Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Fluorescein-Inspired Near-Infrared Chemodosimeter for Luminescence Bioimaging

Author(s): Hai-Yan Wang, Huisheng Zhang, Siping Chen* and Yi Liu *

Volume 26, Issue 21, 2019

Page: [4029 - 4041] Pages: 13

DOI: 10.2174/0929867324666171024101715

Price: $65

Abstract

Luminescence bioimaging is widely used for noninvasive monitoring of biological targets in real-time with high temporal and spatial resolution. For efficient bioimaging in vivo, it is essential to develop smart organic dye platforms. Fluorescein (FL), a traditional dye, has been widely used in the biological and clinical studies. However, visible excitation and emission limited their further application for in vivo bioimaging. Nearinfrared (NIR) dyes display advantages of bioimaging because of their minimum absorption and photo-damage to biological samples, as well as deep tissue penetration and low auto-luminescence from background in the living system. Thus, some great developments of near-infrared fluorescein-inspired dyes have emerged for bioapplication in vitro and in vivo. In this review, we highlight the advances in the development of the near-infrared chemodosimeters for detection and bioimaging based on the modification of fluoresceininspired dyes naphtho-fluorescein (NPF) and cyanine-fluorescein (Cy-FL).

Keywords: Near Infrared, naphtho-fluorescein, cyanine-fluorescein, luminescence, chemodosimeter, bioimaging.

[1]
Stephens, D.J.; Allan, V.J. Light microscopy techniques for live cell imaging. Science, 2003, 300(5616), 82-86.
[http://dx.doi.org/10.1126/science.1082160] [PMID: 12677057]
[2]
Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev., 2013, 113(1), 192-270.
[http://dx.doi.org/10.1021/cr2004103] [PMID: 22702347]
[3]
Chan, J.; Dodani, S.C.; Chang, C.J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem., 2012, 4(12), 973-984.
[http://dx.doi.org/10.1038/nchem.1500] [PMID: 23174976]
[4]
Zhou, Y.; Zhang, J.F.; Yoon, J. Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem. Rev., 2014, 114(10), 5511-5571.
[http://dx.doi.org/10.1021/cr400352m] [PMID: 24661114]
[5]
Li, X.; Gao, X.; Shi, W.; Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev., 2014, 114(1), 590-659.
[http://dx.doi.org/10.1021/cr300508p] [PMID: 24024656]
[6]
Chen, X.; Pradhan, T.; Wang, F.; Kim, J.S.; Yoon, J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev., 2012, 112(3), 1910-1956.
[http://dx.doi.org/10.1021/cr200201z] [PMID: 22040233]
[7]
Zhu, X.; Su, Q.; Feng, W.; Li, F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev., 2017, 46(4), 1025-1039.
[http://dx.doi.org/10.1039/C6CS00415F] [PMID: 27966684]
[8]
Chen, H.; Dong, B.; Tang, Y.; Lin, W. A unique “integration” strategy for the rational design of optically tunable near-infrared fluorophores. Acc. Chem. Res., 2017, 50(6), 1410-1422.
[http://dx.doi.org/10.1021/acs.accounts.7b00087] [PMID: 28492303]
[9]
Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 2013, 42(2), 622-661.
[http://dx.doi.org/10.1039/C2CS35313J] [PMID: 23093107]
[10]
Sun, Y.Q.; Liu, J.; Lv, X.; Liu, Y.; Zhao, Y.; Guo, W. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes. Angew. Chem. Int. Ed. Engl., 2012, 51(31), 7634-7636.
[http://dx.doi.org/10.1002/anie.201202264] [PMID: 22674799]
[11]
Liu, Y.; Chen, M.; Cao, T.; Sun, Y.; Li, C.; Liu, Q.; Yang, T.; Yao, L.; Feng, W.; Li, F. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc., 2013, 135(26), 9869-9876.
[http://dx.doi.org/10.1021/ja403798m] [PMID: 23763640]
[12]
Guo, Z.; Park, S.; Yoon, J.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev., 2014, 43(1), 16-29.
[http://dx.doi.org/10.1039/C3CS60271K] [PMID: 24052190]
[13]
Kim, H.N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev., 2011, 40(1), 79-93.
[http://dx.doi.org/10.1039/C0CS00058B] [PMID: 21107482]
[14]
Kundu, K.; Knight, S.F.; Willett, N.; Lee, S.; Taylor, W.R.; Murthy, N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem. Int. Ed. Engl., 2009, 48(2), 299-303.
[http://dx.doi.org/10.1002/anie.200804851] [PMID: 19065548]
[15]
Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J. Am. Chem. Soc., 2010, 132(8), 2795-2801.
[http://dx.doi.org/10.1021/ja910090v] [PMID: 20136129]
[16]
Chen, P.; Li, J.; Qian, Z.; Zheng, D.; Okasaki, T.; Hayami, M. Study on the photooxidation of a near-infrared-absorbing benzothiazolone cyanine dye. Dyes Pigments, 1998, 37(3), 213-222.
[http://dx.doi.org/10.1016/S0143-7208(97)00059-4]
[17]
Toutchkine, A.; Nguyen, D.V.; Hahn, K.M. Merocyanine dyes with improved photostability. Org. Lett., 2007, 9(15), 2775-2777.
[http://dx.doi.org/10.1021/ol070780h] [PMID: 17583344]
[18]
Yuan, L.; Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. A unique approach to development of near-infrared fluorescent sensors for in vivo imaging. J. Am. Chem. Soc., 2012, 134(32), 13510-13523.
[http://dx.doi.org/10.1021/ja305802v] [PMID: 22816866]
[19]
Yuan, L.; Lin, W.; Chen, H. Analogs of changsha near-infrared dyes with large stokes shifts for bioimaging. Biomaterials, 2013, 34(37), 9566-9571.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.081] [PMID: 24054843]
[20]
Yuan, L.; Lin, W.; Yang, Y.; Chen, H. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J. Am. Chem. Soc., 2012, 134(2), 1200-1211.
[http://dx.doi.org/10.1021/ja209292b] [PMID: 22176300]
[21]
Liu, Y.; Su, Q.; Zou, X.; Chen, M.; Feng, W.; Shi, Y.; Li, F. Near-infrared in vivo bioimaging using a molecular upconversion probe. Chem. Commun. (Camb.), 2016, 52(47), 7466-7469.
[http://dx.doi.org/10.1039/C6CC03401B] [PMID: 27198867]
[22]
Xie, X.; Yang, X.; Wu, T.; Li, Y.; Li, M.; Tan, Q.; Wang, X.; Tang, B. Rational design of an α-ketoamide-based near-infrared luminescent probe specific for hydrogen peroxide in living systems. Anal. Chem., 2016, 88(16), 8019-8025.
[http://dx.doi.org/10.1021/acs.analchem.6b01256] [PMID: 27442152]
[23]
Liu, Y.; Su, Q.; Chen, M.; Dong, Y.; Shi, Y.; Feng, W.; Wu, Z.Y.; Li, F. Near-infrared upconversion chemodosimeter for in vivo detection of Cu2+ in Wilson disease. Adv. Mater., 2016, 28(31), 6625-6630.
[http://dx.doi.org/10.1002/adma.201601140] [PMID: 27185083]
[24]
Gu, K.; Xu, Y.; Li, H.; Guo, Z.; Zhu, S.; Zhu, S.; Shi, P.; James, T.D.; Tian, H.; Zhu, W.H. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared luminescent probe. J. Am. Chem. Soc., 2016, 138(16), 5334-5340.
[http://dx.doi.org/10.1021/jacs.6b01705] [PMID: 27054782]
[25]
Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev., 2010, 110(5), 2620-2640.
[http://dx.doi.org/10.1021/cr900263j] [PMID: 20000749]
[26]
Gonçalves, M.S. Fluorescent labeling of biomolecules with organic probes. Chem. Rev., 2009, 109(1), 190-212.
[http://dx.doi.org/10.1021/cr0783840] [PMID: 19105748]
[27]
Hilderbrand, S.A.; Weissleder, R. One-pot synthesis of new symmetric and asymmetric xanthene dyes. Tetrahedron Lett., 2007, 48(25), 4383-4385.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.088] [PMID: 19834587]
[28]
Shepherd, J.; Hilderbrand, S.A.; Waterman, P.; Heinecke, J.W.; Weissleder, R.; Libby, P. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem. Biol., 2007, 14(11), 1221-1231.
[http://dx.doi.org/10.1016/j.chembiol.2007.10.005] [PMID: 18022561]
[29]
Albers, A.E.; Dickinson, B.C.; Miller, E.W.; Chang, C.J. A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells. Bioorg. Med. Chem. Lett., 2008, 18(22), 5948-5950.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.035] [PMID: 18762422]
[30]
Chen, H.; Lin, W.; Cui, H.; Jiang, W. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging. Chemistry, 2015, 21(2), 733-745.
[http://dx.doi.org/10.1002/chem.201404718] [PMID: 25388080]
[31]
Li, Y.; Wang, Y.; Yang, S.; Zhao, Y.; Yuan, L.; Zheng, J.; Yang, R. Hemicyanine-based high resolution ratiometric near-infrared fluorescent probe for monitoring pH changes in vivo. Anal. Chem., 2015, 87(4), 2495-2503.
[http://dx.doi.org/10.1021/ac5045498] [PMID: 25635470]
[32]
Wan, Q.; Chen, S.; Shi, W.; Li, L.; Ma, H. Lysosomal pH rise during heat shock monitored by a lysosome-targeting near-infrared ratiometric luminescent probe. Angew. Chem., 2014, 126(41), 11096-11100.
[http://dx.doi.org/10.1002/ange.201405742]
[33]
Yang, X.; He, L.; Xu, K.; Lin, W. A fluorescent dyad with large emission shift for discrimination of cysteine/homocysteine from glutathione and hydrogen sulfide and the application of bioimaging. Anal. Chim. Acta, 2017, 981, 86-93.
[http://dx.doi.org/10.1016/j.aca.2017.05.016] [PMID: 28693733]
[34]
Han, C.; Yang, H.; Chen, M.; Su, Q.; Feng, W.; Li, F. Mitochondria-targeted near-infrared luminescent off–on probe for selective detection of cysteine in living cells and in vivo. ACS Appl. Mater. Interfaces, 2015, 7(50), 27968-27975.
[http://dx.doi.org/10.1021/acsami.5b10607] [PMID: 26618279]
[35]
Zhang, J.; Wang, J.; Liu, J.; Ning, L.; Zhu, X.; Yu, B.; Liu, X.; Yao, X.; Zhang, H. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells. Anal. Chem., 2015, 87(9), 4856-4863.
[http://dx.doi.org/10.1021/acs.analchem.5b00377] [PMID: 25875053]
[36]
Ma, J.; Fan, J.; Li, H.; Yao, Q.; Xu, F.; Wang, J.; Peng, X. A NIR luminescent chemodosimeter for imaging endogenous hydrogen polysulfides via the CSE enzymatic pathway. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(14), 2574-2579.
[http://dx.doi.org/10.1039/C7TB00098G]
[37]
Wrobel, A.T.; Johnstone, T.C.; Deliz Liang, A.; Lippard, S.J.; Rivera-Fuentes, P. A fast and selective near-infrared fluorescent sensor for multicolor imaging of biological nitroxyl (HNO). J. Am. Chem. Soc., 2014, 136(12), 4697-4705.
[http://dx.doi.org/10.1021/ja500315x] [PMID: 24564324]
[38]
Gong, X.; Yang, X.; Zhong, Y.; Chen, Y.; Li, Z. A mitochondria-targetable near-infrared luminescent probe for imaging nitroxyl (HNO) in living cells. Dyes Pigments, 2016, 131, 24-32.
[http://dx.doi.org/10.1016/j.dyepig.2016.03.046]
[39]
Dong, B.; Zheng, K.; Tang, Y.; Lin, W. Development of green to near-infrared turn-on luminescent probes for the multicolour imaging of nitroxyl in living systems. J. Mate. Chem. B, 2016, 4(7), 1263-1269.
[http://dx.doi.org/10.1039/C5TB02073E]
[40]
Xu, F.; Li, H.; Yao, Q.; Fan, J.; Wang, J.; Peng, X. A NIR luminescent probe: Imaging endogenous hydrogen peroxide during an autophagy process induced by rapamycin. J. Mate. Chem. B, 2016, 4(46), 7363-7367.
[http://dx.doi.org/10.1039/C6TB02463G]
[41]
Zhang, J.; Li, C.; Zhang, R.; Zhang, F.; Liu, W.; Liu, X.; Lee, S.M.; Zhang, H. A phosphinate-based near-infrared fluorescence probe for imaging the superoxide radical anion in vitro and in vivo. Chem. Commun. (Camb.), 2016, 52(13), 2679-2682.
[http://dx.doi.org/10.1039/C5CC09976E] [PMID: 26783733]
[42]
Li, L.; Li, Z.; Shi, W.; Li, X.; Ma, H. Sensitive and selective near-infrared fluorescent off-on probe and its application to imaging different levels of β-lactamase in Staphylococcus aureus. Anal. Chem., 2014, 86(12), 6115-6120.
[http://dx.doi.org/10.1021/ac501288e] [PMID: 24844761]
[43]
Li, Z.; He, X.; Wang, Z.; Yang, R.; Shi, W.; Ma, H. In vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off-on probe. Biosens. Bioelectron., 2015, 63, 112-116.
[http://dx.doi.org/10.1016/j.bios.2014.07.024] [PMID: 25064818]
[44]
Wu, X.; Li, L.; Shi, W.; Gong, Q.; Ma, H. Near-Infrared luminescent probe with new recognition moiety for specific detection of tyrosinase activity: Design, synthesis, and application in living cells and zebrafish. Angew. Chem. Int. Ed. Engl., 2016, 55(47), 14728-14732.
[http://dx.doi.org/10.1002/anie.201609895] [PMID: 27775216]
[45]
Zhang, J.; Li, C.; Dutta, C.; Fang, M.; Zhang, S.; Tiwari, A.; Werner, T.; Luo, F.T.; Liu, H. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal. Chim. Acta, 2017, 968, 97-104.
[http://dx.doi.org/10.1016/j.aca.2017.02.039] [PMID: 28395779]
[46]
Zhang, C.; Zhai, B.; Peng, T.; Zhong, Z.; Xu, L.; Zhang, Q.; Li, L.; Yi, L.; Xi, Z. Design and synthesis of near-infrared luminescence-enhancement probes for the cancer-specific enzyme hNQO1. Dyes Pigments, 2017, 143, 245-251.
[http://dx.doi.org/10.1016/j.dyepig.2017.04.043]
[47]
Li, S.J.; Li, C.Y.; Li, Y.F.; Fei, J.; Wu, P.; Yang, B.; Ou-Yang, J.; Nie, S.X. Facile and sensitive near-infrared luminescence pobe for the detection of endogenous alkaline phosphatase activity in vivo. Anal. Chem., 2017, 89(12), 6854-6860.
[http://dx.doi.org/10.1021/acs.analchem.7b01351] [PMID: 28516761]
[48]
Yang, S.H.; Sun, Q.; Xiong, H.; Liu, S.Y.; Moosavi, B.; Yang, W.C.; Yang, G.F. Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy. Chem. Commun. (Camb.), 2017, 53(28), 3952-3955.
[http://dx.doi.org/10.1039/C7CC00577F] [PMID: 28322391]
[49]
Li, D.; Li, Z.; Chen, W.; Yang, X. Imaging and detection of carboxylesterase in living cells and zebrafish pretreated with pesticides by a new near-infrared luminescence off-on probe. J. Agric. Food Chem., 2017, 65(20), 4209-4215.
[http://dx.doi.org/10.1021/acs.jafc.7b00959] [PMID: 28475833]
[50]
Yang, Q.; Jia, C.; Chen, Q.; Du, W.; Wang, Y.; Zhang, Q. A NIR luminescent probe for the detection of fluoride ions and its application in in vivo bioimaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(10), 2002-2009.
[http://dx.doi.org/10.1039/C6TB03193E]
[51]
Chen, H.; Lin, W.; Yuan, L. Construction of a near-infrared fluorescence turn-on and ratiometric probe for imaging palladium in living cells. Org. Biomol. Chem., 2013, 11(12), 1938-1941.
[http://dx.doi.org/10.1039/c3ob27507h] [PMID: 23403484]
[52]
Zhang, J.; Ning, L.; Liu, J.; Wang, J.; Yu, B.; Liu, X.; Yao, X.; Zhang, Z.; Zhang, H. Naked-eye and near-infrared fluorescence probe for hydrazine and its applications in in vitro and in vivo bioimaging. Anal. Chem., 2015, 87(17), 9101-9107.
[http://dx.doi.org/10.1021/acs.analchem.5b02527] [PMID: 26274784]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy