摘要
动脉粥样硬化疾病仍然是死亡的主要原因之一。动脉粥样硬化是一种复杂的进行性和系统性动脉疾病,涉及大,中动脉血管的内膜。炎症在该疾病的病理生理过程中起关键作用,内膜从单核细胞,巨噬细胞和T淋巴细胞的浸润与内皮功能障碍和累积的氧化型低密度脂蛋白(LDL)结合是动脉粥样硬化的主要发现。动脉粥样硬化的发展涉及多种遗传和环境因素。尽管已经在与动脉粥样硬化有关的染色体区域中鉴定出大量基因,遗传多态性和易感基因座,但是调节表皮组织和基因表达的表观遗传过程在动脉粥样硬化的发病机理中起着至关重要的作用。尽管在了解动脉粥样硬化的发病机理方面取得了积极进展,但对该疾病的了解仍然很少。
关键词: E内皮,内皮功能障碍,分子,心血管疾病,动脉粥样硬化,系统性动脉疾病。
[1]
Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993, 362(6423), 801-809.
[http://dx.doi.org/10.1038/362801a0] [PMID: 8479518]
[http://dx.doi.org/10.1038/362801a0] [PMID: 8479518]
[2]
Kodama, T.; Freeman, M.; Rohrer, L.; Zabrecky, J.; Matsudaira, P.; Krieger, M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature, 1990, 343(6258), 531-535.
[http://dx.doi.org/10.1038/343531a0] [PMID: 2300204]
[http://dx.doi.org/10.1038/343531a0] [PMID: 2300204]
[3]
Rohrer, L.; Freeman, M.; Kodama, T.; Penman, M.; Krieger, M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature, 1990, 343(6258), 570-572.
[http://dx.doi.org/10.1038/343570a0] [PMID: 2300208]
[http://dx.doi.org/10.1038/343570a0] [PMID: 2300208]
[4]
Gough, P.J.; Greaves, D.R.; Gordon, S. A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. J. Lipid Res., 1998, 39(3), 531-543.
[PMID: 9548586]
[PMID: 9548586]
[5]
Ylä-Herttuala, S.; Rosenfeld, M.E.; Parthasarathy, S.; Sigal, E.; Särkioja, T.; Witztum, J.L.; Steinberg, D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J. Clin. Invest., 1991, 87(4), 1146-1152.
[http://dx.doi.org/10.1172/JCI115111] [PMID: 2010531]
[http://dx.doi.org/10.1172/JCI115111] [PMID: 2010531]
[6]
Greaves, D.R.; Gough, P.J.; Gordon, S. Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. Curr. Opin. Lipidol., 1998, 9(5), 425-432.
[http://dx.doi.org/10.1097/00041433-199810000-00006] [PMID: 9812196]
[http://dx.doi.org/10.1097/00041433-199810000-00006] [PMID: 9812196]
[7]
Hiltunen, T.P.; Luoma, J.S.; Nikkari, T.; Ylä-Herttuala, S. Expression of LDL receptor, VLDL receptor, LDL receptor-related protein, and scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development. Circulation, 1998, 97(11), 1079-1086.
[http://dx.doi.org/10.1161/01.CIR.97.11.1079] [PMID: 9531255]
[http://dx.doi.org/10.1161/01.CIR.97.11.1079] [PMID: 9531255]
[8]
Naito, M.; Suzuki, H.; Mori, T.; Matsumoto, A.; Kodama, T.; Takahashi, K. Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and foam cells in atherosclerotic lesions. Am. J. Pathol., 1992, 141(3), 591-599.
[PMID: 1519666]
[PMID: 1519666]
[9]
Suzuki, H.; Kurihara, Y.; Takeya, M.; Kamada, N.; Kataoka, M.; Jishage, K.; Ueda, O.; Sakaguchi, H.; Higashi, T.; Suzuki, T.; Takashima, Y.; Kawabe, Y.; Cynshi, O.; Wada, Y.; Honda, M.; Kurihara, H.; Aburatani, H.; Doi, T.; Matsumoto, A.; Azuma, S.; Noda, T.; Toyoda, Y.; Itakura, H.; Yazaki, Y.; Kodama, T. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature, 1997, 386(6622), 292-296.
[http://dx.doi.org/10.1038/386292a0] [PMID: 9069289]
[http://dx.doi.org/10.1038/386292a0] [PMID: 9069289]
[10]
Vlassara, H.; Brownlee, M.; Cerami, A. High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc. Natl. Acad. Sci. USA, 1985, 82(17), 5588-5592.
[http://dx.doi.org/10.1073/pnas.82.17.5588] [PMID: 2994035]
[http://dx.doi.org/10.1073/pnas.82.17.5588] [PMID: 2994035]
[11]
Takata, K.; Horiuchi, S.; Araki, N.; Shiga, M.; Saitoh, M.; Morino, Y. Endocytic uptake of nonenzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde-modified proteins. J. Biol. Chem., 1988, 263(29), 14819-14825.
[PMID: 2844787]
[PMID: 2844787]
[12]
el Khoury, J.; Thomas, C.A.; Loike, J.D.; Hickman, S.E.; Cao, L.; Silverstein, S.C. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J. Biol. Chem., 1994, 269(14), 10197-10200.
[PMID: 8144597]
[PMID: 8144597]
[13]
Fraser, I.; Hughes, D.; Gordon, S. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature, 1993, 364(6435), 343-346.
[http://dx.doi.org/10.1038/364343a0] [PMID: 8332192]
[http://dx.doi.org/10.1038/364343a0] [PMID: 8332192]
[14]
Platt, N.; da Silva, R.P.; Gordon, S. Class A scavenger receptors and the phagocytosis of apoptotic cells. Immunol. Lett., 1999, 65(1-2), 15-19.
[http://dx.doi.org/10.1016/S0165-2478(98)00118-7] [PMID: 10065621]
[http://dx.doi.org/10.1016/S0165-2478(98)00118-7] [PMID: 10065621]
[15]
Terpstra, V.; Kondratenko, N.; Steinberg, D. Macrophages lacking scavenger receptor A show a decrease in binding and uptake of acetylated low-density lipoprotein and of apoptotic thymocytes, but not of oxidatively damaged red blood cells. Proc. Natl. Acad. Sci. USA, 1997, 94(15), 8127-8131.
[http://dx.doi.org/10.1073/pnas.94.15.8127] [PMID: 9223326]
[http://dx.doi.org/10.1073/pnas.94.15.8127] [PMID: 9223326]
[16]
Yokota, T.; Ehlin-Henriksson, B.; Hansson, G.K. Scavenger receptors mediate adhesion of activated B lymphocytes. Exp. Cell Res., 1998, 239(1), 16-22.
[http://dx.doi.org/10.1006/excr.1997.3876] [PMID: 9511720]
[http://dx.doi.org/10.1006/excr.1997.3876] [PMID: 9511720]
[17]
Dunne, D.W.; Resnick, D.; Greenberg, J.; Krieger, M.; Joiner, K.A. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc. Natl. Acad. Sci. USA, 1994, 91(5), 1863-1867.
[http://dx.doi.org/10.1073/pnas.91.5.1863] [PMID: 8127896]
[http://dx.doi.org/10.1073/pnas.91.5.1863] [PMID: 8127896]
[18]
Hampton, R.Y.; Golenbock, D.T.; Penman, M.; Krieger, M.; Raetz, C.R. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature, 1991, 352(6333), 342-344.
[http://dx.doi.org/10.1038/352342a0] [PMID: 1852209]
[http://dx.doi.org/10.1038/352342a0] [PMID: 1852209]
[19]
Haworth, R.; Platt, N.; Keshav, S.; Hughes, D.; Darley, E.; Suzuki, H.; Kurihara, Y.; Kodama, T.; Gordon, S. The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J. Exp. Med., 1997, 186(9), 1431-1439.
