Review Article

纳米材料作为药物载体在癌症治疗中的设计与应用

卷 27, 期 36, 2020

页: [6112 - 6135] 页: 24

弟呕挨: 10.2174/0929867326666190816231409

价格: $65

摘要

发展新的医学癌症治疗技术对降低癌症死亡率具有重要意义。传统的临床肿瘤治疗药物起效时间短,难以准确靶向肿瘤组织,对正常组织毒性高。随着纳米技术的发展,纳米材料被用作药物载体,靶向肿瘤细胞并将药物释放到肿瘤环境中。该技术已成为肿瘤治疗的一个重要研究热点。纳米材料用于癌症治疗有几个优点,可以提高药物递送的效率,包括增加药物在目标肿瘤区域的浓度,降低正常组织中的毒性和控制药物释放。在本工作中,我们描述了纳米材料在癌症治疗中给药的最新研究进展,并探讨了相关的机制途径。此外,还对利用纳米载体控制药物释放进入靶区的方法进行了详细的综述。总而言之,我们将介绍目前在癌症治疗中使用纳米材料和纳米技术的成就,以及当前的挑战和未来的展望。

关键词: 癌症治疗,癌细胞,组织,纳米载体,药物递送,靶向治疗,药物释放。

[1]
Wang, X.; Yang, L.; Chen, Z.G.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[2]
Singhal, S.; Nie, S.; Wang, M.D. Nanotechnology applications in surgical oncology. Annu. Rev. Med., 2010, 61, 359-373.
[http://dx.doi.org/10.1146/annurev.med.60.052907.094936] [PMID: 20059343]
[3]
Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304.
[http://dx.doi.org/10.1517/17425240902780166] [PMID: 19327045]
[4]
Parveen, S.; Sahoo, S.K. Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs. Clin. Pharmacokinet., 2006, 45(10), 965-988.
[http://dx.doi.org/10.2165/00003088-200645100-00002] [PMID: 16984211]
[5]
Parveen, S.; Sahoo, S.K. Polymeric nanoparticles for cancer therapy. J. Drug Target., 2008, 16(2), 108-123.
[http://dx.doi.org/10.1080/10611860701794353] [PMID: 18274932]
[6]
Alexis, F.; Rhee, J.W.; Richie, J.P.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. New frontiers in nanotechnology for cancer treatment. Urol. Oncol., 2008, 26(1), 74-85.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.017] [PMID: 18190835]
[7]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[8]
Grodzinski, P.; Silver, M.; Molnar, L.K. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev. Mol. Diagn., 2006, 6(3), 307-318.
[http://dx.doi.org/10.1586/14737159.6.3.307] [PMID: 16706735]
[9]
Farokhzad, O.C.; Langer, R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58(14), 1456-1459.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[10]
Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today, 2010, 15(19-20), 842-850.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[11]
Herrero-Vanrell, R.; Rincón, A.C.; Alonso, M.; Reboto, V.; Molina-Martinez, I.T.; Rodríguez-Cabello, J.C. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J. Control. Release, 2005, 102(1), 113-122.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.001] [PMID: 15653138]
[12]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[13]
Singh, R.; Lillard, J.W., Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[14]
Dubin, C.H. Special delivery: pharmaceutical companies aim to target their drugs with nano precision. Mech. Eng., 2004, 126(9) S10 (Accessed: October 13, 2020).
[15]
Dass, C.R.; Su, T. Particle-mediated intravascular delivery of oligonucleotides to tumors: associated biology and lessons from genotherapy. Drug Deliv., 2001, 8(4), 191-213.
[http://dx.doi.org/10.1080/107175401317245886] [PMID: 11757778]
[16]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[17]
Xu, S.; Luo, Y.; Graeser, R.; Warnecke, A.; Kratz, F.; Hauff, P.; Licha, K.; Haag, R. Development of pH-responsive core-shell nanocarriers for delivery of therapeutic and diagnostic agents. Bioorg. Med. Chem. Lett., 2009, 19(3), 1030-1034.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.043] [PMID: 19097889]
[18]
Sahoo, S.K.; Jain, T.K.; Reddy, M.K.; Labhasetwar, V. Nano-sized carriers for drug delivery. NanoBiotechnology, 2008, 329-348.
[19]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[20]
Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today, 2012, 17(17-18), 1044-1052.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[21]
Marchal, S.; El Hor, A.; Millard, M.; Gillon, V.; Bezdetnaya, L. Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs, 2015, 75(14), 1601-1611.
[http://dx.doi.org/10.1007/s40265-015-0453-3] [PMID: 26323338]
[22]
Tan, Y.F.; Lao, L.L.; Xiong, G.M.; Venkatraman, S. Controlled-release nanotherapeutics: state of translation. J. Control. Release, 2018, 284, 39-48.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.014]] [PMID: 29902484]
[23]
Tanabe, M.; Ito, Y.; Tokudome, N.; Sugihara, T.; Miura, H.; Takahashi, S.; Seto, Y.; Iwase, T.; Hatake, K. Possible use of combination chemotherapy with mitomycin C and methotrexate for metastatic breast cancer pretreated with anthracycline and taxanes. Breast Cancer, 2009, 16(4), 301-306.
[24]
Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 2009, 30(29), 5737-5750.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.008] [PMID: 19631377]
[25]
Lehner, R.; Wang, X.; Marsch, S.; Hunziker, P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine (Lond.), 2013, 9(6), 742-757.
[http://dx.doi.org/10.1016/j.nano.2013.01.012] [PMID: 23434677]
[26]
Gu, F.; Zhang, L.; Teply, B.A.; Mann, N.; Wang, A.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2586-2591.
[http://dx.doi.org/10.1073/pnas.0711714105] [PMID: 18272481]
[27]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[28]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[29]
Huynh, N.T.; Roger, E.; Lautram, N.; Benoît, J.P.; Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond.), 2010, 5(9), 1415-1433.
[http://dx.doi.org/10.2217/nnm.10.113] [PMID: 21128723]
[30]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[31]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[32]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[33]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[34]
Sledge, G.W., Jr; Miller, K.D. Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur. J. Cancer, 2003, 39(12), 1668-1675.
[http://dx.doi.org/10.1016/S0959-8049(03)00273-9] [PMID: 12888360]
[35]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[36]
Lammers, T.; Subr, V.; Ulbrich, K.; Peschke, P.; Huber, P.E.; Hennink, W.E.; Storm, G. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials, 2009, 30(20), 3466-3475.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.040] [PMID: 19304320]
[37]
Verschraegen, C.F.; Skubitz, K.; Daud, A.; Kudelka, A.P.; Rabinowitz, I.; Allievi, C.; Eisenfeld, A.; Singer, J.W.; Oldham, F.B. A phase I and pharmacokinetic study of paclitaxel poliglumex and cisplatin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2009, 63(5), 903-910.
[http://dx.doi.org/10.1007/s00280-008-0813-8] [PMID: 18682950]
[38]
Elsherbini, A.A.; Saber, M.; Aggag, M.; El-Shahawy, A.; Shokier, H.A. Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn. Reson. Imaging, 2011, 29(2), 272-280.
[http://dx.doi.org/10.1016/j.mri.2010.08.010] [PMID: 21145190]
[39]
Leamon, C.P.; Cooper, S.R.; Hardee, G.E. Folate-liposome-mediated antisense oligo-deoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug. Chem., 2003, 14(4), 738-747.
[http://dx.doi.org/10.1021/bc020089t] [PMID: 12862426]
[40]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[41]
Eck, W.; Craig, G.; Sigdel, A.; Ritter, G.; Old, L.J.; Tang, L.; Brennan, M.F.; Allen, P.J.; Mason, M.D. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano, 2008, 2(11), 2263-2272.
[http://dx.doi.org/10.1021/nn800429d] [PMID: 19206392]
[42]
Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv., 2010, 7(4), 429-444.
[http://dx.doi.org/10.1517/17425241003602259] [PMID: 20331353]
[43]
Langer, R. New methods of drug delivery. Science, 1990, 249(4976), 1527-1533.
[http://dx.doi.org/10.1126/science.2218494] [PMID: 2218494]
[44]
Emerich, D.F.; Thanos, C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther., 2003, 3(4), 655-663.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[45]
Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled dcrug release. Int. J. Pharm., 2004, 282(1-2), 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.013] [PMID: 15336378]
[46]
Bungay, J.K. Synthetic Membranes: Science, Engineering and Applications; Science & Business Media, 2012, p. 181.
[47]
Bungay, P.M.; Lonsdale, H.K. Synthetic Membranes: Science, Engineering and Applications; Science & Business Media, 2012.
[48]
Sanders, H.J. Improved drug delivery. Chem. Eng. News, 1985, 63(13), 30.
[http://dx.doi.org/10.1021/cen-v063n013.p030]
[49]
Uhrich, K.E.; Cannizzaro, S.M.; Langer, R.S.; Shakesheff, K.M. Polymeric systems for controlled drug release. Chem. Rev., 1999, 99(11), 3181-3198.
[http://dx.doi.org/10.1021/cr940351u] [PMID: 11749514]
[50]
Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21), 12273-12286.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[51]
Lee, E.S.; Gao, Z.; Bae, Y.H. Recent progress in tumor pH targeting nanotechnology. J. Control. Release, 2008, 132(3), 164-170.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.003] [PMID: 18571265]
[52]
Arifin, D.Y.; Lee, L.Y.; Wang, C.H. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv. Drug Deliv. Rev., 2006, 58(12-13), 1274-1325.
[http://dx.doi.org/10.1016/j.addr.2006.09.007] [PMID: 17097189]
[53]
Saltzman, W.M.; Fung, L.K. Polymeric implants for cancer chemotherapy. Adv. Drug Deliv. Rev., 1997, 26(2-3), 209-230.
[http://dx.doi.org/10.1016/S0169-409X(97)00036-7] [PMID: 10837544]
[54]
Pillai, O.; Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol., 2001, 5(4), 447-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00227-1] [PMID: 11470609]
[55]
Kanjickal, D.G.; Lopina, S.T. Modeling of drug release from polymeric delivery systems-a review. Crit. Rev. Ther. Drug, 2004, 21(5), 345-386.
[http://dx.doi.org/10.1615/critrevtherdrugcarriersyst.v21.i5.10] [PMID: 15717734]
[56]
Zhang, L.; Chan, J.M.; Gu, F.X.; Rhee, J.W.; Wang, A.Z.; Radovic-Moreno, A.F.; Alexis, F.; Langer, R.; Farokhzad, O.C. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano, 2008, 2(8), 1696-1702.
[http://dx.doi.org/10.1021/nn800275r] [PMID: 19206374]
[57]
Biondi, M.; Ungaro, F.; Quaglia, F.; Netti, P.A. Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev., 2008, 60(2), 229-242.
[http://dx.doi.org/10.1016/j.addr.2007.08.038] [PMID: 18031864]
[58]
Tallury, P.; Alimohammadi, N.; Kalachandra, S. Poly(ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: effect of drug combination, copolymer composition and coating on the drug release rate. Dent. Mater., 2007, 23(4), 404-409.
[http://dx.doi.org/10.1016/j.dental.2006.02.011] [PMID: 16556460]
[59]
Fukushima, K. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater. Sci., 2016, 4(1), 9-24.
[http://dx.doi.org/10.1039/C5BM00123D] [PMID: 26323327]
[60]
Ma, Y.; Zheng, Y.; Zeng, X.; Jiang, L.; Chen, H.; Liu, R.; Mei, L. Novel docetaxel-loaded nanoparticels based on PCL-Tween 80 copolymer for cancer treatment. Int. J. Nanomedicine, 2011, 6, 2679-2688.
[http://dx.doi.org/10.2147/ijn.s25251] [PMID: 22114498]
[61]
Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2), 103-114.
[http://dx.doi.org/10.1016/0142-9612(96)85755-3] [PMID: 8624387]
[62]
Marin, E.; Briceño, M.I.; Caballero-George, C. Critical evaluation of biodegradable polymers used in nanodrugs. Int. J. Nanomedicine, 2013, 8, 3071-3090.
[http://dx.doi.org/10.2147/ijn.s47186] [PMID: 23990720]
[63]
Park, E.S.; Maniar, M.; Shah, J.C. Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release. J. Control. Release, 1998, 52(1-2), 179-189.
[http://dx.doi.org/10.1016/S0168-3659(97)00223-X] [PMID: 9685948]
[64]
Park, H.; Park, K.; Shalaby, W.S.W. Biodegradable hydrogels for drug delivery, 2011.
[65]
Wang, X.; Venkatraman, S.S.; Boey, F.Y.C.; Loo, J.S.; Tan, L.P. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials, 2006, 27(32), 5588-5595.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.016] [PMID: 16879865]
[66]
Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-a review. Int. J. Pharm., 2011, 415(1-2), 34-52.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.049] [PMID: 21640806]
[67]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[68]
Lu, L.; Peter, S.J.; Lyman, M.D.; Lai, H.L.; Leite, S.M.; Tamada, J.A.; Uyama, S.; Vacanti, J.P.; Langer, R.; Mikos, A.G. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials, 2000, 21(18), 1837-1845.
[http://dx.doi.org/10.1016/S0142-9612(00)00047-8] [PMID: 10919687]
[69]
Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer, 2011, 11(9), 671-677.
[http://dx.doi.org/10.1038/nrc3110] [PMID: 21833026]
[70]
Deng, G.; Wang, X.Y.; Zhou, Z.G. Nano-carriers and their drug release. Journal of Shanghai Normal University, 2017, 6, 1000-5137.
[71]
Gao, W.; Chan, J.M.; Farokhzad, O.C. pH-responsive nanoparticles for drug delivery. Mol. Pharm., 2010, 7(6), 1913-1920.
[http://dx.doi.org/10.1021/mp100253e] [PMID: 20836539]
[72]
Yameen, B.; Choi, W.I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release, 2014, 190, 485-499.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.038] [PMID: 24984011]
[73]
Bontha, S.; Kabanov, A.V.; Bronich, T.K. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J. Control. Release, 2006, 114(2), 163-174.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.015] [PMID: 16914223]
[74]
Petrova, S.; Jäger, E.; Konefał, R.; Jäger, A.; Venturini, C.G.; Spěváček, J.; Štěpánek, P. Novel poly (ethylene oxide monomethyl ether)-b-poly (ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polym. Chem., 2014, 5(12), 3884-3893.
[http://dx.doi.org/10.1039/C4PY00114A]
[75]
Hu, J.; He, J.; Zhang, M.; Ni, P. Precise modular synthesis and a structure-property study of acid-cleavable star-block copolymers for pH-triggered drug delivery. Polym. Chem., 2015, 6(9), 1553-1566.
[http://dx.doi.org/10.1039/C4PY01391C]
[76]
Oberoi, H.S.; Laquer, F.C.; Marky, L.A.; Kabanov, A.V.; Bronich, T.K. Core cross-linked block ionomer micelles as pH-responsive carriers for cis-diamminedichloroplatinum (II). J. Control. Release, 2011, 153(1), 64-72.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.028] [PMID: 21497174]
[77]
Jo, S.M.; Kim, J.C. pH sensitivities of egg phosphatidylcholine liposomes and dioleoylphosphatidy-lethanolamine liposomes triggered by poly (N-isopropylacrylamide-co-meth-acrylic acid-co-octadecylacrylate). Colloid Polym. Sci., 2009, 287(9), 1065-1070.
[http://dx.doi.org/10.1007/s00396-009-2065-5]]
[78]
Ding, Y.; Kang, Y.; Zhang, X. Enzyme-responsive polymer assemblies constructed through covalent synthesis and supramolecular strategy. Chem. Commun. (Camb.), 2015, 51(6), 996-1003.
[79]
De La Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev., 2012, 64(11), 967-978.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[80]
Luo, K.; Yang, J.; Kopečková, P.; Kopecek, J. Biodegradable multiblock poly [N-(2-hydroxypropyl) methacrylamide] via reversible addition-fragmentation chain transfer polymerization and click chemistry. Macromolecules, 2011, 44(8), 2481-2488.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[81]
Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide dendrimer-doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(8), 1299-1308.
[http://dx.doi.org/10.1002/adhm.201300601] [PMID: 24706635]
[82]
Bernardos, A.; Mondragón, L.; Aznar, E.; Marcos, M.D.; Martinez-Mañez, R.; Sancenon, F.; Soto, J.; Barat, J.M.; Perez-Paya, E.; Guillem, C.; Amoros, P. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano, 2010, 4(11), 6353-6368.
[http://dx.doi.org/10.1021/nn101499d]] [PMID: 20958020]
[83]
Thornton, P.D.; Mart, R.J.; Ulijn, R.V. Enzyme-esponsive polymer hydrogel particles for controlled release. Adv. Mater., 2007, 19(9), 1252-1256.
[84]
Li, Y.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 2012, 41(6), 2193-2221.
[http://dx.doi.org/10.1039/C1CS15203C] [PMID: 22116474]
[85]
Hu, J.; Zhang, G.; Liu, S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev., 2012, 41(18), 5933-5949.
[http://dx.doi.org/10.1039/c2cs35103j] [PMID: 22695880]
[86]
Samarajeewa, S.; Shrestha, R.; Li, Y.; Wooley, K.L. Degradability of poly(lactic acid)-containing nanoparticles: enzymatic access through a cross-linked shell barrier. J. Am. Chem. Soc., 2012, 134(2), 1235-1242.
[http://dx.doi.org/10.1021/ja2095602] [PMID: 22257265]
[87]
Aimetti, A.A.; Machen, A.J.; Anseth, K.S. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials, 2009, 30(30), 6048-6054.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.043] [PMID: 19674784]
[88]
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[89]
Wang, Y.; Shim, M.S.; Levinson, N.S.; Sung, H.W.; Xia, Y. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater., 2014, 24(27), 4206-4220.
[http://dx.doi.org/10.1002/adfm.201400279] [PMID: 25477774]
[90]
Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9(2), 101-113.
[http://dx.doi.org/10.1038/nmat2614] [PMID: 20094081]
[91]
Dewhirst, M.W.; Vujaskovic, Z.; Jones, E.; Thrall, D. Re-setting the biologic rationale for thermal therapy. Int. J. Hyperthermia, 2005, 21(8), 779-790.
[http://dx.doi.org/10.1080/02656730500271668] [PMID: 16338861]
[92]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[93]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[94]
Aw, M.S.; Kurian, M.; Losic, D. Polymeric micelles for multidrug delivery and combination therapy. Chemistry, 2013, 19(38), 12586-12601.
[http://dx.doi.org/10.1002/chem.201302097] [PMID: 23943229]
[95]
Gobin, A.M.; Lee, M.H.; Halas, N.J.; James, W.D.; Drezek, R.A.; West, J.L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett., 2007, 7(7), 1929-1934.
[http://dx.doi.org/10.1021/nl070610y] [PMID: 17550297]
[96]
Yatvin, M.B.; Weinstein, J.N.; Dennis, W.H.; Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 1978, 202(4374), 1290-1293.
[http://dx.doi.org/10.1126/science.364652] [PMID: 364652]
[97]
Tagami, T.; Foltz, W.D.; Ernsting, M.J.; Lee, C.M.; Tannock, I.F.; May, J.P.; Li, S.D. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials, 2011, 32(27), 6570-6578.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.029] [PMID: 21641639]
[98]
Lee, S.H.; Choi, S.H.; Kim, S.H.; Park, T.G. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J. Control. Release, 2008, 125(1), 25-32.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.011] [PMID: 17976853]
[99]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2001, 53(3), 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[100]
Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C.G.; Meier, W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases, 2012, 7(1-4), 9.
[http://dx.doi.org/10.1007/s13758-011-0009-3] [PMID: 22589052]
[101]
Xia, Y.; Burke, N.A.D.; Stöver, H.D.H. End group effect on the thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2006, 39(6), 2275-2283.
[http://dx.doi.org/10.1021/ma0519617]
[102]
Wei, H.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci., 2009, 34(9), 893-910.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.05.002]
[103]
Chung, J.E.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release, 1999, 62(1-2), 115-127.
[http://dx.doi.org/10.1016/S0168-3659(99)00029-2] [PMID: 10518643]
[104]
Yi, X.; Wang, F.; Qin, W.; Yang, X.; Yuan, J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int. J. Nanomedicine, 2014, 9, 1347-1365.
[http://dx.doi.org/10.2147/IJN.S60206] [PMID: 24648733]
[105]
Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev., 2012, 64(11), 1005-1020.
[http://dx.doi.org/10.1016/j.addr.2012.02.006] [PMID: 22386560]
[106]
Zheng, M.; Yue, C.; Ma, Y.; Gong, P.; Zhao, P.; Zheng, C.; Sheng, Z.; Zhang, P.; Wang, Z.; Cai, L. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3), 2056-2067.
[http://dx.doi.org/10.1021/nn400334y] [PMID: 23413798]
[107]
Zhang, H.; Zhu, X.; Ji, Y.; Jiao, X.; Chen, Q.; Hou, L.; Zhang, H.; Zhang, Z. Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(30), 6310-6326.
[http://dx.doi.org/10.1039/C5TB00904A] [PMID: 32262750]
[108]
You, J.; Zhang, R.; Xiong, C.; Zhong, M.; Melancon, M.; Gupta, S.; Nick, A.M.; Sood, A.K.; Li, C. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res., 2012, 72(18), 4777-4786.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1003] [PMID: 22865457]
[109]
Lee, S.M.; Park, H.; Choi, J.W.; Park, Y.N.; Yun, C.O.; Yoo, K.H. Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed. Engl., 2011, 50(33), 7581-7586.
[http://dx.doi.org/10.1002/anie.201101783] [PMID: 21721086]
[110]
Ma, Y.; Liang, X.; Tong, S.; Bao, G.; Ren, Q.; Dai, Z. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light triggered drug release, and photothermal therapy. Adv. Funct. Mater., 2013, 23(7), 815-822.
[http://dx.doi.org/10.1002/adfm.201201663]
[111]
Agarwal, A.; Mackey, M.A.; El-Sayed, M.A.; Bellamkonda, R.V. Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano, 2011, 5(6), 4919-4926.
[http://dx.doi.org/10.1021/nn201010q] [PMID: 21591812]
[112]
Lukianova-Hleb, E.Y.; Belyanin, A.; Kashinath, S.; Wu, X.; Lapotko, D.O. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials, 2012, 33(6), 1821-1826.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.015] [PMID: 22137124]
[113]
Yang, H.W.; Hua, M.Y.; Liu, H.L.; Huang, C.Y.; Tsai, R.Y.; Lu, Y.J.; Chen, J.Y.; Tang, H.J.; Hsien, H.Y.; Chang, Y.S.; Yen, T.C.; Chen, P.Y.; Wei, K.C. Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials, 2011, 32(27), 6523-6532.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.047] [PMID: 21645920]
[114]
Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 2010, 62(2), 144-149.
[http://dx.doi.org/10.1016/j.phrs.2010.01.014] [PMID: 20149874]
[115]
Colombo, M.; Carregal-Romero, S.; Casula, M.F.; Gutiérrez, L.; Morales, M.P.; Böhm, I.B.; Heverhagen, J.T.; Prosperi, D.; Parak, W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev., 2012, 41(11), 4306-4334.
[http://dx.doi.org/10.1039/c2cs15337h] [PMID: 22481569]
[116]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16(2),023501.
[http://dx.doi.org/10.1088/1468-6996/16/2/023501] [PMID: 27877761]
[117]
Cazares-Cortes, E.; Espinosa, A.; Guigner, J.M.; Michel, A.; Griffete, N.; Wilhelm, C.; Ménager, C. Doxorubicin intracellular remote release from biocompatible oligo (ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia. ACS Appl. Mater. Interfaces, 2017, 9(31), 25775-25788.
[http://dx.doi.org/10.1021/acsami.7b06553] [PMID: 28723064]
[118]
Thorat, N.D.; Bohara, R.A.; Noor, M.R.; Dhamecha, D.; Soulimane, T.; Tofail, S.A. Effective cancer theranostics with polymer encapsulated superparamagnetic nanoparticles: combined effects of magnetic hyperthermia and controlled drug release. ACS Biomater. Sci. Eng., 2017, 3(7), 1332-1340.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00420]
[119]
Wang, L. Preparation of core-shell structured ferrite nanocube and its synergistic treatment with targeted magnetic hyperthermia and chemotherapy. Shanghai normal university,, 2015.
[120]
Satarkar, N.S.; Zach Hilt, J. Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater., 2008, 4(1), 11-16.
[http://dx.doi.org/10.1016/j.actbio.2007.07.009] [PMID: 17855176]
[121]
Hu, S.H.; Chen, S.Y.; Gao, X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano, 2012, 6(3), 2558-2565.
[http://dx.doi.org/10.1021/nn205023w] [PMID: 22339040]
[122]
Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 2010, 142(1), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.002] [PMID: 19819275]
[123]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A.R.; Haghani, L.; Bahrami, S.; Hamblin, M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[124]
Bang, J.H.; Suslick, K.S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater., 2010, 22(10), 1039-1059.
[http://dx.doi.org/10.1002/adma.200904093] [PMID: 20401929]
[125]
Meng, J.; Agrahari, V.; Youm, I. Advances intargeted drug delivery approaches for the central nervous system tumors: The inspiration of nanobiotechnology. J. Neuroimmune Pharmacol., 2017, 12(1), 84-98.
[http://dx.doi.org/10.1007/s11481-016-9698-1] [PMID: 27449494]
[126]
Zhu, X.; Guo, J.; He, C.; Geng, H.; Yu, G.; Li, J.; Zheng, H.; Ji, X.; Yan, F. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles. Sci. Rep., 2016, 6, 21683.
[http://dx.doi.org/10.1038/srep21683] [PMID: 26899550]
[127]
Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.018] [PMID: 26410788]
[128]
Yang, P.; Li, D.; Jin, S.; Ding, J.; Guo, J.; Shi, W.; Wang, C. Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials, 2014, 35(6), 2079-2088.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.057] [PMID: 24331704]
[129]
Huebsch, N.; Kearney, C.J.; Zhao, X.; Kim, J.; Cezar, C.A.; Suo, Z.; Mooney, D.J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. USA, 2014, 111(27), 9762-9767.
[http://dx.doi.org/10.1073/pnas.1405469111] [PMID: 24961369]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy