Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Determination of Monoaromatic Hydrocarbons in Water Samples by Nano-Liquid Chromatography using a Composite Carbon Nanotubes- Lauryl Polymethacrylate Capillary Monolithic Column

Author(s): Ahmad Aqel*, Soad S. Alzahrani, Asma’a Al-Rifai, Mohammed Alturkey, Kareem Yusuf, Zeid A. ALOthman and Ahmed-Yacine Badjah-Hadj-Ahmed

Volume 16, Issue 3, 2020

Page: [223 - 233] Pages: 11

DOI: 10.2174/1573411014666180619144741

Price: $65

Abstract

Background: This work reports a green analytical method for the determination of organic environmental pollutants using nano-liquid chromatography with a self-made column for rapid, sensitive, inexpensive and efficient analysis of BTX pollutants in water. The applications of monolithic nanoscale columns for quantitative analysis of environmental real samples are very limited in the literature.

Methods: A capillary column containing a composite of multi-walled carbon nanotubes incorporated into a lauryl methacrylate-co-ethylene dimethacrylate porous monolithic polymer was fabricated for the determination of BTX pollutants in real water samples.

Results: Baseline separation was accomplished at 0.4 µL/min flow rate with UV-detection set at 208 nm. Under the optimum conditions, the calibration curves were validated over the range of 1.0-500 µg/L with R2 more than 0.9992. The detection limits of benzene, toluene, o-xylene and m/p-xylene were 0.25, 0.05, 0.075 and 0.05 µg/L, respectively. After a simple extraction process with a theoretical preconcentration factor equal to 200, the recovery values in Milli-Q, tap and sea water samples were found to be ranged from 84.85 to 97.84% with %RSD less than 7.5. Furthermore, we reported a comparison between our prepared composite column with a commercial C18 silica based column which is the most used in such analytical field. Each column demonstrated its advantages from different analytical aspects.

Conclusion: The application of monolithic columns and nano-scale LC for routine analysis of environmental samples is very promising as the use of monolithic capillary columns offers several advantages over conventional scale particulate packed columns.

Keywords: BTX pollutants, carbon nanotubes, lauryl methacrylate monolith, nano-liquid chromatography, monoaromatic hydrocarbons, water samples.

Graphical Abstract

[1]
Sarafraz-Yazdi, A.; Amiri, A.H.; Es’haghi, Z. BTEX determination in water matrices using HF-LPME with gas chromatography-flame ionization detector. Chemosphere, 2008, 71(4), 671-676.
[http://dx.doi.org/10.1016/j.chemosphere.2007.10.073] [PMID: 18221982]
[2]
Buddhadasa, S.C.; Barone, S.; Gibson, E.; Bigger, S.W.; Orbell, J.D. Method dependency in the measurement of BTEX levels in contaminated soil. J. Soils Sediments, 2002, 2, 137-142.
[http://dx.doi.org/10.1007/BF02988465]
[3]
Farajzadeh, M.A.; Matin, A.A. Determination of BTEX in water samples with an SPME hollow fiber coated copper wire. Chromatographia, 2008, 68, 443-446.
[http://dx.doi.org/10.1365/s10337-008-0726-z]
[4]
Garg, A.; Akbar, M.; Vejerano, E.; Narayanan, S.; Nazhandali, L.; Marr, L.C.; Agah, M.; Zebra, G.C. A mini gas chromatography system for trace-level determination of hazardous air pollutants. Sens. Actuators B Chem., 2015, 212, 145-154.
[http://dx.doi.org/10.1016/j.snb.2014.12.136]
[5]
Wang, Y.; Li, Y.; Feng, J.; Sun, C. Polyaniline-based fiber for headspace solid-phase microextraction of substituted benzenes determination in aqueous samples. Anal. Chim. Acta, 2008, 619(2), 202-208.
[http://dx.doi.org/10.1016/j.aca.2008.05.003] [PMID: 18558113]
[6]
Fustinoni, S.; Rossella, F.; Campo, L.; Mercadante, R.; Bertazzi, P.A. Urinary BTEX, MTBE and naphthalene as biomarkers to gain environmental exposure profiles of the general population. Sci. Total Environ., 2010, 408(14), 2840-2849.
[http://dx.doi.org/10.1016/j.scitotenv.2010.03.017] [PMID: 20417546]
[7]
Farhadian, M.; Duchez, D.; Vachelard, C.; Larroche, C. Accurate quantitative determination of monoaromatic compounds for the monitoring of bioremediation processes. Bioresour. Technol., 2009, 100(1), 173-178.
[http://dx.doi.org/10.1016/j.biortech.2008.05.046] [PMID: 18614360]
[8]
Ebrahimi, A.; Faraji, M.; Sadani, M.; Amin, M.M.; Hajian, M.; Pourzamani, H.R. Determination of BTEX concentration in the groundwater of east region of Isfahan using passive sampling method. Int. J. Environ. Health Eng., 2013, 2, 29-34.
[http://dx.doi.org/10.4103/2277-9183.114191]
[9]
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for xylenes (update); Public Health Service, U.S. Department of Health and Human Services: Altanta, GA, 2007.
[10]
Liu, J.; Mu, Y.; Zhang, Y.; Zhang, Z.; Wang, X.; Liu, Y.; Sun, Z. Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing. Sci. Total Environ., 2009, 408(1), 109-116.
[http://dx.doi.org/10.1016/j.scitotenv.2009.09.026] [PMID: 19815254]
[11]
Godoi, A.F.L.; Sawada, E.Y.; Marchi, M.R.R.; Grieken, R.; Godoi, R.H.M. Determination of BTEX by GC-MS in air of offset printing plants: Comparison between conventional and ecological inks. Water Air Soil Pollut., 2009, 9, 163-169.
[http://dx.doi.org/10.1007/s11267-009-9219-9]
[12]
Marć, M.; Bielawska, M.; Wardencki, W.; Namieśnik, J.; Zabiegała, B. The influence of meteorological conditions and anthropogenic activities on the seasonal fluctuations of BTEX in the urban air of the Hanseatic city of Gdansk, Poland. Environ. Sci. Pollut. Res. Int., 2015, 22(15), 11940-11954.
[http://dx.doi.org/10.1007/s11356-015-4484-9] [PMID: 25869437]
[13]
Fernandes, A.N.; Gouveia, C.D.; Grassi, M.T.; da Silva Crespo, J.; Giovanela, M. Determination of monoaromatic hydrocarbons (BTEX) in surface waters from a Brazilian subtropical hydrographic basin. Bull. Environ. Contam. Toxicol., 2014, 92(4), 455-459.
[http://dx.doi.org/10.1007/s00128-014-1221-x] [PMID: 24531301]
[14]
Assadi, Y.; Ahmadi, F. Hossieni. M.R.M. Determination of BTEX compounds by dispersive liquid-liquid microextraction with GC-FID. Chromatographia, 2010, 71, 1137-1141.
[http://dx.doi.org/10.1365/s10337-010-1616-8]
[15]
