Review Article

多形性胶质母细胞瘤和纳米药物载体的最新研究进展

卷 26, 期 31, 2019

页: [5862 - 5874] 页: 13

弟呕挨: 10.2174/0929867325666180514113136

价格: $65

摘要

多形胶质母细胞瘤(GBM)是最常见的神经胶质瘤,预后较差。 GBM的主要治疗方法是化学疗法,但由于治疗耐药性,GBM的平均存活率仍不能令人满意。 受血脑屏障(BBB)限制的通透性差和胶质母细胞瘤干细胞(GSC)的存在仍然是化疗的两个问题。 近年来,纳米载体由于其在自组装,生物安全,释放可控性和BBB渗透性方面的优势而在GBM的研究中引起了广泛的关注,使其成为有望用于GBM的候选药物。 本文旨在回顾BBB和GSC的生物学特征,以及纳米药物递送系统的新发展,以促进我们对GBM靶向治疗的理解。

关键词: 多形性胶质母细胞瘤,脑血屏障,胶质母细胞瘤干细胞,纳米载体,脂质,金,靶向治疗。

« Previous
[1]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[2]
Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-oncol., 2013, 15(Suppl. 2), ii1-ii56.
[http://dx.doi.org/10.1093/neuonc/not151] [PMID: 24137015]
[3]
Dixit, K.; Kumthekar, P. Gene delivery in neuro-oncology. Curr. Oncol. Rep., 2017, 19(11), 69.
[http://dx.doi.org/10.1007/s11912-017-0628-z] [PMID: 28866732]
[4]
Pytel, P.; Lukas, R.V. Update on diagnostic practice: tumors of the nervous system. Arch. Pathol. Lab. Med., 2009, 133(7), 1062-1077.
[PMID: 19642733]
[5]
Young, R.M.; Jamshidi, A.; Davis, G.; Sherman, J.H. Current trends in the surgical management and treatment of adult glioblastoma. Ann. Transl. Med., 2015, 3(9), 121.
[http://dx.doi.org/10.1043/1543-2165-133.7.1062] [PMID: 26207249]
[6]
Reardon, D.A.; Desjardins, A.; Peters, K.B.; Vredenburgh, J.J.; Gururangan, S.; Sampson, J.H.; McLendon, R.E.; Herndon, J.E., II; Coan, A.; Threatt, S.; Friedman, A.H.; Friedman, H.S. Phase 2 study of carboplatin, irinotecan, and bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. Cancer, 2011, 117(23), 5351-5358.
[http://dx.doi.org/10.1002/cncr.26188] [PMID: 21590689]
[7]
Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[8]
Gallego, O. Nonsurgical treatment of recurrent glioblastoma. Curr. Oncol., 2015, 22(4), e273-e281.
[http://dx.doi.org/10.3747/co.22.2436] [PMID: 26300678]
[9]
Lawson, H.C.; Sampath, P.; Bohan, E.; Park, M.C.; Hussain, N.; Olivi, A.; Weingart, J.; Kleinberg, L.; Brem, H. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J. Neurooncol., 2007, 83(1), 61-70.
[http://dx.doi.org/10.1007/s11060-006-9303-1] [PMID: 17171441]
[10]
Morokoff, A.; Ng, W.; Gogos, A.; Kaye, A.H. Molecular subtypes, stem cells and heterogeneity: Implications for personalised therapy in glioma. J. Clin. Neurosci., 2015, 22(8), 1219-1226.
[http://dx.doi.org/10.1016/j.jocn.2015.02.008] [PMID: 25957782]
[11]
Eramo, A.; Ricci-Vitiani, L.; Zeuner, A.; Pallini, R.; Lotti, F.; Sette, G.; Pilozzi, E.; Larocca, L.M.; Peschle, C.; De Maria, R. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ., 2006, 13(7), 1238-1241.
[http://dx.doi.org/10.1038/sj.cdd.4401872] [PMID: 16456578]
[12]
Zhang, F.; Xu, C.L.; Liu, C.M. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Des. Devel. Ther., 2015, 9, 2089-2100.
[http://dx.doi.org/10.2147/DDDT.S79592] [PMID: 25926719]
[13]
Milojkovic Kerklaan, B.; van Tellingen, O.; Huitema, A.D.; Beijnen, J.H.; Boogerd, W.; Schellens, J.H.; Brandsma, D. Strategies to target drugs to gliomas and CNS metastases of solid tumors. J. Neurol., 2016, 263(3), 428-440.
[http://dx.doi.org/10.1007/s00415-015-7919-9] [PMID: 26477024]
[14]
Vergara, D.; Bellomo, C.; Zhang, X.; Vergaro, V.; Tinelli, A.; Lorusso, V.; Rinaldi, R.; Lvov, Y.M.; Leporatti, S.; Maffia, M. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomedicine (Lond.), 2012, 8(6), 891-899.
[http://dx.doi.org/10.1016/j.nano.2011.10.014] [PMID: 23066648]
[15]
Zheng, Z.; Zhang, X.; Carbo, D.; Clark, C.; Nathan, C.; Lvov, Y. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir, 2010, 26(11), 7679-7681.
[http://dx.doi.org/10.1021/la101246a] [PMID: 20459072]
[16]
Frosina, G. Nanoparticle-mediated drug delivery to high-grade gliomas. Nanomedicine (Lond.), 2016, 12(4), 1083-1093.
[http://dx.doi.org/10.1016/j.nano.2015.12.375] [PMID: 26767516]
[17]
Pistollato, F.; Bremer-Hoffmann, S.; Basso, G.; Cano, S.S.; Elio, I.; Vergara, M.M.; Giampieri, F.; Battino, M. Targeting Glioblastoma with the use of phytocompounds and nanoparticles. Target. Oncol., 2016, 11(1), 1-16.
[http://dx.doi.org/10.1007/s11523-015-0378-5] [PMID: 26275397]
[18]
Vergaro, V.; Scarlino, F.; Bellomo, C.; Rinaldi, R.; Vergara, D.; Maffia, M.; Baldassarre, F.; Giannelli, G.; Zhang, X.; Lvov, Y.M.; Leporatti, S. Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv. Drug Deliv. Rev., 2011, 63(9), 847-864.
[http://dx.doi.org/10.1016/j.addr.2011.05.007] [PMID: 21620912]
[19]
Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.; Lvov, Y. Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys. Chem. Chem. Phys., 2011, 13(19), 9014-9019.
[http://dx.doi.org/10.1039/c0cp02549f] [PMID: 21442095]
[20]
van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat., 2015, 19, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[21]
Liao, B.; Ying, H.; Yu, C.; Fan, Z.; Zhang, W.; Shi, J.; Ying, H.; Ravichandran, N.; Xu, Y.; Yin, J.; Jiang, Y.; Du, Q. (-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice. Int. J. Pharm., 2016, 512(1), 22-31.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.038] [PMID: 27544847]
[22]
Bernacki, J.; Dobrowolska, A.; Nierwińska, K.; Małecki, A. Physiology and pharmacological role of the blood-brain barrier. Pharmacol. Rep., 2008, 60(5), 600-622.
[PMID: 19066407]
[23]
Madsen, S.J.; Hirschberg, H. Site-specific opening of the blood-brain barrier. J. Biophotonics, 2010, 3(5-6), 356-367.
[http://dx.doi.org/10.1002/jbio.200900095] [PMID: 20162563]
[24]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[25]
Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 2010, 468(7323), 562-566.
[http://dx.doi.org/10.1038/nature09513] [PMID: 20944625]
[26]
Pardridge, W.M. The blood-brain barrier and neurotherapeutics. NeuroRx, 2005, 2(1), 1-2.
[http://dx.doi.org/10.1602/neurorx.2.1.1] [PMID: 15717052]
[27]
Wilhelm, I.; Fazakas, C.; Krizbai, I.A. In vitro models of the blood-brain barrier. Acta Neurobiol. Exp. (Warsz.), 2011, 71(1), 113-128.
[PMID: 21499332]
[28]
Karim, R.; Palazzo, C.; Evrard, B.; Piel, G. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J. Control. Release, 2016, 227, 23-37.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.026] [PMID: 26892752]
[29]
Stamatovic, S.M.; Keep, R.F.; Andjelkovic, A.V. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr. Neuropharmacol., 2008, 6(3), 179-192.
[http://dx.doi.org/10.2174/157015908785777210] [PMID: 19506719]
[30]
Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis., 2004, 16(1), 1-13.
[http://dx.doi.org/10.1016/j.nbd.2003.12.016] [PMID: 15207256]
[31]
Aparicio-Blanco, J.; Torres-Suárez, A.I. Glioblastoma multiforme and lipid nanocapsules: a review. J. Biomed. Nanotechnol., 2015, 11(8), 1283-1311.
[http://dx.doi.org/10.1166/jbn.2015.2084] [PMID: 26295134]
[32]
Zong, H.; Parada, L.F.; Baker, S.J. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb. Perspect. Biol., 2015, 7(5)a020610
[http://dx.doi.org/10.1101/cshperspect.a020610] [PMID: 25635044]
[33]
Szopa, W.; Burley, T.A.; Kramer-Marek, G.; Kaspera, W. Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. BioMed Res. Int., 2017, 20178013575
[http://dx.doi.org/10.1155/2017/8013575] [PMID: 28316990]
[34]
Bastiancich, C.; Bastiat, G.; Lagarce, F. Gemcitabine and glioblastoma: challenges and current perspectives. Drug Discov. Today, 2017.
[http://dx.doi.org/10.1016/j.drudis.2017.10.010] [PMID: 29074439]
[35]
Kuehn, B.M. Genomics illuminates a deadly brain cancer. JAMA, 2010, 303(10), 925-927.
[http://dx.doi.org/10.1001/jama.2010.236] [PMID: 20215599]
[36]
Hayden, E.C. Genomics boosts brain-cancer work. Nature, 2010, 463(7279), 278.
[http://dx.doi.org/10.1038/463278a] [PMID: 20090720]
[37]
Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O’Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110.
[http://dx.doi.org/10.1016/j.ccr.2009.12.020] [PMID: 20129251]
[38]
Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; Frank, A.; Bayazitov, I.T.; Zakharenko, S.S.; Gajjar, A.; Davidoff, A.; Gilbertson, R.J. A perivascular niche for brain tumor stem cells. Cancer Cell, 2007, 11(1), 69-82.
[http://dx.doi.org/10.1016/j.ccr.2006.11.020] [PMID: 17222791]
[39]
Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev., 2015, 29(12), 1203-1217.
[http://dx.doi.org/10.1101/gad.261982.115] [PMID: 26109046]
[40]
Mir, S.E.; De Witt Hamer, P.C.; Krawczyk, P.M.; Balaj, L.; Claes, A.; Niers, J.M.; Van Tilborg, A.A.; Zwinderman, A.H.; Geerts, D.; Kaspers, G.J.; Peter Vandertop, W.; Cloos, J.; Tannous, B.A.; Wesseling, P.; Aten, J.A.; Noske, D.P.; Van Noorden, C.J.; Würdinger, T. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell, 2010, 18(3), 244-257.
[http://dx.doi.org/10.1016/j.ccr.2010.08.011] [PMID: 20832752]
[41]
Rama, A.R.; Alvarez, P.J.; Madeddu, R.; Aranega, A. ABC transporters as differentiation markers in glioblastoma cells. Mol. Biol. Rep., 2014, 41(8), 4847-4851.
[http://dx.doi.org/10.1007/s11033-014-3423-z] [PMID: 25028266]
[42]
Hira, V.V.; Ploegmakers, K.J.; Grevers, F.; Verbovšek, U.; Silvestre-Roig, C.; Aronica, E.; Tigchelaar, W.; Turnšek, T.L.; Molenaar, R.J.; Van Noorden, C.J. CD133+ and Nestin+ Glioma Stem-Like Cells Reside Around CD31+ Arterioles in Niches that Express SDF-1α, CXCR4, Osteopontin and Cathepsin K. J. Histochem. Cytochem., 2015, 63(7), 481-493.
[http://dx.doi.org/10.1369/0022155415581689] [PMID: 25809793]
[43]
Shipitsin, M.; Polyak, K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab. Invest., 2008, 88(5), 459-463.
[http://dx.doi.org/10.1038/labinvest.2008.14] [PMID: 18379567]
[44]
Nouri, M.; Caradec, J.; Lubik, A.A.; Li, N.; Hollier, B.G.; Takhar, M.; Altimirano-Dimas, M.; Chen, M.; Roshan-Moniri, M.; Butler, M.; Lehman, M.; Bishop, J.; Truong, S.; Huang, S.C.; Cochrane, D.; Cox, M.; Collins, C.; Gleave, M.; Erho, N.; Alshalafa, M.; Davicioni, E.; Nelson, C.; Gregory-Evans, S.; Karnes, R.J.; Jenkins, R.B.; Klein, E.A.; Buttyan, R. Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget, 2017, 8(12), 18949-18967.
[http://dx.doi.org/10.18632/oncotarget.14850] [PMID: 28145883]
[45]
Auffinger, B.; Spencer, D.; Pytel, P.; Ahmed, A.U.; Lesniak, M.S. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev. Neurother., 2015, 15(7), 741-752.
[http://dx.doi.org/10.1586/14737175.2015.1051968] [PMID: 26027432]
[46]
Schonberg, D.L.; Lubelski, D.; Miller, T.E.; Rich, J.N. Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol. Aspects Med., 2014, 39, 82-101.
[http://dx.doi.org/10.1016/j.mam.2013.06.004] [PMID: 23831316]
[47]
Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.; Dirks, P.B. Identification of human brain tumour initiating cells. Nature, 2004, 432(7015), 396-401.
[http://dx.doi.org/10.1038/nature03128] [PMID: 15549107]
[48]
Tchoghandjian, A.; Baeza, N.; Colin, C.; Cayre, M.; Metellus, P.; Beclin, C.; Ouafik, L.; Figarella-Branger, D. A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol., 2010, 20(1), 211-221.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00269.x] [PMID: 19243384]
[49]
Anido, J.; Sáez-Borderías, A.; Gonzàlez-Juncà, A.; Rodón, L.; Folch, G.; Carmona, M.A.; Prieto-Sánchez, R.M.; Barba, I.; Martínez-Sáez, E.; Prudkin, L.; Cuartas, I.; Raventós, C.; Martínez-Ricarte, F.; Poca, M.A.; García-Dorado, D.; Lahn, M.M.; Yingling, J.M.; Rodón, J.; Sahuquillo, J.; Baselga, J.; Seoane, J. TGF-β Receptor Inhibitors Target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell, 2010, 18(6), 655-668.
[http://dx.doi.org/10.1016/j.ccr.2010.10.023] [PMID: 21156287]
[50]
Son, M.J.; Woolard, K.; Nam, D.H.; Lee, J.; Fine, H.A. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell, 2009, 4(5), 440-452.
[http://dx.doi.org/10.1016/j.stem.2009.03.003] [PMID: 19427293]
[51]
Shi, C.; Zheng, D.D.; Wu, F.M.; Liu, J.; Xu, J. The phosphatidyl inositol 3 kinase-glycogen synthase kinase 3β pathway mediates bilobalide-induced reduction in amyloid β-peptide. Neurochem. Res., 2012, 37(2), 298-306.
[http://dx.doi.org/10.1007/s11064-011-0612-1] [PMID: 21952928]
[52]
Bao, S.; Wu, Q.; Li, Z.; Sathornsumetee, S.; Wang, H.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res., 2008, 68(15), 6043-6048.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1079] [PMID: 18676824]
[53]
Lathia, J.D.; Gallagher, J.; Heddleston, J.M.; Wang, J.; Eyler, C.E.; Macswords, J.; Wu, Q.; Vasanji, A.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell, 2010, 6(5), 421-432.
[http://dx.doi.org/10.1016/j.stem.2010.02.018] [PMID: 20452317]
[54]
Zhao, K.; Wang, Q.; Wang, Y.; Huang, K.; Yang, C.; Li, Y.; Yi, K.; Kang, C. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett., 2017, 406, 12-21.
[http://dx.doi.org/10.1016/j.canlet.2017.07.022] [PMID: 28778566]
[55]
Xiao, H.; Zeng, Y.; Wang, Q.; Wei, S.; Zhu, X. A novel positive feedback loop between NTSR1 and Wnt/β-Catenin contributes to tumor growth of glioblastoma. Cell. Physiol. Biochem., 2017, 43(5), 2133-2142.
[http://dx.doi.org/10.1159/000484232] [PMID: 29065410]
[56]
Cherepanov, S.A.; Cherepanova, K.I.; Grinenko, N.F.; Antonova, O.M.; Chekhonin, V.P. Effect of hedgehog signaling pathway activation on proliferation of high-grade gliomas. Bull. Exp. Biol. Med., 2016, 161(5), 674-678.
[http://dx.doi.org/10.1007/s10517-016-3483-2] [PMID: 27709388]
[57]
Akiyama, Y.; Nonomura, C.; Ashizawa, T.; Iizuka, A.; Kondou, R.; Miyata, H.; Sugino, T.; Mitsuya, K.; Hayashi, N.; Nakasu, Y.; Asai, A.; Ito, M.; Kiyohara, Y.; Yamaguchi, K. The anti-tumor activity of the STAT3 inhibitor STX-0119 occurs via promotion of tumor-infiltrating lymphocyte accumulation in temozolomide-resistant glioblastoma cell line. Immunol. Lett., 2017, 190, 20-25.
[http://dx.doi.org/10.1016/j.imlet.2017.07.005] [PMID: 28716484]
[58]
Wang, Q.; Wang, H.; Jia, Y.; Ding, H.; Zhang, L.; Pan, H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncol. Lett., 2017, 14(3), 3545-3551.
[http://dx.doi.org/10.3892/ol.2017.6643] [PMID: 28927111]
[59]
Bexell, D.; Gunnarsson, S.; Siesjö, P.; Bengzon, J.; Darabi, A. CD133+ and nestin+ tumor-initiating cells dominate in N29 and N32 experimental gliomas. Int. J. Cancer, 2009, 125(1), 15-22.
[http://dx.doi.org/10.1002/ijc.24306] [PMID: 19291792]
[60]
SongTao. Q.; Lei, Y.; Si, G.; YanQing, D.; HuiXia, H.; XueLin, Z.; LanXiao, W.; Fei, Y. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci., 2012, 103(2), 269-273.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02134.x] [PMID: 22034964]
[61]
Yang, P.; Zhang, W.; Wang, Y.; Peng, X.; Chen, B.; Qiu, X.; Li, G.; Li, S.; Wu, C.; Yao, K.; Li, W.; Yan, W.; Li, J.; You, Y.; Chen, C.C.; Jiang, T. IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget, 2015, 6(38), 40896-40906.
[http://dx.doi.org/10.18632/oncotarget.5683] [PMID: 26503470]
[62]
Yuan, Y.; Qi, C.; Maling, G.; Xiang, W.; Yanhui, L.; Ruofei, L.; Yunhe, M.; Jiewen, L.; Qing, M. TERT mutation in glioma: Frequency, prognosis and risk. J. Clin. Neurosci., 2016, 26, 57-62.
[http://dx.doi.org/10.1016/j.jocn.2015.05.066] [PMID: 26765760]
[63]
Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol., 2017, 35(21), 2402-2409.
[http://dx.doi.org/10.1200/JCO.2017.73.0119] [PMID: 28640706]
[64]
Felthun, J.; Reddy, R.; McDonald, K.L. How immunotherapies are targeting the glioblastoma immune environment. J. Clin. Neurosci., 2017.
[http://dx.doi.org/10.1016/j.jocn.2017.10.019] [PMID: 29042147]
[65]
Batash, R.; Asna, N.; Schaffer, P.; Francis, N.; Schaffer, M. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr. Med. Chem., 2017, 24(27), 3002-3009.
[http://dx.doi.org/10.2174/0929867324666170516123206] [PMID: 28521700]
[66]
Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release, 2017, 264, 306-332.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[67]
Bharadwaj, V.N.; Nguyen, D.T.; Kodibagkar, V.D.; Stabenfeldt, S.E. Nanoparticle-based therapeutics for brain injury. Adv. Healthc. Mater., 2017.
[http://dx.doi.org/10.1002/adhm.201700668] [PMID: 29034608]
[68]
Comoglu, T.; Arisoy, S.; Akkus, Z.B. Nanocarriers for effective brain drug delivery. Curr. Top. Med. Chem., 2017, 17(13), 1490-1506.
[http://dx.doi.org/10.2174/1568026616666161222101355] [PMID: 28017157]
[69]
Kafa, H.; Wang, J.T.; Al-Jamal, K.T. Current perspective of carbon nanotubes application in neurology. Int. Rev. Neurobiol., 2016, 130, 229-263.
[http://dx.doi.org/10.1016/bs.irn.2016.07.001] [PMID: 27678179]
[70]
Cheng, S.; Jin, Y.; Wang, N.; Cao, F.; Zhang, W.; Bai, W.; Zheng, W.; Jiang, X. Self-adjusting, polymeric multilayered roll that can keep the shapes of the blood vessel scaffolds during biodegradation. Adv. Mater., 2017, 29(28)
[http://dx.doi.org/10.1002/adma.201700171] [PMID: 28514016]
[71]
Cholewa, H.; Duda, K.; Labuzek, K.; Okopien, B. [The newest perspectives on the treatment of glioblastoma multiforme] Pol. Merkuriusz Lek., 2014, 37(218), 119-123.
[PMID: 25252449]
[72]
Maity, A.R.; Stepensky, D. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies. Int. J. Pharm., 2015, 496(2), 268-274.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.053] [PMID: 26516100]
[73]
Bharadwaj, R.; Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene, 2004, 23(11), 2016-2027.
[http://dx.doi.org/10.1038/sj.onc.1207374] [PMID: 15021889]
[74]
Shen, Y.; Pi, Z.; Yan, F.; Yeh, C.K.; Zeng, X.; Diao, X.; Hu, Y.; Chen, S.; Chen, X.; Zheng, H. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int. J. Nanomedicine, 2017, 12, 5613-5629.
[http://dx.doi.org/10.2147/IJN.S136401] [PMID: 28848341]
[75]
Xin, H.; Jiang, X.; Gu, J.; Sha, X.; Chen, L.; Law, K.; Chen, Y.; Wang, X.; Jiang, Y.; Fang, X. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 2011, 32(18), 4293-4305.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.044] [PMID: 21427009]
[76]
Rehman, M.; Madni, A.; Shi, D.; Ihsan, A.; Tahir, N.; Chang, K.R.; Javed, I.; Webster, T.J. Enhanced blood brain barrier permeability and glioblastoma cell targeting via thermoresponsive lipid nanoparticles. Nanoscale, 2017, 9(40), 15434-15440.
[http://dx.doi.org/10.1039/C7NR05216B] [PMID: 28976512]
[77]
Kim, S.S.; Rait, A.; Rubab, F.; Rao, A.K.; Kiritsy, M.C.; Pirollo, K.F.; Wang, S.; Weiner, L.M.; Chang, E.H. The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells. Mol. Ther., 2014, 22(2), 278-291.
[http://dx.doi.org/10.1038/mt.2013.231] [PMID: 24113515]
[78]
Yang, Z.; Xiang, B.; Dong, D.; Wang, Z.; Li, J.; Qi, X. Dual receptor-specific peptides modified liposomes as VEGF siRNA vector for tumor-targeting therapy. Curr. Gene Ther., 2014, 14(4), 289-299.
[http://dx.doi.org/10.2174/1566523214666140612151726] [PMID: 25039617]
[79]
Yang, Z.Z.; Gao, W.; Liu, Y.J.; Pang, N.; Qi, X.R. Delivering siRNA and chemotherapeutic molecules across BBB and BTB for intracranial glioblastoma therapy. Mol. Pharm., 2017, 14(4), 1012-1022.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00819] [PMID: 28252970]
[80]
Zhang, H.; Gao, S. Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro. Int. J. Pharm., 2007, 329(1-2), 122-128.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.027] [PMID: 17000068]
[81]
Tian, X.H.; Lin, X.N.; Wei, F.; Feng, W.; Huang, Z.C.; Wang, P.; Ren, L.; Diao, Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int. J. Nanomedicine, 2011, 6, 445-452.
[http://dx.doi.org/10.2147/IJN.S16570 ] [PMID: 21445277]
[82]
Kim, S.S.; Rait, A.; Kim, E.; Pirollo, K.F.; Chang, E.H. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine (Lond.), 2015, 11(2), 301-311.
[http://dx.doi.org/10.1016/j.nano.2014.09.005] [PMID: 25240597]
[83]
De Monte, C.; Carradori, S.; Gentili, A.; Mollica, A.; Trisciuoglio, D.; Supuran, C.T. Dual cyclooxygenase and carbonic anhydrase inhibition by nonsteroidal anti-inflammatory drugs for the treatment of cancer. Curr. Med. Chem., 2015, 22(24), 2812-2818.
[http://dx.doi.org/10.2174/0929867322666150716113501] [PMID: 26180003]
[84]
Suzuki, K.; Gerelchuluun, A.; Hong, Z.; Sun, L.; Zenkoh, J.; Moritake, T.; Tsuboi, K. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress. Neuro-oncol., 2013, 15(9), 1186-1199.
[http://dx.doi.org/10.1093/neuonc/not062] [PMID: 23658321]
[85]
Vera, M.; Barcia, E.; Negro, S.; Marcianes, P.; García-García, L.; Slowing, K.; Fernández-Carballido, A. New celecoxib multiparticulate systems to improve glioblastoma treatment. Int. J. Pharm., 2014, 473(1-2), 518-527.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.028] [PMID: 25066075]
[86]
Allhenn, D.; Neumann, D.; Béduneau, A.; Pellequer, Y.; Lamprecht, A.A. “drug cocktail” delivered by microspheres for the local treatment of rat glioblastoma. J. Microencapsul., 2013, 30(7), 667-673.
[http://dx.doi.org/10.3109/02652048.2013.774446] [PMID: 23448182]
[87]
Costa, P.M.; Cardoso, A.L.; Mendonça, L.S.; Serani, A.; Custódia, C.; Conceição, M.; Simões, S.; Moreira, J.N.; Pereira de Almeida, L.; Pedroso de Lima, M.C. Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Mol. Ther. Nucleic Acids, 2013, 2e100
[http://dx.doi.org/10.1038/mtna.2013.30] [PMID: 23778499]
[88]
Lvov, Y.M.; Pattekari, P.; Zhang, X.; Torchilin, V. Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir, 2011, 27(3), 1212-1217.
[http://dx.doi.org/10.1021/la1041635] [PMID: 21190345]
[89]
Costa, P.M.; Cardoso, A.L.; Custódia, C.; Cunha, P.; Pereira de Almeida, L.; Pedroso de Lima, M.C. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma. J. Control. Release, 2015, 207, 31-39.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.002] [PMID: 25861727]
[90]
Gabizon, A.; Martin, F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs, 1997, 54(Suppl. 4), 15-21.
[http://dx.doi.org/10.2165/00003495-199700544-00005] [PMID: 9361957]
[91]
Madane, R.G.; Mahajan, H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv., 2016, 23(4), 1326-1334.
[PMID: 25367836]
[92]
Kuo, Y.C.; Cheng, S.J. Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int. J. Pharm., 2016, 499(1-2), 10-19.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.054] [PMID: 26721730]
[93]
Joo, K.M.; Kim, S.Y.; Jin, X.; Song, S.Y.; Kong, D.S.; Lee, J.I.; Jeon, J.W.; Kim, M.H.; Kang, B.G.; Jung, Y.; Jin, J.; Hong, S.C.; Park, W.Y.; Lee, D.S.; Kim, H.; Nam, D.H. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab. Invest., 2008, 88(8), 808-815.
[http://dx.doi.org/10.1038/labinvest.2008.57] [PMID: 18560366]
[94]
Setua, S.; Ouberai, M.; Piccirillo, S.G.; Watts, C.; Welland, M. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale, 2014, 6(18), 10865-10873.
[http://dx.doi.org/10.1039/C4NR03693J] [PMID: 25117686]
[95]
Xiao, F.; Zheng, Y.; Cloutier, P.; He, Y.; Hunting, D.; Sanche, L. On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology, 2011, 22(46)465101
[http://dx.doi.org/10.1088/0957-4484/22/46/465101] [PMID: 22024607]
[96]
Xu, R.; Ma, J.; Sun, X.; Chen, Z.; Jiang, X.; Guo, Z.; Huang, L.; Li, Y.; Wang, M.; Wang, C.; Liu, J.; Fan, X.; Gu, J.; Chen, X.; Zhang, Y.; Gu, N. Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Res., 2009, 19(8), 1031-1034.
[http://dx.doi.org/10.1038/cr.2009.89] [PMID: 19621033]
[97]
Orza, A.; Soriţău, O.; Tomuleasa, C.; Olenic, L.; Florea, A.; Pana, O.; Bratu, I.; Pall, E.; Florian, S.; Casciano, D.; Biris, A.S. Reversing chemoresistance of malignant glioma stem cells using gold nanoparticles. Int. J. Nanomedicine, 2013, 8, 689-702.
[http://dx.doi.org/10.2147/IJN.S37481] [PMID: 23467447]
[98]
Irani, M.; Mir Mohamad Sadeghi, G.; Haririan, I. Gold coated poly (ε-caprolactonediol) based polyurethane nanofibers for controlled release of temozolomide. Biomed. Pharmacother., 2017, 88, 667-676.
[http://dx.doi.org/10.1016/j.biopha.2017.01.097] [PMID: 28152475]
[99]
Zhong, Y.; Wang, C.; Cheng, R.; Cheng, L.; Meng, F.; Liu, Z.; Zhong, Z. cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. J. Control. Release, 2014, 195, 63-71.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.054] [PMID: 25108151]
[100]
Barnaby, S.N.; Sita, T.L.; Petrosko, S.H.; Stegh, A.H.; Mirkin, C.A. Therapeutic applications of spherical nucleic acids. Cancer Treat. Res, 2015. 166, 23-50.
[http://dx.doi.org/10.1007/978-3-319-16555-4_2] [PMID: 25895863]
[101]
Bishop, C.J.; Tzeng, S.Y.; Green, J.J. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater., 2015, 11, 393-403.
[http://dx.doi.org/10.1016/j.actbio.2014.09.020] [PMID: 25246314]
[102]
Yue, J.; Feliciano, T.J.; Li, W.; Lee, A.; Odom, T.W. Gold nanoparticle size and shape effects on cellular uptake and intracellular distribution of siRNA nanoconstructs. Bioconjug. Chem., 2017, 28(6), 1791-1800.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00252] [PMID: 28574255]
[103]
Alfardus, H.; McIntyre, A.; Smith, S. MicroRNA regulation of glycolytic metabolism in glioblastoma. BioMed Res. Int., 2017.20179157370
[http://dx.doi.org/10.1155/2017/9157370] [PMID: 28804724]
[104]
Dai, D.W.; Lu, Q.; Wang, L.X.; Zhao, W.Y.; Cao, Y.Q.; Li, Y.N.; Han, G.S.; Liu, J.M.; Yue, Z.J. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM. BMC Cancer, 2013, 13, 478.
[http://dx.doi.org/10.1186/1471-2407-13-478] [PMID: 24124917]
[105]
Zhao, S.; Liu, H.; Liu, Y.; Wu, J.; Wang, C.; Hou, X.; Chen, X.; Yang, G.; Zhao, L.; Che, H.; Bi, Y.; Wang, H.; Peng, F.; Ai, J. miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells. Cancer Lett., 2013, 333(2), 253-260.
[http://dx.doi.org/10.1016/j.canlet.2013.01.039] [PMID: 23376635]
[106]
Kouri, F.M.; Hurley, L.A.; Daniel, W.L.; Day, E.S.; Hua, Y.; Hao, L.; Peng, C.Y.; Merkel, T.J.; Queisser, M.A.; Ritner, C.; Zhang, H.; James, C.D.; Sznajder, J.I.; Chin, L.; Giljohann, D.A.; Kessler, J.A.; Peter, M.E.; Mirkin, C.A.; Stegh, A.H. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev., 2015, 29(7), 732-745.
[http://dx.doi.org/10.1101/gad.257394.114] [PMID: 25838542]
[107]
Yang, T.D.; Choi, W.; Yoon, T.H.; Lee, K.J.; Lee, J.S.; Joo, J.H.; Lee, M.G.; Yim, H.S.; Choi, K.M.; Kim, B.; Lee, J.J.; Kim, H.; Lee, D.Y.; Jung, K.Y.; Baek, S.K. In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells. Biomed. Opt. Express, 2015, 7(1), 185-193.
[http://dx.doi.org/10.1364/BOE.7.000185] [PMID: 26819827]
[108]
Hirschberg, H.; Madsen, S.J. Cell mediated photothermal therapy of brain tumors. J. Neuroimmune Pharmacol., 2017, 12(1), 99-106.
[http://dx.doi.org/10.1007/s11481-016-9690-9] [PMID: 27289473]
[109]
Li, L.; Zhang, L.; Knez, M. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol. Res., 2016, 110, 1-9.
[http://dx.doi.org/10.1016/j.phrs.2016.05.006] [PMID: 27157249]
[110]
He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: biology and translational Medicine. Theranostics, 2018, 8(1), 237-255.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[111]
Li, P.; Feng, J.; Liu, Y.; Liu, Q.; Fan, L.; Liu, Q.; She, X.; Liu, C.; Liu, T.; Zhao, C.; Wang, W.; Li, G.; Wu, M. Novel therapy for glioblastoma multiforme by restoring LRRC4 in tumor cells: lrrc4 inhibits tumor-infitrating regulatory T cells by cytokine and programmed cell death 1-containing exosomes. Front. Immunol., 2017, 8, 1748.
[http://dx.doi.org/10.3389/fimmu.2017.01748] [PMID: 29312296]
[112]
Srivastava, A.; Babu, A.; Filant, J.; Moxley, K.M.; Ruskin, R.; Dhanasekaran, D.; Sood, A.K.; McMeekin, S.; Ramesh, R. Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J. Biomed. Nanotechnol., 2016, 12(6), 1159-1173.
[http://dx.doi.org/10.1166/jbn.2016.2205] [PMID: 27319211]
[113]
Roesch, S.; Rapp, C.; Dettling, S.; Herold-Mende, C. When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int. J. Mol. Sci., 2018, 19(2)E436
[http://dx.doi.org/10.3390/ijms19020436] [PMID: 29389898]
[114]
Sørensen, M.D.; Dahlrot, R.H.; Boldt, H.B.; Hansen, S.; Kristensen, B.W. Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol. Appl. Neurobiol., 2018, 44(2), 185-206.
[http://dx.doi.org/10.1111/nan.12428] [PMID: 28767130]
[115]
Zhu, C.; Mustafa, D.; Zheng, P.P.; van der Weiden, M.; Sacchetti, A.; Brandt, M.; Chrifi, I.; Tempel, D.; Leenen, P.J.M.; Duncker, D.J.; Cheng, C.; Kros, J.M. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro-oncol., 2017, 19(5), 648-659.
[http://dx.doi.org/10.1093/neuonc/now251] [PMID: 28453746]
[116]
Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; Setty, M.; Leslie, C.S.; Oei, Y.; Pedraza, A.; Zhang, J.; Brennan, C.W.; Sutton, J.C.; Holland, E.C.; Daniel, D.; Joyce, J.A. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med., 2013, 19(10), 1264-1272.
[http://dx.doi.org/10.1038/nm.3337] [PMID: 24056773]
[117]
Szulzewsky, F.; Arora, S.; de Witte, L.; Ulas, T.; Markovic, D.; Schultze, J.L.; Holland, E.C.; Synowitz, M.; Wolf, S.A.; Kettenmann, H. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia, 2016, 64(8), 1416-1436.
[http://dx.doi.org/10.1002/glia.23014] [PMID: 27312099]
[118]
Oushy, S.; Hellwinkel, J.E.; Wang, M.; Nguyen, G.J.; Gunaydin, D.; Harland, T.A.; Anchordoquy, T.J.; Graner, M.W. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018. 373(1737), 373.
[http://dx.doi.org/10.1098/rstb.2016.0477] [PMID: 29158308]
[119]
Zhang, L.; Zhang, S.; Yao, J.; Lowery, F.J.; Zhang, Q.; Huang, W.C.; Li, P.; Li, M.; Wang, X.; Zhang, C.; Wang, H.; Ellis, K.; Cheerathodi, M.; McCarty, J.H.; Palmieri, D.; Saunus, J.; Lakhani, S.; Huang, S.; Sahin, A.A.; Aldape, K.D.; Steeg, P.S.; Yu, D. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 2015, 527(7576), 100-104.
[http://dx.doi.org/10.1038/nature15376] [PMID: 26479035]
[120]
Greening, D.W.; Xu, R.; Ji, H.; Tauro, B.J.; Simpson, R.J. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol., 2015, 1295, 179-209.
[http://dx.doi.org/10.1007/978-1-4939-2550-6_15] [PMID: 25820723]
[121]
Smith, Z.J.; Lee, C.; Rojalin, T.; Carney, R.P.; Hazari, S.; Knudson, A.; Lam, K.; Saari, H.; Ibañez, E.L.; Viitala, T.; Laaksonen, T.; Yliperttula, M.; Wachsmann-Hogiu, S. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J. Extracell. Vesicles, 2015, 4, 28533.
[http://dx.doi.org/10.3402/jev.v4.28533] [PMID: 26649679]
[122]
Prabhu, S.; Goda, J.S.; Mutalik, S.; Mohanty, B.S.; Chaudhari, P.; Rai, S.; Udupa, N.; Rao, B.S.S. A polymeric temozolomide nanocomposite against orthotopic glioblastoma xenograft: tumor-specific homing directed by nestin. Nanoscale, 2017, 9(30), 10919-10932.
[http://dx.doi.org/10.1039/C7NR00305F] [PMID: 28731079]
[123]
Nair, R.V.; Santhakumar, H.; Jayasree, R.S. Gold nanorods decorated with a cancer drug for multimodal imaging and therapy. Faraday Discuss., 2018, 207, 423-435.
[http://dx.doi.org/10.1039/C7FD00185A] [PMID: 29355869]
[124]
Lozada-Delgado, E.L.; Grafals-Ruiz, N.; Vivas-Mejía, P.E. RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials. Life Sci., 2017, 188, 26-36.
[http://dx.doi.org/10.1016/j.lfs.2017.08.027] [PMID: 28864225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy