摘要
化疗耐药在胃癌(GC)中日益受到关注,并引发了各种细胞化合物的研究。在所有细胞中发现组蛋白乙酰化和去乙酰化的Α功能平衡,受组蛋白乙酰转移酶和去乙酰化酶(HDACs)的调控,控制染色质的卷曲状态,适当改变基因的表达。根据最近的研究,这种平衡可以在癌症细胞中失调,通过改变组蛋白和非组蛋白影响基因表达,细胞周期控制,分化和凋亡在各种恶性肿瘤中,帮助癌症发生和肿瘤进展的过程。此外,胃癌细胞中HDAC表达的增加与分期、肿瘤侵袭、淋巴结转移、远处转移潜能的增加以及总体生存期的降低有关。HDAC抑制剂可作为胃癌患者的治疗方案,并可与化疗药物产生重要的协同作用。本文的目的是综述HDAC抑制剂的分子特性和作用机制,并强调其作为胃癌抗癌药物的潜在用途。
关键词: HDACs,胃癌,生化鉴别,化疗耐药,多学科途径,药物发现
[1]
Harada, K.; Lopez, A.; Shanbhag, N.; Badgwell, B.; Baba, H.; Ajani, J. Recent advances in the management of gastric adenocarcinoma patients. F1000 Res., 2018, 7, 7.
[http://dx.doi.org/10.12688/f1000research.15133.1] [PMID: 30228868]
[http://dx.doi.org/10.12688/f1000research.15133.1] [PMID: 30228868]
[2]
N.I.H., Surveillance Epidemiology and End Results Program (SEER), 2019. Available at: www.seer.cancer.gov.
[3]
Yamamoto, S. Stomach cancer incidence in the world. Jpn. J. Clin. Oncol., 2001, 31(9), 471.
[http://dx.doi.org/10.1093/jjco/31.9.471] [PMID: 11689605]
[http://dx.doi.org/10.1093/jjco/31.9.471] [PMID: 11689605]
[4]
Crew, K.D.; Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol., 2006, 12(3), 354-362.
[http://dx.doi.org/10.3748/wjg.v12.i3.354] [PMID: 16489633]
[http://dx.doi.org/10.3748/wjg.v12.i3.354] [PMID: 16489633]
[5]
Brown, L.M.; Devesa, S.S. Epidemiologic trends in esophageal and gastric cancer in the United States. Surg. Oncol. Clin. N. Am., 2002, 11(2), 235-256.
[http://dx.doi.org/10.1016/S1055-3207(02)00002-9] [PMID: 12424848]
[http://dx.doi.org/10.1016/S1055-3207(02)00002-9] [PMID: 12424848]
[6]
Henson, D.E.; Dittus, C.; Younes, M.; Nguyen, H.; Albores-Saavedra, J. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. Arch. Pathol. Lab. Med., 2004, 128(7), 765-770.
[http://dx.doi.org/10.1043/1543-2165(2004)128%3C765: dtitia%3E2.0.co;2] [PMID: 15214826]
[http://dx.doi.org/10.1043/1543-2165(2004)128%3C765: dtitia%3E2.0.co;2] [PMID: 15214826]
[7]
Muñoz, N.; Correa, P.; Cuello, C.; Duque, E. Histologic types of gastric carcinoma in high- and low-risk areas. Int. J. Cancer, 1968, 3(6), 809-818.
[http://dx.doi.org/10.1002/ijc.2910030614] [PMID: 5731983]
[http://dx.doi.org/10.1002/ijc.2910030614] [PMID: 5731983]
[8]
Charalampakis, N.; Economopoulou, P.; Kotsantis, I.; Tolia, M.; Schizas, D.; Liakakos, T.; Elimova, E.; Ajani, J.A.; Psyrri, A. Medical management of gastric cancer: a 2017 update. Cancer Med., 2018, 7(1), 123-133.
[http://dx.doi.org/10.1002/cam4.1274] [PMID: 29239137]
[http://dx.doi.org/10.1002/cam4.1274] [PMID: 29239137]
[9]
Hrabeta, J.; Stiborova, M.; Adam, V.; Kizek, R.; Eckschlager, T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2014, 158(2), 161-169.
[http://dx.doi.org/10.5507/bp.2013.085] [PMID: 24263215]
[http://dx.doi.org/10.5507/bp.2013.085] [PMID: 24263215]
[10]
Kothapalli, N.; Sarath, G.; Zempleni, J. Biotinylation of K12 in histone H4 decreases in response to DNA double-strand breaks in human JAr choriocarcinoma cells. J. Nutr., 2005, 135(10), 2337-2342.
[http://dx.doi.org/10.1093/jn/135.10.2337] [PMID: 16177192]
[http://dx.doi.org/10.1093/jn/135.10.2337] [PMID: 16177192]
[11]
Li, Z.; Zhu, W.G. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int. J. Biol. Sci., 2014, 10(7), 757-770.
[http://dx.doi.org/10.7150/ijbs.9067] [PMID: 25013383]
[http://dx.doi.org/10.7150/ijbs.9067] [PMID: 25013383]
[12]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[13]
Lee, K.K.; Workman, J.L. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol., 2007, 8(4), 284-295.
[http://dx.doi.org/10.1038/nrm2145] [PMID: 17380162]
[http://dx.doi.org/10.1038/nrm2145] [PMID: 17380162]
[14]
Cai, M.H.; Xu, X.G.; Yan, S.L.; Sun, Z.; Ying, Y.; Wang, B.K.; Tu, Y.X. Depletion of HDAC1, 7 and 8 by histone deacetylase inhibition confers elimination of pancreatic cancer stem cells in combination with gemcitabine. Sci. Rep., 2018, 8(1), 1621.
[http://dx.doi.org/10.1038/s41598-018-20004-0] [PMID: 29374219]
[http://dx.doi.org/10.1038/s41598-018-20004-0] [PMID: 29374219]
[15]
Schizas, D.; Mastoraki, A.; Naar, L.; Spartalis, E.; Tsilimigras, D.I.; Karachaliou, G.S.; Bagias, G.; Moris, D. Concept of histone deacetylases in cancer: reflections on esophageal carcinogenesis and treatment. World J. Gastroenterol., 2018, 24(41), 4635-4642.
[http://dx.doi.org/10.3748/wjg.v24.i41.4635] [PMID: 30416311]
[http://dx.doi.org/10.3748/wjg.v24.i41.4635] [PMID: 30416311]
[16]
Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Moris, D.; Spartalis, E.; Pawlik, T.M. Histone deacetylase inhibitors in hepatocellular carcinoma: a therapeutic perspective. Surg. Oncol., 2018, 27(4), 611-618.
[http://dx.doi.org/10.1016/j.suronc.2018.07.015] [PMID: 30449480]
[http://dx.doi.org/10.1016/j.suronc.2018.07.015] [PMID: 30449480]
[17]
Mielcarek, M.; Zielonka, D.; Carnemolla, A.; Marcinkowski, J.T.; Guidez, F. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front. Cell. Neurosci., 2015, 9, 42.
[http://dx.doi.org/10.3389/fncel.2015.00042] [PMID: 25759639]
[http://dx.doi.org/10.3389/fncel.2015.00042] [PMID: 25759639]
[18]
Zeng, L.S.; Yang, X.Z.; Wen, Y.F.; Mail, S.J.; Wang, M.H.; Zhang, M.Y.; Zheng, X.F.; Wang, H.Y. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY), 2016, 8(6), 1236-1249.
[http://dx.doi.org/10.18632/aging.100980] [PMID: 27295551]
[http://dx.doi.org/10.18632/aging.100980] [PMID: 27295551]
[19]
Walkinshaw, D.R.; Yang, X.J. Histone deacetylase inhibitors as novel anticancer therapeutics. Curr. Oncol., 2008, 15(5), 237-243.
[PMID: 19008999]
[PMID: 19008999]
[20]
Wilson, A.J.; Byun, D.S.; Popova, N.; Murray, L.B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; Augenlicht, L.H.; Mariadason, J.M. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem., 2006, 281(19), 13548-13558.
[http://dx.doi.org/10.1074/jbc.M510023200] [PMID: 16533812]
[http://dx.doi.org/10.1074/jbc.M510023200] [PMID: 16533812]
[21]
Richon, V.M.; Sandhoff, T.W.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA, 2000, 97(18), 10014-10019.
[http://dx.doi.org/10.1073/pnas.180316197] [PMID: 10954755]
[http://dx.doi.org/10.1073/pnas.180316197] [PMID: 10954755]
[22]
Bai, J.; Sui, J.; Demirjian, A.; Vollmer, C.M., Jr; Marasco, W.; Callery, M.P. Predominant Bcl-XL knockdown disables antiapoptotic mechanisms: tumor necrosis factor-related apoptosis-inducing ligand-based triple chemotherapy overcomes chemoresistance in pancreatic cancer cells in vitro. Cancer Res., 2005, 65(6), 2344-2352.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3502] [PMID: 15781649]
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3502] [PMID: 15781649]
[23]
Henderson, S.E.; Ding, L.Y.; Mo, X.; Bekaii-Saab, T.; Kulp, S.K.; Chen, C.S.; Huang, P.H. Suppression of tumor growth and muscle wasting in a transgenic mouse model of pancreatic cancer by the novel histone deacetylase inhibitor AR-42. Neoplasia, 2016, 18(12), 765-774.
[http://dx.doi.org/10.1016/j.neo.2016.10.003] [PMID: 27889645]
[http://dx.doi.org/10.1016/j.neo.2016.10.003] [PMID: 27889645]
[24]
Ahrens, T.D.; Timme, S.; Hoeppner, J.; Ostendorp, J.; Hembach, S.; Follo, M.; Hopt, U.T.; Werner, M.; Busch, H.; Boerries, M.; Lassmann, S. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics, 2015, 10(5), 431-445.
[http://dx.doi.org/10.1080/15592294.2015.1039216] [PMID: 25923331]
[http://dx.doi.org/10.1080/15592294.2015.1039216] [PMID: 25923331]
[25]
Peralta-Arrieta, I.; Hernández-Sotelo, D.; Castro-Coronel, Y.; Leyva-Vázquez, M.A.; Illades-Aguiar, B. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation. Am. J. Cancer Res., 2017, 7(1), 77-87.
[PMID: 28123849]
[PMID: 28123849]
[26]
Mishra, V.K.; Wegwitz, F.; Kosinsky, R.L.; Sen, M.; Baumgartner, R.; Wulff, T.; Siveke, J.T.; Schildhaus, H.U.; Najafova, Z.; Kari, V.; Kohlhof, H.; Hessmann, E.; Johnsen, S.A. Histone deacetylase class-I inhibition promotes epithelial gene expression in pancreatic cancer cells in a BRD4- and MYC-dependent manner. Nucleic Acids Res., 2017, 45(11), 6334-6349.
[http://dx.doi.org/10.1093/nar/gkx212] [PMID: 28369619]
[http://dx.doi.org/10.1093/nar/gkx212] [PMID: 28369619]
[27]
Gao, Y.S.; Hubbert, C.C.; Lu, J.; Lee, Y.S.; Lee, J.Y.; Yao, T.P. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis. Mol. Cell. Biol., 2007, 27(24), 8637-8647.
[http://dx.doi.org/10.1128/MCB.00393-07] [PMID: 17938201]
[http://dx.doi.org/10.1128/MCB.00393-07] [PMID: 17938201]
[28]
Zhu, B.Y.; Shang, B.Y.; Du, Y.; Li, Y.; Li, L.; Xu, X.D.; Zhen, Y.S. A new HDAC inhibitor cinnamoylphenazine shows antitumor activity in association with intensive macropinocytosis. Oncotarget, 2017, 8(9), 14748-14758.
[http://dx.doi.org/10.18632/oncotarget.14714] [PMID: 28107195]
[http://dx.doi.org/10.18632/oncotarget.14714] [PMID: 28107195]
[29]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[30]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), E1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[31]
Chien, W.; Lee, D.H.; Zheng, Y.; Wuensche, P.; Alvarez, R.; Wen, D.L.; Aribi, A.M.; Thean, S.M.; Doan, N.B.; Said, J.W.; Koeffler, H.P. Growth inhibition of pancreatic cancer cells by histone deacetylase inhibitor belinostat through suppression of multiple pathways including HIF, NFkB, and mTOR signaling in vitro and in vivo. Mol. Carcinog., 2014, 53(9), 722-735.
[http://dx.doi.org/10.1002/mc.22024] [PMID: 23475695]
[http://dx.doi.org/10.1002/mc.22024] [PMID: 23475695]
[32]
Gal-Yam, E.N.; Saito, Y.; Egger, G.; Jones, P.A. Cancer epigenetics: modifications, screening, and therapy. Annu. Rev. Med., 2008, 59, 267-280.
[http://dx.doi.org/10.1146/annurev.med.59.061606.095816] [PMID: 17937590]
[http://dx.doi.org/10.1146/annurev.med.59.061606.095816] [PMID: 17937590]
[33]
Mihailidou, C.; Karamouzis, M.V.; Schizas, D.; Papavassiliou, A.G. Co-targeting c-Met and DNA double-strand breaks (DSBs): therapeutic strategies in BRCA-mutated gastric carcinomas. Biochimie, 2017, 142, 135-143.
[http://dx.doi.org/10.1016/j.biochi.2017.09.001] [PMID: 28890386]
[http://dx.doi.org/10.1016/j.biochi.2017.09.001] [PMID: 28890386]
[34]
Schizas, D.; Moris, D.; Michalinos, A.; Kanavidis, P.; Oikonomou, D.; Papalampros, A.; Machairas, A.; Liakakos, T. E-cadherin in gastric carcinomas: relations with histological parameters and its prognostic value. J. BUON, 2017, 22(2), 383-389.
[PMID: 28534359]
[PMID: 28534359]
[35]
Ono, S.; Oue, N.; Kuniyasu, H.; Suzuki, T.; Ito, R.; Matsusaki, K.; Ishikawa, T.; Tahara, E.; Yasui, W. Acetylated histone H4 is reduced in human gastric adenomas and carcinomas. J. Exp. Clin. Cancer Res., 2002, 21(3), 377-382.
[PMID: 12385581]
[PMID: 12385581]
[36]
Feng, L.; Pan, M.; Sun, J.; Lu, H.; Shen, Q.; Zhang, S.; Jiang, T.; Liu, L.; Jin, W.; Chen, Y.; Wang, X.; Jin, H. Histone deacetylase 3 inhibits expression of PUMA in gastric cancer cells. J. Mol. Med. (Berl.), 2013, 91(1), 49-58.
[http://dx.doi.org/10.1007/s00109-012-0932-x] [PMID: 22763818]
[http://dx.doi.org/10.1007/s00109-012-0932-x] [PMID: 22763818]
[37]
Yu, J.; Zhang, L.; Hwang, P.M.; Kinzler, K.W.; Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell, 2001, 7(3), 673-682.
[http://dx.doi.org/10.1016/S1097-2765(01)00213-1] [PMID: 11463391]
[http://dx.doi.org/10.1016/S1097-2765(01)00213-1] [PMID: 11463391]
[38]
Ma, Y.; Yue, Y.; Pan, M.; Sun, J.; Chu, J.; Lin, X.; Xu, W.; Feng, L.; Chen, Y.; Chen, D.; Shin, V.Y.; Wang, X.; Jin, H. Histone deacetylase 3 inhibits new tumor suppressor gene DTWD1 in gastric cancer. Am. J. Cancer Res., 2015, 5(2), 663-673.
[PMID: 25973305]
[PMID: 25973305]
[39]
Mutze, K.; Langer, R.; Becker, K.; Ott, K.; Novotny, A.; Luber, B.; Hapfelmeier, A.; Göttlicher, M.; Höfler, H.; Keller, G. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann. Surg. Oncol., 2010, 17(12), 3336-3343.
[http://dx.doi.org/10.1245/s10434-010-1182-1] [PMID: 20585871]
[http://dx.doi.org/10.1245/s10434-010-1182-1] [PMID: 20585871]
[40]
Alberts, S.R.; Cervantes, A.; van de Velde, C.J. Gastric cancer: epidemiology, pathology and treatment. Ann. Oncol., 2003, 14(l2)(Suppl. 2), ii31-ii36.
[http://dx.doi.org/10.1093/annonc/mdg726] [PMID: 12810455]
[http://dx.doi.org/10.1093/annonc/mdg726] [PMID: 12810455]
[41]
Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Ebert, M.P.; Pross, M.; Dietel, M.; Denkert, C.; Röcken, C. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol., 2008, 9(2), 139-148.
[http://dx.doi.org/10.1016/S1470-2045(08)70004-4] [PMID: 18207460]
[http://dx.doi.org/10.1016/S1470-2045(08)70004-4] [PMID: 18207460]
[42]
Sudo, T.; Mimori, K.; Nishida, N.; Kogo, R.; Iwaya, T.; Tanaka, F.; Shibata, K.; Fujita, H.; Shirouzu, K.; Mori, M. Histone deacetylase 1 expression in gastric cancer. Oncol. Rep., 2011, 26(4), 777-782.
[http://dx.doi.org/10.3892/or.2011.1361] [PMID: 21725604]
[http://dx.doi.org/10.3892/or.2011.1361] [PMID: 21725604]
[43]
Cao, L.L.; Yue, Z.; Liu, L.; Pei, L.; Yin, Y.; Qin, L.; Zhao, J.; Liu, H.; Wang, H.; Jia, M. The expression of histone deacetylase HDAC1 correlates with the progression and prognosis of gastrointestinal malignancy. Oncotarget, 2017, 8(24), 39241-39253.
[http://dx.doi.org/10.18632/oncotarget.16843] [PMID: 28424407]
[http://dx.doi.org/10.18632/oncotarget.16843] [PMID: 28424407]
[44]
Lin, L.; Jiang, H.; Huang, M.; Hou, X.; Sun, X.; Jiang, X.; Dong, X.; Sun, X.; Zhou, B.; Qiao, H. Depletion of histone deacetylase 1 inhibits metastatic abilities of gastric cancer cells by regulating the miR-34a/CD44 pathway. Oncol. Rep., 2015, 34(2), 663-672.
[http://dx.doi.org/10.3892/or.2015.4010] [PMID: 26035691]
[http://dx.doi.org/10.3892/or.2015.4010] [PMID: 26035691]
[45]
Schizas, D.; Moris, D.; Kanavidis, P.; Michalinos, A.; Sioulas, A.; Pavlakis, K.; Machairas, A.; Liakakos, T. The prognostic value of CD44 expression in epithelial-mesenchymal transition: preliminary data from patients with gastric and esophageal cancer. In Vivo, 2016, 30(6), 939-944.
[http://dx.doi.org/10.21873/invivo.11017] [PMID: 27815484]
[http://dx.doi.org/10.21873/invivo.11017] [PMID: 27815484]
[46]
Li, Y.; Wang, K.; Wei, Y.; Yao, Q.; Zhang, Q.; Qu, H.; Zhu, G. lncRNA-MIAT regulates cell biological behaviors in gastric cancer through a mechanism involving the miR-29a-3p/HDAC4 axis. Oncol. Rep., 2017, 38(6), 3465-3472.
[http://dx.doi.org/10.3892/or.2017.6020] [PMID: 29039602]
[http://dx.doi.org/10.3892/or.2017.6020] [PMID: 29039602]
[47]
Yu, Y.; Cao, F.; Yu, X.; Zhou, P.; Di, Q.; Lei, J.; Tai, Y.; Wu, H.; Li, X.; Wang, X.; Zhang, W.; Li, P.; Li, Y. The expression of HDAC7 in cancerous gastric tissues is positively associated with distant metastasis and poor patient prognosis. Clin. Transl. Oncol., 2017, 19(8), 1045-1054.
[http://dx.doi.org/10.1007/s12094-017-1639-9] [PMID: 28299580]
[http://dx.doi.org/10.1007/s12094-017-1639-9] [PMID: 28299580]
[48]
Song, S.; Wang, Y.; Xu, P.; Yang, R.; Ma, Z.; Liang, S.; Zhang, G. The inhibition of histone deacetylase 8 suppresses proliferation and inhibits apoptosis in gastric adenocarcinoma. Int. J. Oncol., 2015, 47(5), 1819-1828.
[http://dx.doi.org/10.3892/ijo.2015.3182] [PMID: 26412386]
[http://dx.doi.org/10.3892/ijo.2015.3182] [PMID: 26412386]
[49]
Zhang, L.; Kang, W.; Lu, X.; Ma, S.; Dong, L.; Zou, B. Weighted gene co-expression network analysis and connectivity map identifies lovastatin as a treatment option of gastric cancer by inhibiting HDAC2. Gene, 2019, 681, 15-25.
[http://dx.doi.org/10.1016/j.gene.2018.09.040] [PMID: 30266498]
[http://dx.doi.org/10.1016/j.gene.2018.09.040] [PMID: 30266498]
[50]
Colarossi, L.; Memeo, L.; Colarossi, C.; Aiello, E.; Iuppa, A.; Espina, V.; Liotta, L.; Mueller, C. Inhibition of histone deacetylase 4 increases cytotoxicity of docetaxel in gastric cancer cells. Proteomics Clin. Appl., 2014, 8(11-12), 924-931.
[http://dx.doi.org/10.1002/prca.201400058] [PMID: 25091122]
[http://dx.doi.org/10.1002/prca.201400058] [PMID: 25091122]
[51]
Noguchi, A.; Kikuchi, K.; Zheng, H.; Takahashi, H.; Miyagi, Y.; Aoki, I.; Takano, Y. SIRT1 expression is associated with a poor prognosis, whereas DBC1 is associated with favorable outcomes in gastric cancer. Cancer Med., 2014, 3(6), 1553-1561.
[http://dx.doi.org/10.1002/cam4.310] [PMID: 25146318]
[http://dx.doi.org/10.1002/cam4.310] [PMID: 25146318]
[52]
Zhu, L.; Yang, J.; Zhao, L.; Yu, X.; Wang, L.; Wang, F.; Cai, Y.; Jin, J. Expression of hMOF, but not HDAC4, is responsible for the global histone H4K16 acetylation in gastric carcinoma. Int. J. Oncol., 2015, 46(6), 2535-2545.
[http://dx.doi.org/10.3892/ijo.2015.2956] [PMID: 25873202]
[http://dx.doi.org/10.3892/ijo.2015.2956] [PMID: 25873202]
[53]
Jin, Z.; Jiang, W.; Jiao, F.; Guo, Z.; Hu, H.; Wang, L.; Wang, L. Decreased expression of histone deacetylase 10 predicts poor prognosis of gastric cancer patients. Int. J. Clin. Exp. Pathol., 2014, 7(9), 5872-5879.
[PMID: 25337229]
[PMID: 25337229]
[54]
Osada, H.; Tatematsu, Y.; Saito, H.; Yatabe, Y.; Mitsudomi, T.; Takahashi, T. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int. J. Cancer, 2004, 112(1), 26-32.
[http://dx.doi.org/10.1002/ijc.20395] [PMID: 15305372]
[http://dx.doi.org/10.1002/ijc.20395] [PMID: 15305372]
[55]
Park, J.K.; Seo, J.S.; Lee, S.K.; Chan, K.K.; Kuh, H.J. Combinatorial antitumor activity of oxaliplatin with epigenetic modifying agents, 5-Aza-CdR and FK228, in human gastric cancer cells. Biomol. Ther. (Seoul), 2018, 26(6), 591-598.
[http://dx.doi.org/10.4062/biomolther.2018.061] [PMID: 30173503]
[http://dx.doi.org/10.4062/biomolther.2018.061] [PMID: 30173503]
[56]
Dong, J.; Zheng, N.; Wang, X.; Tang, C.; Yan, P.; Zhou, H.B.; Huang, J. A novel HDAC6 inhibitor exerts an anti-cancer effect by triggering cell cycle arrest and apoptosis in gastric cancer. Eur. J. Pharmacol., 2018, 828, 67-79.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.026] [PMID: 29563065]
[http://dx.doi.org/10.1016/j.ejphar.2018.03.026] [PMID: 29563065]
[57]
Yoo, C.; Ryu, M.H.; Na, Y.S.; Ryoo, B.Y.; Lee, C.W.; Kang, Y.K. Vorinostat in combination with capecitabine plus cisplatin as a first-line chemotherapy for patients with metastatic or unresectable gastric cancer: phase II study and biomarker analysis. Br. J. Cancer, 2016, 114(11), 1185-1190.
[http://dx.doi.org/10.1038/bjc.2016.125] [PMID: 27172248]
[http://dx.doi.org/10.1038/bjc.2016.125] [PMID: 27172248]
[58]
Fushida, S.; Kinoshita, J.; Kaji, M.; Oyama, K.; Hirono, Y.; Tsukada, T.; Fujimura, T.; Ohta, T. Paclitaxel plus valproic acid versus paclitaxel alone as second- or third-line therapy for advanced gastric cancer: a randomized phase II trial. Drug Des. Devel. Ther., 2016, 10, 2353-2358.
[http://dx.doi.org/10.2147/DDDT.S110425] [PMID: 27524882]
[http://dx.doi.org/10.2147/DDDT.S110425] [PMID: 27524882]