[http://dx.doi.org/10.1084/jem.186.9.1431] [PMID: 9348300]
[http://dx.doi.org/10.1084/jem.186.9.1431] [PMID: 9348300]
[20]
Lougheed, M.; Lum, C.M.; Ling, W.; Suzuki, H.; Kodama, T.; Steinbrecher, U. High affinity saturable uptake of oxidized low density lipoprotein by macrophages from mice lacking the scavenger receptor class A type I/II. J. Biol. Chem., 1997, 272(20), 12938-12944.
[http://dx.doi.org/10.1074/jbc.272.20.12938] [PMID: 9148899]
[http://dx.doi.org/10.1074/jbc.272.20.12938] [PMID: 9148899]
[21]
Nicholson, A.C. Expression of CD36 in macrophages and atherosclerosis: the role of lipid regulation of PPARgamma signaling. Trends Cardiovasc. Med., 2004, 14(1), 8-12.
[http://dx.doi.org/10.1016/j.tcm.2003.09.004] [PMID: 14720468]
[http://dx.doi.org/10.1016/j.tcm.2003.09.004] [PMID: 14720468]
[22]
Auer, J.; Weber, T.; Berent, R.; Lassnig, E.; Lamm, G.; Eber, B. Genetic polymorphisms in cytokine and adhesion molecule genes in coronary artery disease. Am. J. Pharmacogenomics, 2003, 3(5), 317-328.
[http://dx.doi.org/10.2165/00129785-200303050-00003] [PMID: 14575520]
[http://dx.doi.org/10.2165/00129785-200303050-00003] [PMID: 14575520]
[23]
Ito, T.; Ikeda, U. Inflammatory cytokines and cardiovascular disease. Curr. Drug Targets Inflamm. Allergy, 2003, 2(3), 257-265.
[http://dx.doi.org/10.2174/1568010033484106] [PMID: 14561160]
[http://dx.doi.org/10.2174/1568010033484106] [PMID: 14561160]
[24]
Makris, S.; Venetsanou, K.; Spartalis, E.; Kontogiannis, C.; Georgiopoulos, G.; Spartalis, M.; Tsilimigras, D.I.; Moris, D.; Kakisis, I.; Karaolanis, G.; Patelis, N.; Zymvragoudakis, V.; Papasilekas, T.I.; Themistoklis, K.M.; Lazaris, A. Changes in serum leptin levels as well as sICAM-1 and sVCAM-1 soluble adhesion molecules during carotid endarterectomy. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(5), 2257-2262.
[PMID: 30915774]
[PMID: 30915774]
[25]
Novelli, G.; Borgiani, P.; Giardina, E.; Mango, R.; Contino, G.; Romeo, F.; Mehta, J.L. Role of genetics in prevention of coronary atherosclerosis. Curr. Opin. Cardiol., 2003, 18(5), 368-371.
[http://dx.doi.org/10.1097/00001573-200309000-00008] [PMID: 12960469]
[http://dx.doi.org/10.1097/00001573-200309000-00008] [PMID: 12960469]
[26]
Rasmussen, H.S.; Rasmussen, C.S.; Macko, J. VEGF gene therapy for coronary artery disease and peripheral vascular disease. Cardiovasc. Radiat. Med., 2002, 3(2), 114-117.
[http://dx.doi.org/10.1016/S1522-1865(02)00158-0] [PMID: 12699842]
[http://dx.doi.org/10.1016/S1522-1865(02)00158-0] [PMID: 12699842]
[27]
Humphries, S.E.; Morgan, L. Genetic risk factors for stroke and carotid atherosclerosis: insights into pathophysiology from candidate gene approaches. Lancet Neurol., 2004, 3(4), 227-235.
[http://dx.doi.org/10.1016/S1474-4422(04)00708-2] [PMID: 15039035 ]
[http://dx.doi.org/10.1016/S1474-4422(04)00708-2] [PMID: 15039035 ]
[28]
Hamilton, C.A.; Miller, W.H.; Al-Benna, S.; Brosnan, M.J.; Drummond, R.D.; McBride, M.W.; Dominiczak, A.F. Strategies to reduce oxidative stress in cardiovascular disease. Clin. Sci. (Lond.), 2004, 106(3), 219-234.
[http://dx.doi.org/10.1042/CS20030379] [PMID: 14733610]
[http://dx.doi.org/10.1042/CS20030379] [PMID: 14733610]
[29]
Moris, D.; Spartalis, M.; Tzatzaki, E.; Spartalis, E.; Karachaliou, G.S.; Triantafyllis, A.S.; Karaolanis, G.I.; Tsilimigras, D.I.; Theocharis, S. The role of reactive oxygen species in myocardial redox signaling and regulation. Ann. Transl. Med., 2017, 5(16), 324.
[http://dx.doi.org/10.21037/atm.2017.06.17] [PMID: 28861421]
[http://dx.doi.org/10.21037/atm.2017.06.17] [PMID: 28861421]
[30]
Moris, D.; Spartalis, M.; Spartalis, E.; Karachaliou, G.S.; Karaolanis, G.I.; Tsourouflis, G.; Tsilimigras, D.I.; Tzatzaki, E.; Theocharis, S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med., 2017, 5(16), 326.
[http://dx.doi.org/10.21037/atm.2017.06.27] [PMID: 28861423]
[http://dx.doi.org/10.21037/atm.2017.06.27] [PMID: 28861423]
[31]
Tham, D.M.; Wang, Y.X.; Rutledge, J.C. Modulation of vascular inflammation by PPARs. Drug News Perspect., 2003, 16(2), 109-116.
[http://dx.doi.org/10.1358/dnp.2003.16.2.740244] [PMID: 12792672]
[http://dx.doi.org/10.1358/dnp.2003.16.2.740244] [PMID: 12792672]
[32]
Martinet, W.; Kockx, M.M. Apoptosis in atheroclerosis: implications for plaque destabilization. Verh. K. Acad. Geneeskd. Belg., 2004, 66(1), 61-79.
[PMID: 15074082]
[PMID: 15074082]
[33]
Khurana, R.; Simons, M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc. Med., 2003, 13(3), 116-122.
[http://dx.doi.org/10.1016/S1050-1738(02)00259-1] [PMID: 12691676]
[http://dx.doi.org/10.1016/S1050-1738(02)00259-1] [PMID: 12691676]
[34]
Major, C.D.; Santulli, R.J.; Derian, C.K.; Andrade-Gordon, P. Extracellular mediators in atherosclerosis and thrombosis: lessons from thrombin receptor knockout mice. Arterioscler. Thromb. Vasc. Biol., 2003, 23(6), 931-939.
[http://dx.doi.org/10.1161/01.ATV.0000070100.47907.26] [PMID: 12676802]
[http://dx.doi.org/10.1161/01.ATV.0000070100.47907.26] [PMID: 12676802]
[35]
Janssens, S.P. Applied gene therapy in preclinical models of vascular injury. Curr. Atheroscler. Rep., 2003, 5(3), 186-190.
[http://dx.doi.org/10.1007/s11883-003-0022-1] [PMID: 12667430]
[http://dx.doi.org/10.1007/s11883-003-0022-1] [PMID: 12667430]
[36]
Baker, A.H. Development and use of gene transfer for treatment of cardiovascular disease. J. Card. Surg., 2002, 17(6), 543-548.
[http://dx.doi.org/10.1046/j.1540-8191.2002.01011.x] [PMID: 12643466]
[http://dx.doi.org/10.1046/j.1540-8191.2002.01011.x] [PMID: 12643466]