[1]
Sharma A, Couture J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother 2014; 48(2): 209-25.
[2]
Yu G, Li G-F, Markowitz JS. Atomoxetine: a review of its pharmacokinetics and pharmacogenomics relative to drug disposition. J Child Adolesc Psychopharmacol 2016; 26(4): 314-26.
[3]
Kielbasa W, Stratford RE. Exploratory translational modeling approach in drug development to predict human brain pharmacokinetics and pharmacologically relevant clinical doses. Drug Metab Dispos 2012; 40(5): 877-83.
[4]
Witcher JW, Long A, Smith B, et al. Atomoxetine pharmacokinetics in children and adolescents with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 2003; 13(1): 53-63.
[5]
Sauer J-M, Ponsler GD, Mattiuz EL, et al. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 2003; 31(1): 98-107.
[6]
Sauer J-M, Ring BJ, Witcher JW. Clinical pharmacokinetics of atomoxetine. Clin Pharmacokinet 2005; 44(6): 571-90.
[8]
Idkaidek N, Arafat T. Saliva versus plasma pharmacokinetics: theory and application of a salivary excretion classification system. Mol Pharm 2012; 9(8): 2358-63.
[9]
Papaseit E, Marchei E, Farré M, Garcia-Algar O, Pacifici R, Pichini S. Concentrations of atomoxetine and its metabolites in plasma and oral fluid from paediatric patients with attention deficit/hyperactivity disorder. Drug Test Anal 2013; 5(6): 446-52.
[10]
Alsmadi MM, Alfarah MQ, Albderat J, et al. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue. Biopharm Drug Dispos 2019; 40(9): 325-40.
[11]
Rowland Yeo K, Aarabi M, Jamei M, Rostami-Hodjegan A. Modeling and predicting drug pharmacokinetics in patients with renal impairment. Expert Rev Clin Pharmacol 2011; 4(2): 261-74.
[12]
Nestorov I. Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicol 2007; 3(2): 235-49.
[13]
Huang W, Nakano M, Sager J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic model of the cyp2d6 probe atomoxetine: extrapolation to special populations and drug- drug interactions. Drug Metab Dispos 2017; 45(11): 1156-65.
[14]
Okabe H, Hasunuma M, Hashimoto Y. The hepatic and intestinal metabolic activities of P450 in rats with surgery-and drug-induced renal dysfunction. Pharm Res 2003; 20(10): 1591-4.
[15]
Al Za’abi M, Al Busaidi M, Yasin J, Schupp N, Nemmar A, Ali BH. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon. Am J Transl Res 2015; 7(1): 28-38.
[16]
Zhu H-J, Wang J-S, Donovan JL, DeVane CL, Gibson BB, Markowitz JS. Sensitive quantification of atomoxetine in human plasma by HPLC with fluorescence detection using 4-(4, 5-diphenyl-1H-imidazole-2-yl) benzoyl chloride derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846(1): 351-4.
[19]
Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed 2010; 99(3): 306-14.
[21]
Hughes JH, Upton RN, Reuter SE, Rozewski DM, Phelps MA, Foster DJ. Development of a physiologically based pharmacokinetic model for intravenous lenalidomide in mice. Cancer Chemother Pharmacol 2019; 84(5): 1073-87.
[22]
Wong YC, Centanni M, de Lange EC. Physiologically based modeling approach to predict dopamine d2 receptor occupancy of antipsychotics in brain: translation from rat to human. J Clin Pharmacol 2019; 59(5): 731-47.
[23]
Kielbasa W, Kalvass JC, Stratford RE. Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats. Drug Metab Dispos 2008; 37(1): 137-42.
[24]
Willmann S, Lippert J, Schmitt W. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin Drug Metab Toxicol 2005; 1(1): 159-68.
[25]
Bagnis C, Beaufils H, Jacquiaud C, et al. Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 2001; 16(5): 932-8.
[26]
Tikoo K, Kumar P, Gupta J. Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz {a} anthracene (DMBA) induced breast cancer rats. BMC Cancer 2009; 9(1): 107-18.
[27]
Yokozawa T, Zheng PD, Oura H, Koizumi F. Animal model of adenine-induced chronic renal failure in rats. Nephron 1986; 44(3): 230-4.
[28]
Ali B, Al Za’abi M, Ramkumar A, Yasin J, Nemmar A. Anemia in adenine-induced chronic renal failure and the influence of treatment with gum acacia thereon. Physiol Res 2014; 63(3): 351-8.
[29]
Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications (5th ed),. 5th ed. 2005.
[30]
Kielbasa W, Pan A, Pereira A. A pharmacokinetic/pharmacodynamic investigation: assessment of edivoxetine and atomoxetine on systemic and central 3, 4-dihydroxyphenylglycol, a biochemical marker for norepinephrine transporter inhibition. Eur Neuropsychopharmacol 2015; 25(3): 377-85.
[31]
Ring BJ, Gillespie JS, Eckstein JA, Wrighton SA. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 2002; 30(3): 319-23.
[32]
Berezhkovskiy LM. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci 2004; 93(6): 1628-40.
[33]
Chalon SA, Desager JP, DeSante KA, et al. Effect of hepatic impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther 2003; 73(3): 178-91.
[34]
Upreti VV, Wahlstrom JL. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol 2016; 56(3): 266-83.
[35]
Tanaka G. Anatomical and physiological characteristics for asian reference man-male and female of different age: tanaka model. NIRS 1996; 32(3-4): 5-265.
[36]
Willmann S, Höhn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn 2007; 34(3): 401-31.
[37]
Couto N, Al-Majdoub ZM, Achour B, Wright PC, Rostami-Hodjegan A, Barber J. Quantification of proteins involved in drug metabolism and disposition in the human liver using label-free global proteomics. Mol Pharm 2019; 16(2): 632-47.
[38]
Maharaj AR, Wu H, Hornik CP, Cohen-Wolkowiez M. Pitfalls of using numerical predictive checks for population physiologically-based pharmacokinetic model evaluation. J Pharmacokinet Pharmacodyn 2019; 46(3): 263-72.
[39]
Choi C, Jang C, Bae J, Lee S. Validation of an analytical LC-MS/MS method in human plasma for the pharmacokinetic study of atomoxetine. J Anal Chem 2013; 68(11): 986-91.
[40]
Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2006; 2(6): 875-94.
[41]
Leblond FA, Giroux L, Villeneuve J-P, Pichette V. Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab Dispos 2000; 28(11): 1317-20.
[42]
Yousef M, Saad A, El-Shennawy L. Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem Toxicol 2009; 47(6): 1176-83.
[43]
Kaysen GA. Biological basis of hypoalbuminemia in ESRD. J Am Soc Nephrol 1998; 9(12): 2368-76.
[44]
Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’and ’top down’approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol 2015; 79(1): 48-55.
[45]
Okino MS, Mavrovouniotis ML. Simplification of mathematical models of chemical reaction systems. Chem Rev 1998; 98(2): 391-408.
[46]
Nestorov IA, Aarons LJ, Arundel PA, Rowland M. Lumping of whole-body physiologically based pharmacokinetic models. J Pharmacokinet Biopharm 1998; 26(1): 21-46.
[47]
Sale M, Sherer EA. A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection. Br J Clin Pharmacol 2015; 79(1): 28-39.
[48]
Pan S, Duffull SB. Automated proper lumping for simplification of linear physiologically based pharmacokinetic systems. J Pharmacokinet Pharmacodyn 2019; 46(4): 361-70.