Xin, B.P.; Wu, C.H.; Wu, C.H.; Lin, C.W. Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead. J. Hazard. Mater., 2013, 244-245, 765-772.
[http://dx.doi.org/10.1016/j.jhazmat.2012.11.007] [PMID: 23200621]
[16]
Kamal, M.A.; Klein, P. Estimation of BTEX in groundwater by using gas chromatography-mass spectrometry. Saudi J. Biol. Sci., 2010, 17(3), 205-208.
[http://dx.doi.org/10.1016/j.sjbs.2010.04.002] [PMID: 23961078]
[17]
Han, D.; Ma, W.; Chen, D. Determination of biodegradation process of benzene, toluene, ethylbenzene and xylenes in seabed sediment by purge and trap gas chromatography. Chromatographia, 2007, 66, 899-904.
[http://dx.doi.org/10.1365/s10337-007-0434-0]
[18]
Mulyono, S.; Hizaddin, H.F.; Alnashef, I.M.; Hashim, M.A.; Fakeeha, A.H.; Hadj-Kali, M.K. Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent - experiments and COSMO-RS prediction. RSC Advances, 2014, 4, 17597-17606.
[http://dx.doi.org/10.1039/c4ra01081g]
[19]
Krupčík, J.; Gorovenko, R.; Špánik, I.; Bočková, I.; Sandra, P.; Armstrong, D.W. On the use of ionic liquid capillary columns for analysis of aromatic hydrocarbons in low-boiling petrochemical products by one-dimensional and comprehensive two-dimensional gas chromatography. J. Chromatogr. A, 2013, 1301, 225-236.
[http://dx.doi.org/10.1016/j.chroma.2013.05.075] [PMID: 23809806]
[20]
Makarov, E.D.; Stolyarov, B.V.; Berezkin, V.G.; Bychinskaya, I.V.; Zenkevich, I.G. New design of a sorption device for the preconcentration of organic impurities and their subsequent determination by gas chromatography. J. Anal. Chem., 2005, 60, 6-11.
[http://dx.doi.org/10.1007/s10809-005-0031-z]
[21]
Mottaleb, M.A.; Abedin, M.Z.; Islam, M.S. Determination of benzene, toluene, ethylbenzene and xylene in river water by solid-phase extraction and gas chromatography. Anal. Sci., 2003, 19(10), 1365-1369.
[http://dx.doi.org/10.2116/analsci.19.1365] [PMID: 14596399]
[22]
Pirsa, S.; Alizadeh, M.; Ghahremannejad, N. Application of nano-sized poly n-phenyl pyrrole coated polyester fiber to headspace microextraction of some volatile organic compounds and analysis by gas chromatography. Curr. Anal. Chem., 2016, 12, 457-464.
[http://dx.doi.org/10.2174/1573411012666151009195422]
[23]
Dórea, H.S.; Bispo, J.R.L.; Aragão, K.A.S.; Cunha, B.B.; Navickiene, S.; Alves, J.P.H.; Romão, L.P.C.; Garcia, C.A.B. Analysis of BTEX, PAHs and metals in the oilfield produced water in the State of Sergipe. Brazil. Microchem. J., 2007, 85, 234-238.
[http://dx.doi.org/10.1016/j.microc.2006.06.002]
[24]
Khezeli, T.; Daneshfar, A.; Sahraei, R. Emulsification liquid-liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J. Chromatogr. A, 2015, 1425, 25-33.
[http://dx.doi.org/10.1016/j.chroma.2015.11.007] [PMID: 26614169]
[25]
Zepeda, A.; Texier, A.C.; Razo-Flores, E.; Gomez, J. Kinetic and metabolic study of benzene, toluene and m-xylene in nitrifying batch cultures. Water Res., 2006, 40(8), 1643-1649.
[http://dx.doi.org/10.1016/j.watres.2006.02.012] [PMID: 16603220]
[26]
Farhadian, M.; Duchez, D.; Vachelard, C.; Larroche, C. Monoaromatics removal from polluted water through bioreactors-a review. Water Res., 2008, 42(6-7), 1325-1341.
[http://dx.doi.org/10.1016/j.watres.2007.10.021] [PMID: 18023838]
[27]
Svec, F.; Fréchet, J.M.J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem., 1992, 54, 820-822.
[http://dx.doi.org/10.1021/ac00031a022]
[28]
Wang, Q.C.; Svec, F.; Fréchet, J.M.J. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly(styrene-co-divinylbenzene). J. Chromatogr. A, 1994, 669(1-2), 230-235.
[http://dx.doi.org/10.1016/0021-9673(94)80352-8] [PMID: 8055104]
[29]
ALOthman, Z.A.; Aqel, A.; Al Abdelmoneim, H.A.; Badjah-Hadj-Ahmed, A.Y.; Al-Warthan, A.A.. Preparation and evaluation of long chain alkyl methacrylate monoliths for capillary chromatography. Chromatographia, 2011, 74, 1-8.
[http://dx.doi.org/10.1007/s10337-011-2047-x]
[30]
Moravcová, D.; Jandera, P.; Urban, J.; Planeta, J. Comparison of monolithic silica and polymethacrylate capillary columns for LC. J. Sep. Sci., 2004, 27(10-11), 789-800.
[http://dx.doi.org/10.1002/jssc.200401778] [PMID: 15354556]
[31]
Aqel, A.; ALOthman, Z.A.; Yusuf, K.; Badjah-Hadj-Ahmed, A.Y.; Alwarthan, A.A. Preparation and evaluation of benzyl methacrylate monoliths for capillary chromatography. J. Chromatogr. Sci., 2014, 52(3), 201-210.
[http://dx.doi.org/10.1093/chromsci/bmt011] [PMID: 23424040]
[32]
Lubbad, S.H.; Buchmeiser, M.R. Fast separation of low molecular weight analytes on structurally optimized polymeric capillary monoliths. J. Chromatogr. A, 2010, 1217(19), 3223-3230.
[http://dx.doi.org/10.1016/j.chroma.2009.10.090] [PMID: 19932481]
[33]
Urban, J.; Svec, F.; Fréchet, J.M.J. Efficient separation of small molecules using a large surface area hypercrosslinked monolithic polymer capillary column. Anal. Chem., 2010, 82(5), 1621-1623.
[http://dx.doi.org/10.1021/ac100008n] [PMID: 20141105]
[34]
Nischang, I.; Teasdale, I.; Brüggemann, O. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. J. Chromatogr. A, 2010, 1217(48), 7514-7522.
[http://dx.doi.org/10.1016/j.chroma.2010.09.077] [PMID: 20980011]
[35]
Yusuf, K.; Badjah-Hadj-Ahmed, A.Y.; Aqel, A.; ALOthman, Z.A. Monolithic metal-organic framework MIL-53(Al)-polymethacrylate composite column for the reversed-phase capillary liquid chromatography separation of small aromatics. J. Sep. Sci., 2016, 39(5), 880-888.
[http://dx.doi.org/10.1002/jssc.201501289] [PMID: 26711438]
[36]
Fu, Y.Y.; Yang, C.X.; Yan, X.P. Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chem. Commun. (Camb.), 2013, 49(64), 7162-7164.
[http://dx.doi.org/10.1039/c3cc43017k] [PMID: 23835621]
[37]
Chambers, S.D.; Svec, F.; Fréchet, J.M.J. Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J. Chromatogr. A, 2011, 1218(18), 2546-2552.
[http://dx.doi.org/10.1016/j.chroma.2011.02.055] [PMID: 21420096]
[38]
Al-Rifai, A.; Aqel, A.; Wahibi, L.A.; ALOthman, Z.A.; Badjah-Hadj-Ahmed, A.Y. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water. J. Chromatogr. A, 2018, 1535, 17-26.
[http://dx.doi.org/10.1016/j.chroma.2018.01.011] [PMID: 29310872]
[39]
Speltini, A.; Merli, D.; Profumo, A. Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: a review. Anal. Chim. Acta, 2013, 783, 1-16.
[http://dx.doi.org/10.1016/j.aca.2013.03.041] [PMID: 23726094]
[40]
Chambers, S.D.; Holcombe, T.W.; Svec, F.; Fréchet, J.M. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules. Anal. Chem., 2011, 83(24), 9478-9484.
[http://dx.doi.org/10.1021/ac202183g] [PMID: 22044302]
[41]
Aqel, A.; Yusuf, K. ALOthman, Z.A.; Badjah-Hadj-Ahmed, A.Y. Sporopollenin microparticle-based monolithic capillary columns for liquid chromatography. Chromatographia, 2015, 78, 481-486.
[http://dx.doi.org/10.1007/s10337-015-2861-7]
[42]
Aqel, A.; Abou El-Nour, K.M.M.; Ammar, R.A.A.; Al-Warthan, A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab. J. Chem., 2012, 5, 1-23.
[http://dx.doi.org/10.1016/j.arabjc.2010.08.022]
[43]
Hernández-Borges, J.; Aturki, Z.; Rocco, A.; Fanali, S. Recent applications in nanoliquid chromatography. J. Sep. Sci., 2007, 30(11), 1589-1610.
[http://dx.doi.org/10.1002/jssc.200700061] [PMID: 17623443]
[44]
Rieux, L.; Sneekes, E.J.; Swart, R. Nano LC: principles, evolution, and state-of-the-art of the technique. LC GC N. Am., 2011, 29, 926-934.
[45]
Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Rocco, A.; Fanali, S. Enantiomeric separation of ofloxacin by nano-liquid chromatography using a sulfated-β-cyclodextrin as a chiral selector in the mobile phase. Curr. Anal. Chem., 2010, 6, 209-216.
[http://dx.doi.org/10.2174/157341110791516972]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy