, 13(3), 994-999.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1503] [PMID: 17289895]
[190]
James, C.R.; Quinn, J.E.; Mullan, P.B.; Johnston, P.G.; Harkin, D.P. BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist, 2007, 12(2), 142-150.
[http://dx.doi.org/10.1634/theoncologist.12-2-142] [PMID: 17296808]
[191]
Ferrone, C.R.; Finkelstein, D.M.; Thayer, S.P.; Muzikansky, A.; Fernandez-delCastillo, C.; Warshaw, A.L. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J. Clin. Oncol., 2006, 24(18), 2897-2902.
[http://dx.doi.org/10.1200/JCO.2005.05.3934] [PMID: 16782929]
[192]
Nezos, A.; Lembessis, P.; Sourla, A.; Pissimissis, N.; Gogas, H.; Koutsilieris, M. Molecular markers detecting circulating melanoma cells by reverse transcription polymerase chain reaction: methodological pitfalls and clinical relevance. Clin. Chem. Lab. Med., 2009, 47(1), 1-11.
[http://dx.doi.org/10.1515/CCLM.2009.009] [PMID: 19055471]
[193]
Richter, J.; Wagner, U.; Kononen, J.; Fijan, A.; Bruderer, J.; Schmid, U.; Ackermann, D.; Maurer, R.; Alund, G.; KnAnagel, H.; Rist, M.; Wilber, K.; Anabitarte, M.; Hering, F.; Hardmeier, T.; SchAnenberger, A.; Flury, R.; JAger, P.; Fehr, J.L.; Schraml, P.; Moch, H.; Mihatsch, M.J.; Gasser, T.; Kallioniemi, O.P.; Sauter, G. High-throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer. Am. J. Pathol., 2000, 157(3), 787-794.
[http://dx.doi.org/10.1016/S0002-9440(10)64592-0] [PMID: 10980118]
[194]
Reschke, M.; Mihic-Probst, D.; van der Horst, E.H.; Knyazev, P.; Wild, P.J.; Hutterer, M.; Meyer, S.; Dummer, R.; Moch, H.; Ullrich, A. HER3 is a determinant for poor prognosis in melanoma. Clin. Cancer Res., 2008, 14(16), 5188-5197.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0186] [PMID: 18698037]
[195]
Wang, Y.; Dai, D.L.; Martinka, M.; Li, G. Prognostic significance of nuclear ING3 expression in human cutaneous melanoma. Clin. Cancer Res., 2007, 13(14), 4111-4116.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0408] [PMID: 17634537]
[196]
Li, J.; Martinka, M.; Li, G. Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis, 2008, 29(7), 1373-1379.
[http://dx.doi.org/10.1093/carcin/bgn086] [PMID: 18375955]
[197]
Dowsett, M.; Smith, I.E.; Ebbs, S.R.; Dixon, J.M.; Skene, A.; A?(tm)Hern, R.; Salter, J.; Detre, S.; Hills, M.; Walsh, G. IMPACT Trialists Group. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J. Natl. Cancer Inst., 2007, 99(2), 167-170.
[http://dx.doi.org/10.1093/jnci/djk020] [PMID: 17228000]
[198]
Zhu, C.Q.; da Cunha Santos, G.; Ding, K.; Sakurada, A.; Cutz, J.C.; Liu, N.; Zhang, T.; Marrano, P.; Whitehead, M.; Squire, J.A.; Kamel-Reid, S.; Seymour, L.; Shepherd, F.A.; Tsao, M.S. National Cancer Institute of Canada Clinical Trials Group Study BR.21. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J. Clin. Oncol., 2008, 26(26), 4268-4275.
[http://dx.doi.org/10.1200/JCO.2007.14.8924] [PMID: 18626007]
[199]
Xu, K.; Hou, S.; Du, Z. Prognostic value of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in bladder carcinoma. Chin. Med. J. (Engl.), 2002, 115(5), 743-745.
[PMID: 12133547]
[200]
Dowsett, M.; Houghton, J.; Iden, C.; Salter, J.; Farndon, J.; A?(tm)Hern, R.; Sainsbury, R.; Baum, M. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann. Oncol., 2006, 17(5), 818-826.
[http://dx.doi.org/10.1093/annonc/mdl016] [PMID: 16497822]
[201]
Zheng, Z.; Chen, T.; Li, X.; Haura, E.; Sharma, A.; Bepler, G. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N. Engl. J. Med., 2007, 356(8), 800-808.
[http://dx.doi.org/10.1056/NEJMoa065411] [PMID: 17314339]
[202]
Oldenhuis, C.N.A.M.; Oosting, S.F.; Gietema, J.A.; de Vries, E.G.E. Prognostic versus predictive value of biomarkers in oncology. Eur. J. Cancer, 2008, 44(7), 946-953.
[http://dx.doi.org/10.1016/j.ejca.2008.03.006] [PMID: 18396036]
[203]
Sosman, J.A.; Kim, K.B.; Schuchter, L.; Gonzalez, R.; Pavlick, A.C.; Weber, J.S.; McArthur, G.A.; Hutson, T.E.; Moschos, S.J.; Flaherty, K.T.; Hersey, P.; Kefford, R.; Lawrence, D.; Puzanov, I.; Lewis, K.D.; Amaravadi, R.K.; Chmielowski, B.; Lawrence, H.J.; Shyr, Y.; Ye, F.; Li, J.; Nolop, K.B.; Lee, R.J.; Joe, A.K.; Ribas, A. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med., 2012, 366(8), 707-714.
[http://dx.doi.org/10.1056/NEJMoa1112302] [PMID: 22356324]
[204]
Ann, M. Bailey,1 Yong Mao,2 Jia Zeng,1 Vijaykumar Holla,1 Amber Johnson,1 Lauren Brusco,3 Ken Chen,2 John Mendelsohn,1 Mark J. Routbort,4 Gordon B. Mills,1,5 and Funda Meric-Bernstam1,3,6 (2014). Implementation of Biomarker-Driven Cancer Therapy: Existing Tools and Remaining Gaps. Discov. Med., 2014, 17(92), 101-114.
[PMID: 24534473]
[205]
Vadas, A. The evolution of biomarker use in clinical trials for cancer treatments: kep findings and implicationsPersonalized Medicine Coalition; , 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy