Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Histone Deacetylases (HDACs) in Gastric Cancer: An Update of their Emerging Prognostic and Therapeutic Role

Author(s): Dimitrios Schizas, Aikaterini Mastoraki, Leon Naar, Diamantis I. Tsilimigras*, Ioannis Katsaros, Vasiliki Fragkiadaki, Georgia-Sofia Karachaliou, Nikolaos Arkadopoulos, Theodore Liakakos and Dimitrios Moris

Volume 27, Issue 36, 2020

Page: [6099 - 6111] Pages: 13

DOI: 10.2174/0929867326666190712160842

Price: $65

Abstract

Chemotherapy resistance is a rising concern in Gastric Cancer (GC) and has led to the investigation of various cellular compounds. Α functional equilibrium of histone acetylation and deacetylation was discovered in all cells, regulated by Histone Acetyltransferases and Deacetylases (HDACs), controlling chromatin coiling status and changing gene expression appropriately. In accordance with recent research, this equilibrium can be dysregulated in cancer cells aiding in the process of carcinogenesis and tumor progression by altering histone and non-histone proteins affecting gene expression, cell cycle control, differentiation, and apoptosis in various malignancies. In addition, increased HDAC expression in GC cells has been associated with increased stage, tumor invasion, nodal metastases, increased distant metastatic potential, and decreased overall survival. HDAC inhibitors could be used as treatment regimens for GC patients and could develop important synergistic interactions with chemotherapy drugs. The aim of this article is to review the molecular identity and mechanism of action of HDAC inhibitors, as well as highlight their potential utility as anti-cancer agents in GC.

Keywords: HDACs, gastric cancer, biochemical identity, chemotherapy resistance, multi-disciplinary approach, drug discovery.

[1]
Harada, K.; Lopez, A.; Shanbhag, N.; Badgwell, B.; Baba, H.; Ajani, J. Recent advances in the management of gastric adenocarcinoma patients. F1000 Res., 2018, 7, 7.
[http://dx.doi.org/10.12688/f1000research.15133.1] [PMID: 30228868]
[2]
N.I.H., Surveillance Epidemiology and End Results Program (SEER), 2019. Available at: www.seer.cancer.gov.
[3]
Yamamoto, S. Stomach cancer incidence in the world. Jpn. J. Clin. Oncol., 2001, 31(9), 471.
[http://dx.doi.org/10.1093/jjco/31.9.471] [PMID: 11689605]
[4]
Crew, K.D.; Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol., 2006, 12(3), 354-362.
[http://dx.doi.org/10.3748/wjg.v12.i3.354] [PMID: 16489633]
[5]
Brown, L.M.; Devesa, S.S. Epidemiologic trends in esophageal and gastric cancer in the United States. Surg. Oncol. Clin. N. Am., 2002, 11(2), 235-256.
[http://dx.doi.org/10.1016/S1055-3207(02)00002-9] [PMID: 12424848]
[6]
Henson, D.E.; Dittus, C.; Younes, M.; Nguyen, H.; Albores-Saavedra, J. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. Arch. Pathol. Lab. Med., 2004, 128(7), 765-770.
[http://dx.doi.org/10.1043/1543-2165(2004)128%3C765: dtitia%3E2.0.co;2] [PMID: 15214826]
[7]
Muñoz, N.; Correa, P.; Cuello, C.; Duque, E. Histologic types of gastric carcinoma in high- and low-risk areas. Int. J. Cancer, 1968, 3(6), 809-818.
[http://dx.doi.org/10.1002/ijc.2910030614] [PMID: 5731983]
[8]
Charalampakis, N.; Economopoulou, P.; Kotsantis, I.; Tolia, M.; Schizas, D.; Liakakos, T.; Elimova, E.; Ajani, J.A.; Psyrri, A. Medical management of gastric cancer: a 2017 update. Cancer Med., 2018, 7(1), 123-133.
[http://dx.doi.org/10.1002/cam4.1274] [PMID: 29239137]
[9]
Hrabeta, J.; Stiborova, M.; Adam, V.; Kizek, R.; Eckschlager, T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2014, 158(2), 161-169.
[http://dx.doi.org/10.5507/bp.2013.085] [PMID: 24263215]
[10]
Kothapalli, N.; Sarath, G.; Zempleni, J. Biotinylation of K12 in histone H4 decreases in response to DNA double-strand breaks in human JAr choriocarcinoma cells. J. Nutr., 2005, 135(10), 2337-2342.
[http://dx.doi.org/10.1093/jn/135.10.2337] [PMID: 16177192]
[11]
Li, Z.; Zhu, W.G. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int. J. Biol. Sci., 2014, 10(7), 757-770.
[http://dx.doi.org/10.7150/ijbs.9067] [PMID: 25013383]
[12]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[13]
Lee, K.K.; Workman, J.L. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol., 2007, 8(4), 284-295.
[http://dx.doi.org/10.1038/nrm2145] [PMID: 17380162]
[14]
Cai, M.H.; Xu, X.G.; Yan, S.L.; Sun, Z.; Ying, Y.; Wang, B.K.; Tu, Y.X. Depletion of HDAC1, 7 and 8 by histone deacetylase inhibition confers elimination of pancreatic cancer stem cells in combination with gemcitabine. Sci. Rep., 2018, 8(1), 1621.
[http://dx.doi.org/10.1038/s41598-018-20004-0] [PMID: 29374219]
[15]
Schizas, D.; Mastoraki, A.; Naar, L.; Spartalis, E.; Tsilimigras, D.I.; Karachaliou, G.S.; Bagias, G.; Moris, D. Concept of histone deacetylases in cancer: reflections on esophageal carcinogenesis and treatment. World J. Gastroenterol., 2018, 24(41), 4635-4642.
[http://dx.doi.org/10.3748/wjg.v24.i41.4635] [PMID: 30416311]
[16]
Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Moris, D.; Spartalis, E.; Pawlik, T.M. Histone deacetylase inhibitors in hepatocellular carcinoma: a therapeutic perspective. Surg. Oncol., 2018, 27(4), 611-618.
[http://dx.doi.org/10.1016/j.suronc.2018.07.015] [PMID: 30449480]
[17]
Mielcarek, M.; Zielonka, D.; Carnemolla, A.; Marcinkowski, J.T.; Guidez, F. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front. Cell. Neurosci., 2015, 9, 42.
[http://dx.doi.org/10.3389/fncel.2015.00042] [PMID: 25759639]
[18]
Zeng, L.S.; Yang, X.Z.; Wen, Y.F.; Mail, S.J.; Wang, M.H.; Zhang, M.Y.; Zheng, X.F.; Wang, H.Y. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY), 2016, 8(6), 1236-1249.
[http://dx.doi.org/10.18632/aging.100980] [PMID: 27295551]
[19]
Walkinshaw, D.R.; Yang, X.J. Histone deacetylase inhibitors as novel anticancer therapeutics. Curr. Oncol., 2008, 15(5), 237-243.
[PMID: 19008999]
[20]
Wilson, A.J.; Byun, D.S.; Popova, N.; Murray, L.B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; Augenlicht, L.H.; Mariadason, J.M. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem., 2006, 281(19), 13548-13558.
[http://dx.doi.org/10.1074/jbc.M510023200] [PMID: 16533812]
[21]
Richon, V.M.; Sandhoff, T.W.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA, 2000, 97(18), 10014-10019.
[http://dx.doi.org/10.1073/pnas.180316197] [PMID: 10954755]
[22]
Bai, J.; Sui, J.; Demirjian, A.; Vollmer, C.M., Jr; Marasco, W.; Callery, M.P. Predominant Bcl-XL knockdown disables antiapoptotic mechanisms: tumor necrosis factor-related apoptosis-inducing ligand-based triple chemotherapy overcomes chemoresistance in pancreatic cancer cells in vitro. Cancer Res., 2005, 65(6), 2344-2352.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3502] [PMID: 15781649]
[23]
Henderson, S.E.; Ding, L.Y.; Mo, X.; Bekaii-Saab, T.; Kulp, S.K.; Chen, C.S.; Huang, P.H. Suppression of tumor growth and muscle wasting in a transgenic mouse model of pancreatic cancer by the novel histone deacetylase inhibitor AR-42. Neoplasia, 2016, 18(12), 765-774.
[http://dx.doi.org/10.1016/j.neo.2016.10.003] [PMID: 27889645]
[24]
Ahrens, T.D.; Timme, S.; Hoeppner, J.; Ostendorp, J.; Hembach, S.; Follo, M.; Hopt, U.T.; Werner, M.; Busch, H.; Boerries, M.; Lassmann, S. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics, 2015, 10(5), 431-445.
[http://dx.doi.org/10.1080/15592294.2015.1039216] [PMID: 25923331]
[25]
Peralta-Arrieta, I.; Hernández-Sotelo, D.; Castro-Coronel, Y.; Leyva-Vázquez, M.A.; Illades-Aguiar, B. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation. Am. J. Cancer Res., 2017, 7(1), 77-87.
[PMID: 28123849]
[26]
Mishra, V.K.; Wegwitz, F.; Kosinsky, R.L.; Sen, M.; Baumgartner, R.; Wulff, T.; Siveke, J.T.; Schildhaus, H.U.; Najafova, Z.; Kari, V.; Kohlhof, H.; Hessmann, E.; Johnsen, S.A. Histone deacetylase class-I inhibition promotes epithelial gene expression in pancreatic cancer cells in a BRD4- and MYC-dependent manner. Nucleic Acids Res., 2017, 45(11), 6334-6349.
[http://dx.doi.org/10.1093/nar/gkx212] [PMID: 28369619]
[27]
Gao, Y.S.; Hubbert, C.C.; Lu, J.; Lee, Y.S.; Lee, J.Y.; Yao, T.P. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis. Mol. Cell. Biol., 2007, 27(24), 8637-8647.
[http://dx.doi.org/10.1128/MCB.00393-07] [PMID: 17938201]
[28]
Zhu, B.Y.; Shang, B.Y.; Du, Y.; Li, Y.; Li, L.; Xu, X.D.; Zhen, Y.S. A new HDAC inhibitor cinnamoylphenazine shows antitumor activity in association with intensive macropinocytosis. Oncotarget, 2017, 8(9), 14748-14758.
[http://dx.doi.org/10.18632/oncotarget.14714] [PMID: 28107195]
[29]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[30]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), E1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[31]
Chien, W.; Lee, D.H.; Zheng, Y.; Wuensche, P.; Alvarez, R.; Wen, D.L.; Aribi, A.M.; Thean, S.M.; Doan, N.B.; Said, J.W.; Koeffler, H.P. Growth inhibition of pancreatic cancer cells by histone deacetylase inhibitor belinostat through suppression of multiple pathways including HIF, NFkB, and mTOR signaling in vitro and in vivo. Mol. Carcinog., 2014, 53(9), 722-735.
[http://dx.doi.org/10.1002/mc.22024] [PMID: 23475695]
[32]
Gal-Yam, E.N.; Saito, Y.; Egger, G.; Jones, P.A. Cancer epigenetics: modifications, screening, and therapy. Annu. Rev. Med., 2008, 59, 267-280.
[http://dx.doi.org/10.1146/annurev.med.59.061606.095816] [PMID: 17937590]
[33]
Mihailidou, C.; Karamouzis, M.V.; Schizas, D.; Papavassiliou, A.G. Co-targeting c-Met and DNA double-strand breaks (DSBs): therapeutic strategies in BRCA-mutated gastric carcinomas. Biochimie, 2017, 142, 135-143.
[http://dx.doi.org/10.1016/j.biochi.2017.09.001] [PMID: 28890386]
[34]
Schizas, D.; Moris, D.; Michalinos, A.; Kanavidis, P.; Oikonomou, D.; Papalampros, A.; Machairas, A.; Liakakos, T. E-cadherin in gastric carcinomas: relations with histological parameters and its prognostic value. J. BUON, 2017, 22(2), 383-389.
[PMID: 28534359]
[35]
Ono, S.; Oue, N.; Kuniyasu, H.; Suzuki, T.; Ito, R.; Matsusaki, K.; Ishikawa, T.; Tahara, E.; Yasui, W. Acetylated histone H4 is reduced in human gastric adenomas and carcinomas. J. Exp. Clin. Cancer Res., 2002, 21(3), 377-382.
[PMID: 12385581]
[36]
Feng, L.; Pan, M.; Sun, J.; Lu, H.; Shen, Q.; Zhang, S.; Jiang, T.; Liu, L.; Jin, W.; Chen, Y.; Wang, X.; Jin, H. Histone deacetylase 3 inhibits expression of PUMA in gastric cancer cells. J. Mol. Med. (Berl.), 2013, 91(1), 49-58.
[http://dx.doi.org/10.1007/s00109-012-0932-x] [PMID: 22763818]
[37]
Yu, J.; Zhang, L.; Hwang, P.M.; Kinzler, K.W.; Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell, 2001, 7(3), 673-682.
[http://dx.doi.org/10.1016/S1097-2765(01)00213-1] [PMID: 11463391]
[38]
Ma, Y.; Yue, Y.; Pan, M.; Sun, J.; Chu, J.; Lin, X.; Xu, W.; Feng, L.; Chen, Y.; Chen, D.; Shin, V.Y.; Wang, X.; Jin, H. Histone deacetylase 3 inhibits new tumor suppressor gene DTWD1 in gastric cancer. Am. J. Cancer Res., 2015, 5(2), 663-673.
[PMID: 25973305]
[39]
Mutze, K.; Langer, R.; Becker, K.; Ott, K.; Novotny, A.; Luber, B.; Hapfelmeier, A.; Göttlicher, M.; Höfler, H.; Keller, G. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann. Surg. Oncol., 2010, 17(12), 3336-3343.
[http://dx.doi.org/10.1245/s10434-010-1182-1] [PMID: 20585871]
[40]
Alberts, S.R.; Cervantes, A.; van de Velde, C.J. Gastric cancer: epidemiology, pathology and treatment. Ann. Oncol., 2003, 14(l2)(Suppl. 2), ii31-ii36.
[http://dx.doi.org/10.1093/annonc/mdg726] [PMID: 12810455]
[41]
Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Ebert, M.P.; Pross, M.; Dietel, M.; Denkert, C.; Röcken, C. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol., 2008, 9(2), 139-148.
[http://dx.doi.org/10.1016/S1470-2045(08)70004-4] [PMID: 18207460]
[42]
Sudo, T.; Mimori, K.; Nishida, N.; Kogo, R.; Iwaya, T.; Tanaka, F.; Shibata, K.; Fujita, H.; Shirouzu, K.; Mori, M. Histone deacetylase 1 expression in gastric cancer. Oncol. Rep., 2011, 26(4), 777-782.
[http://dx.doi.org/10.3892/or.2011.1361] [PMID: 21725604]
[43]
Cao, L.L.; Yue, Z.; Liu, L.; Pei, L.; Yin, Y.; Qin, L.; Zhao, J.; Liu, H.; Wang, H.; Jia, M. The expression of histone deacetylase HDAC1 correlates with the progression and prognosis of gastrointestinal malignancy. Oncotarget, 2017, 8(24), 39241-39253.
[http://dx.doi.org/10.18632/oncotarget.16843] [PMID: 28424407]
[44]
Lin, L.; Jiang, H.; Huang, M.; Hou, X.; Sun, X.; Jiang, X.; Dong, X.; Sun, X.; Zhou, B.; Qiao, H. Depletion of histone deacetylase 1 inhibits metastatic abilities of gastric cancer cells by regulating the miR-34a/CD44 pathway. Oncol. Rep., 2015, 34(2), 663-672.
[http://dx.doi.org/10.3892/or.2015.4010] [PMID: 26035691]
[45]
Schizas, D.; Moris, D.; Kanavidis, P.; Michalinos, A.; Sioulas, A.; Pavlakis, K.; Machairas, A.; Liakakos, T. The prognostic value of CD44 expression in epithelial-mesenchymal transition: preliminary data from patients with gastric and esophageal cancer. In Vivo, 2016, 30(6), 939-944.
[http://dx.doi.org/10.21873/invivo.11017] [PMID: 27815484]
[46]
Li, Y.; Wang, K.; Wei, Y.; Yao, Q.; Zhang, Q.; Qu, H.; Zhu, G. lncRNA-MIAT regulates cell biological behaviors in gastric cancer through a mechanism involving the miR-29a-3p/HDAC4 axis. Oncol. Rep., 2017, 38(6), 3465-3472.
[http://dx.doi.org/10.3892/or.2017.6020] [PMID: 29039602]
[47]
Yu, Y.; Cao, F.; Yu, X.; Zhou, P.; Di, Q.; Lei, J.; Tai, Y.; Wu, H.; Li, X.; Wang, X.; Zhang, W.; Li, P.; Li, Y. The expression of HDAC7 in cancerous gastric tissues is positively associated with distant metastasis and poor patient prognosis. Clin. Transl. Oncol., 2017, 19(8), 1045-1054.
[http://dx.doi.org/10.1007/s12094-017-1639-9] [PMID: 28299580]
[48]
Song, S.; Wang, Y.; Xu, P.; Yang, R.; Ma, Z.; Liang, S.; Zhang, G. The inhibition of histone deacetylase 8 suppresses proliferation and inhibits apoptosis in gastric adenocarcinoma. Int. J. Oncol., 2015, 47(5), 1819-1828.
[http://dx.doi.org/10.3892/ijo.2015.3182] [PMID: 26412386]
[49]
Zhang, L.; Kang, W.; Lu, X.; Ma, S.; Dong, L.; Zou, B. Weighted gene co-expression network analysis and connectivity map identifies lovastatin as a treatment option of gastric cancer by inhibiting HDAC2. Gene, 2019, 681, 15-25.
[http://dx.doi.org/10.1016/j.gene.2018.09.040] [PMID: 30266498]
[50]
Colarossi, L.; Memeo, L.; Colarossi, C.; Aiello, E.; Iuppa, A.; Espina, V.; Liotta, L.; Mueller, C. Inhibition of histone deacetylase 4 increases cytotoxicity of docetaxel in gastric cancer cells. Proteomics Clin. Appl., 2014, 8(11-12), 924-931.
[http://dx.doi.org/10.1002/prca.201400058] [PMID: 25091122]
[51]
Noguchi, A.; Kikuchi, K.; Zheng, H.; Takahashi, H.; Miyagi, Y.; Aoki, I.; Takano, Y. SIRT1 expression is associated with a poor prognosis, whereas DBC1 is associated with favorable outcomes in gastric cancer. Cancer Med., 2014, 3(6), 1553-1561.
[http://dx.doi.org/10.1002/cam4.310] [PMID: 25146318]
[52]
Zhu, L.; Yang, J.; Zhao, L.; Yu, X.; Wang, L.; Wang, F.; Cai, Y.; Jin, J. Expression of hMOF, but not HDAC4, is responsible for the global histone H4K16 acetylation in gastric carcinoma. Int. J. Oncol., 2015, 46(6), 2535-2545.
[http://dx.doi.org/10.3892/ijo.2015.2956] [PMID: 25873202]
[53]
Jin, Z.; Jiang, W.; Jiao, F.; Guo, Z.; Hu, H.; Wang, L.; Wang, L. Decreased expression of histone deacetylase 10 predicts poor prognosis of gastric cancer patients. Int. J. Clin. Exp. Pathol., 2014, 7(9), 5872-5879.
[PMID: 25337229]
[54]
Osada, H.; Tatematsu, Y.; Saito, H.; Yatabe, Y.; Mitsudomi, T.; Takahashi, T. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int. J. Cancer, 2004, 112(1), 26-32.
[http://dx.doi.org/10.1002/ijc.20395] [PMID: 15305372]
[55]
Park, J.K.; Seo, J.S.; Lee, S.K.; Chan, K.K.; Kuh, H.J. Combinatorial antitumor activity of oxaliplatin with epigenetic modifying agents, 5-Aza-CdR and FK228, in human gastric cancer cells. Biomol. Ther. (Seoul), 2018, 26(6), 591-598.
[http://dx.doi.org/10.4062/biomolther.2018.061] [PMID: 30173503]
[56]
Dong, J.; Zheng, N.; Wang, X.; Tang, C.; Yan, P.; Zhou, H.B.; Huang, J. A novel HDAC6 inhibitor exerts an anti-cancer effect by triggering cell cycle arrest and apoptosis in gastric cancer. Eur. J. Pharmacol., 2018, 828, 67-79.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.026] [PMID: 29563065]
[57]
Yoo, C.; Ryu, M.H.; Na, Y.S.; Ryoo, B.Y.; Lee, C.W.; Kang, Y.K. Vorinostat in combination with capecitabine plus cisplatin as a first-line chemotherapy for patients with metastatic or unresectable gastric cancer: phase II study and biomarker analysis. Br. J. Cancer, 2016, 114(11), 1185-1190.
[http://dx.doi.org/10.1038/bjc.2016.125] [PMID: 27172248]
[58]
Fushida, S.; Kinoshita, J.; Kaji, M.; Oyama, K.; Hirono, Y.; Tsukada, T.; Fujimura, T.; Ohta, T. Paclitaxel plus valproic acid versus paclitaxel alone as second- or third-line therapy for advanced gastric cancer: a randomized phase II trial. Drug Des. Devel. Ther., 2016, 10, 2353-2358.
[http://dx.doi.org/10.2147/DDDT.S110425] [PMID: 27524882]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy