Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances on Glioblastoma Multiforme and Nano-drug Carriers: A Review

Author(s): Wang Liao, Shengnuo Fan, Yuqiu Zheng, Shaowei Liao , Ying Xiong, Yi Li and Jun Liu *

Volume 26, Issue 31, 2019

Page: [5862 - 5874] Pages: 13

DOI: 10.2174/0929867325666180514113136

Price: $65

Abstract

Glioblastoma Multiforme (GBM) is the most frequent glioma with a poor prognosis. The mainstay treatment for GBM is chemotherapy, but the average survival of GBM remains unsatisfactory due to therapeutic resistance. Poor permeability restricted by the Blood Brain Barrier (BBB) and the presence of Glioblastoma Stem Cells (GSCs) remain as two problems for chemotherapy. Recently, nanocarriers have attracted much attention in the research of GBM, owing to their advantages in self-assembly, biosafety, release controllability, and BBB penetrability, making them promising candidates for GBM treatment. This article aims to review the biologic signatures of BBB and GSCs, as well as the new development of nano-drug delivery systems to facilitate our understanding of targeted treatment for GBM.

Keywords: Glioblastoma multiforme, brain blood barrier, glioblastoma stem cells, nanocarriers, lipids, gold, targeted therapy.

« Previous
[1]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[2]
Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-oncol., 2013, 15(Suppl. 2), ii1-ii56.
[http://dx.doi.org/10.1093/neuonc/not151] [PMID: 24137015]
[3]
Dixit, K.; Kumthekar, P. Gene delivery in neuro-oncology. Curr. Oncol. Rep., 2017, 19(11), 69.
[http://dx.doi.org/10.1007/s11912-017-0628-z] [PMID: 28866732]
[4]
Pytel, P.; Lukas, R.V. Update on diagnostic practice: tumors of the nervous system. Arch. Pathol. Lab. Med., 2009, 133(7), 1062-1077.
[PMID: 19642733]
[5]
Young, R.M.; Jamshidi, A.; Davis, G.; Sherman, J.H. Current trends in the surgical management and treatment of adult glioblastoma. Ann. Transl. Med., 2015, 3(9), 121.
[http://dx.doi.org/10.1043/1543-2165-133.7.1062] [PMID: 26207249]
[6]
Reardon, D.A.; Desjardins, A.; Peters, K.B.; Vredenburgh, J.J.; Gururangan, S.; Sampson, J.H.; McLendon, R.E.; Herndon, J.E., II; Coan, A.; Threatt, S.; Friedman, A.H.; Friedman, H.S. Phase 2 study of carboplatin, irinotecan, and bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. Cancer, 2011, 117(23), 5351-5358.
[http://dx.doi.org/10.1002/cncr.26188] [PMID: 21590689]
[7]
Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[8]
Gallego, O. Nonsurgical treatment of recurrent glioblastoma. Curr. Oncol., 2015, 22(4), e273-e281.
[http://dx.doi.org/10.3747/co.22.2436] [PMID: 26300678]
[9]
Lawson, H.C.; Sampath, P.; Bohan, E.; Park, M.C.; Hussain, N.; Olivi, A.; Weingart, J.; Kleinberg, L.; Brem, H. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J. Neurooncol., 2007, 83(1), 61-70.
[http://dx.doi.org/10.1007/s11060-006-9303-1] [PMID: 17171441]
[10]
Morokoff, A.; Ng, W.; Gogos, A.; Kaye, A.H. Molecular subtypes, stem cells and heterogeneity: Implications for personalised therapy in glioma. J. Clin. Neurosci., 2015, 22(8), 1219-1226.
[http://dx.doi.org/10.1016/j.jocn.2015.02.008] [PMID: 25957782]
[11]
Eramo, A.; Ricci-Vitiani, L.; Zeuner, A.; Pallini, R.; Lotti, F.; Sette, G.; Pilozzi, E.; Larocca, L.M.; Peschle, C.; De Maria, R. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ., 2006, 13(7), 1238-1241.
[http://dx.doi.org/10.1038/sj.cdd.4401872] [PMID: 16456578]
[12]
Zhang, F.; Xu, C.L.; Liu, C.M. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Des. Devel. Ther., 2015, 9, 2089-2100.
[http://dx.doi.org/10.2147/DDDT.S79592] [PMID: 25926719]
[13]
Milojkovic Kerklaan, B.; van Tellingen, O.; Huitema, A.D.; Beijnen, J.H.; Boogerd, W.; Schellens, J.H.; Brandsma, D. Strategies to target drugs to gliomas and CNS metastases of solid tumors. J. Neurol., 2016, 263(3), 428-440.
[http://dx.doi.org/10.1007/s00415-015-7919-9] [PMID: 26477024]
[14]
Vergara, D.; Bellomo, C.; Zhang, X.; Vergaro, V.; Tinelli, A.; Lorusso, V.; Rinaldi, R.; Lvov, Y.M.; Leporatti, S.; Maffia, M. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomedicine (Lond.), 2012, 8(6), 891-899.
[http://dx.doi.org/10.1016/j.nano.2011.10.014] [PMID: 23066648]
[15]
Zheng, Z.; Zhang, X.; Carbo, D.; Clark, C.; Nathan, C.; Lvov, Y. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir, 2010, 26(11), 7679-7681.
[http://dx.doi.org/10.1021/la101246a] [PMID: 20459072]
[16]
Frosina, G. Nanoparticle-mediated drug delivery to high-grade gliomas. Nanomedicine (Lond.), 2016, 12(4), 1083-1093.
[http://dx.doi.org/10.1016/j.nano.2015.12.375] [PMID: 26767516]
[17]
Pistollato, F.; Bremer-Hoffmann, S.; Basso, G.; Cano, S.S.; Elio, I.; Vergara, M.M.; Giampieri, F.; Battino, M. Targeting Glioblastoma with the use of phytocompounds and nanoparticles. Target. Oncol., 2016, 11(1), 1-16.
[http://dx.doi.org/10.1007/s11523-015-0378-5] [PMID: 26275397]
[18]
Vergaro, V.; Scarlino, F.; Bellomo, C.; Rinaldi, R.; Vergara, D.; Maffia, M.; Baldassarre, F.; Giannelli, G.; Zhang, X.; Lvov, Y.M.; Leporatti, S. Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv. Drug Deliv. Rev., 2011, 63(9), 847-864.
[http://dx.doi.org/10.1016/j.addr.2011.05.007] [PMID: 21620912]
[19]
Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.; Lvov, Y. Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys. Chem. Chem. Phys., 2011, 13(19), 9014-9019.
[http://dx.doi.org/10.1039/c0cp02549f] [PMID: 21442095]
[20]
van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat., 2015, 19, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[21]
Liao, B.; Ying, H.; Yu, C.; Fan, Z.; Zhang, W.; Shi, J.; Ying, H.; Ravichandran, N.; Xu, Y.; Yin, J.; Jiang, Y.; Du, Q. (-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice. Int. J. Pharm., 2016, 512(1), 22-31.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.038] [PMID: 27544847]
[22]
Bernacki, J.; Dobrowolska, A.; Nierwińska, K.; Małecki, A. Physiology and pharmacological role of the blood-brain barrier. Pharmacol. Rep., 2008, 60(5), 600-622.
[PMID: 19066407]
[23]
Madsen, S.J.; Hirschberg, H. Site-specific opening of the blood-brain barrier. J. Biophotonics, 2010, 3(5-6), 356-367.
[http://dx.doi.org/10.1002/jbio.200900095] [PMID: 20162563]
[24]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[25]
Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 2010, 468(7323), 562-566.
[http://dx.doi.org/10.1038/nature09513] [PMID: 20944625]
[26]
Pardridge, W.M. The blood-brain barrier and neurotherapeutics. NeuroRx, 2005, 2(1), 1-2.
[http://dx.doi.org/10.1602/neurorx.2.1.1] [PMID: 15717052]
[27]
Wilhelm, I.; Fazakas, C.; Krizbai, I.A. In vitro models of the blood-brain barrier. Acta Neurobiol. Exp. (Warsz.), 2011, 71(1), 113-128.
[PMID: 21499332]
[28]
Karim, R.; Palazzo, C.; Evrard, B.; Piel, G. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J. Control. Release, 2016, 227, 23-37.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.026] [PMID: 26892752]
[29]
Stamatovic, S.M.; Keep, R.F.; Andjelkovic, A.V. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr. Neuropharmacol., 2008, 6(3), 179-192.
[http://dx.doi.org/10.2174/157015908785777210] [PMID: 19506719]
[30]
Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis., 2004, 16(1), 1-13.
[http://dx.doi.org/10.1016/j.nbd.2003.12.016] [PMID: 15207256]
[31]
Aparicio-Blanco, J.; Torres-Suárez, A.I. Glioblastoma multiforme and lipid nanocapsules: a review. J. Biomed. Nanotechnol., 2015, 11(8), 1283-1311.
[http://dx.doi.org/10.1166/jbn.2015.2084] [PMID: 26295134]
[32]
Zong, H.; Parada, L.F.; Baker, S.J. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb. Perspect. Biol., 2015, 7(5)a020610
[http://dx.doi.org/10.1101/cshperspect.a020610] [PMID: 25635044]
[33]
Szopa, W.; Burley, T.A.; Kramer-Marek, G.; Kaspera, W. Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. BioMed Res. Int., 2017, 20178013575
[http://dx.doi.org/10.1155/2017/8013575] [PMID: 28316990]
[34]
Bastiancich, C.; Bastiat, G.; Lagarce, F. Gemcitabine and glioblastoma: challenges and current perspectives. Drug Discov. Today, 2017.
[http://dx.doi.org/10.1016/j.drudis.2017.10.010] [PMID: 29074439]
[35]
Kuehn, B.M. Genomics illuminates a deadly brain cancer. JAMA, 2010, 303(10), 925-927.
[http://dx.doi.org/10.1001/jama.2010.236] [PMID: 20215599]
[36]
Hayden, E.C. Genomics boosts brain-cancer work. Nature, 2010, 463(7279), 278.
[http://dx.doi.org/10.1038/463278a] [PMID: 20090720]
[37]
Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O’Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110.
[http://dx.doi.org/10.1016/j.ccr.2009.12.020] [PMID: 20129251]
[38]
Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; Frank, A.; Bayazitov, I.T.; Zakharenko, S.S.; Gajjar, A.; Davidoff, A.; Gilbertson, R.J. A perivascular niche for brain tumor stem cells. Cancer Cell, 2007, 11(1), 69-82.
[http://dx.doi.org/10.1016/j.ccr.2006.11.020] [PMID: 17222791]
[39]
Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev., 2015, 29(12), 1203-1217.
[http://dx.doi.org/10.1101/gad.261982.115] [PMID: 26109046]
[40]
Mir, S.E.; De Witt Hamer, P.C.; Krawczyk, P.M.; Balaj, L.; Claes, A.; Niers, J.M.; Van Tilborg, A.A.; Zwinderman, A.H.; Geerts, D.; Kaspers, G.J.; Peter Vandertop, W.; Cloos, J.; Tannous, B.A.; Wesseling, P.; Aten, J.A.; Noske, D.P.; Van Noorden, C.J.; Würdinger, T. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell, 2010, 18(3), 244-257.
[http://dx.doi.org/10.1016/j.ccr.2010.08.011] [PMID: 20832752]
[41]
Rama, A.R.; Alvarez, P.J.; Madeddu, R.; Aranega, A. ABC transporters as differentiation markers in glioblastoma cells. Mol. Biol. Rep., 2014, 41(8), 4847-4851.
[http://dx.doi.org/10.1007/s11033-014-3423-z] [PMID: 25028266]
[42]
Hira, V.V.; Ploegmakers, K.J.; Grevers, F.; Verbovšek, U.; Silvestre-Roig, C.; Aronica, E.; Tigchelaar, W.; Turnšek, T.L.; Molenaar, R.J.; Van Noorden, C.J. CD133+ and Nestin+ Glioma Stem-Like Cells Reside Around CD31+ Arterioles in Niches that Express SDF-1α, CXCR4, Osteopontin and Cathepsin K. J. Histochem. Cytochem., 2015, 63(7), 481-493.
[http://dx.doi.org/10.1369/0022155415581689] [PMID: 25809793]
[43]
Shipitsin, M.; Polyak, K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab. Invest., 2008, 88(5), 459-463.
[http://dx.doi.org/10.1038/labinvest.2008.14] [PMID: 18379567]
[44]
Nouri, M.; Caradec, J.; Lubik, A.A.; Li, N.; Hollier, B.G.; Takhar, M.; Altimirano-Dimas, M.; Chen, M.; Roshan-Moniri, M.; Butler, M.; Lehman, M.; Bishop, J.; Truong, S.; Huang, S.C.; Cochrane, D.; Cox, M.; Collins, C.; Gleave, M.; Erho, N.; Alshalafa, M.; Davicioni, E.; Nelson, C.; Gregory-Evans, S.; Karnes, R.J.; Jenkins, R.B.; Klein, E.A.; Buttyan, R. Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget, 2017, 8(12), 18949-18967.
[http://dx.doi.org/10.18632/oncotarget.14850] [PMID: 28145883]
[45]
Auffinger, B.; Spencer, D.; Pytel, P.; Ahmed, A.U.; Lesniak, M.S. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev. Neurother., 2015, 15(7), 741-752.
[http://dx.doi.org/10.1586/14737175.2015.1051968] [PMID: 26027432]
[46]
Schonberg, D.L.; Lubelski, D.; Miller, T.E.; Rich, J.N. Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol. Aspects Med., 2014, 39, 82-101.
[http://dx.doi.org/10.1016/j.mam.2013.06.004] [PMID: 23831316]
[47]
Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.; Dirks, P.B. Identification of human brain tumour initiating cells. Nature, 2004, 432(7015), 396-401.
[http://dx.doi.org/10.1038/nature03128] [PMID: 15549107]
[48]
Tchoghandjian, A.; Baeza, N.; Colin, C.; Cayre, M.; Metellus, P.; Beclin, C.; Ouafik, L.; Figarella-Branger, D. A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol., 2010, 20(1), 211-221.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00269.x] [PMID: 19243384]
[49]
Anido, J.; Sáez-Borderías, A.; Gonzàlez-Juncà, A.; Rodón, L.; Folch, G.; Carmona, M.A.; Prieto-Sánchez, R.M.; Barba, I.; Martínez-Sáez, E.; Prudkin, L.; Cuartas, I.; Raventós, C.; Martínez-Ricarte, F.; Poca, M.A.; García-Dorado, D.; Lahn, M.M.; Yingling, J.M.; Rodón, J.; Sahuquillo, J.; Baselga, J.; Seoane, J. TGF-β Receptor Inhibitors Target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell, 2010, 18(6), 655-668.
[http://dx.doi.org/10.1016/j.ccr.2010.10.023] [PMID: 21156287]
[50]
Son, M.J.; Woolard, K.; Nam, D.H.; Lee, J.; Fine, H.A. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell, 2009, 4(5), 440-452.
[http://dx.doi.org/10.1016/j.stem.2009.03.003] [PMID: 19427293]
[51]
Shi, C.; Zheng, D.D.; Wu, F.M.; Liu, J.; Xu, J. The phosphatidyl inositol 3 kinase-glycogen synthase kinase 3β pathway mediates bilobalide-induced reduction in amyloid β-peptide. Neurochem. Res., 2012, 37(2), 298-306.
[http://dx.doi.org/10.1007/s11064-011-0612-1] [PMID: 21952928]
[52]
Bao, S.; Wu, Q.; Li, Z.; Sathornsumetee, S.; Wang, H.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res., 2008, 68(15), 6043-6048.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1079] [PMID: 18676824]
[53]
Lathia, J.D.; Gallagher, J.; Heddleston, J.M.; Wang, J.; Eyler, C.E.; Macswords, J.; Wu, Q.; Vasanji, A.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell, 2010, 6(5), 421-432.
[http://dx.doi.org/10.1016/j.stem.2010.02.018] [PMID: 20452317]
[54]
Zhao, K.; Wang, Q.; Wang, Y.; Huang, K.; Yang, C.; Li, Y.; Yi, K.; Kang, C. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett., 2017, 406, 12-21.
[http://dx.doi.org/10.1016/j.canlet.2017.07.022] [PMID: 28778566]
[55]
Xiao, H.; Zeng, Y.; Wang, Q.; Wei, S.; Zhu, X. A novel positive feedback loop between NTSR1 and Wnt/β-Catenin contributes to tumor growth of glioblastoma. Cell. Physiol. Biochem., 2017, 43(5), 2133-2142.
[http://dx.doi.org/10.1159/000484232] [PMID: 29065410]
[56]
Cherepanov, S.A.; Cherepanova, K.I.; Grinenko, N.F.; Antonova, O.M.; Chekhonin, V.P. Effect of hedgehog signaling pathway activation on proliferation of high-grade gliomas. Bull. Exp. Biol. Med., 2016, 161(5), 674-678.
[http://dx.doi.org/10.1007/s10517-016-3483-2] [PMID: 27709388]
[57]
Akiyama, Y.; Nonomura, C.; Ashizawa, T.; Iizuka, A.; Kondou, R.; Miyata, H.; Sugino, T.; Mitsuya, K.; Hayashi, N.; Nakasu, Y.; Asai, A.; Ito, M.; Kiyohara, Y.; Yamaguchi, K. The anti-tumor activity of the STAT3 inhibitor STX-0119 occurs via promotion of tumor-infiltrating lymphocyte accumulation in temozolomide-resistant glioblastoma cell line. Immunol. Lett., 2017, 190, 20-25.
[http://dx.doi.org/10.1016/j.imlet.2017.07.005] [PMID: 28716484]
[58]
Wang, Q.; Wang, H.; Jia, Y.; Ding, H.; Zhang, L.; Pan, H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncol. Lett., 2017, 14(3), 3545-3551.
[http://dx.doi.org/10.3892/ol.2017.6643] [PMID: 28927111]
[59]
Bexell, D.; Gunnarsson, S.; Siesjö, P.; Bengzon, J.; Darabi, A. CD133+ and nestin+ tumor-initiating cells dominate in N29 and N32 experimental gliomas. Int. J. Cancer, 2009, 125(1), 15-22.
[http://dx.doi.org/10.1002/ijc.24306] [PMID: 19291792]
[60]
SongTao. Q.; Lei, Y.; Si, G.; YanQing, D.; HuiXia, H.; XueLin, Z.; LanXiao, W.; Fei, Y. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci., 2012, 103(2), 269-273.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02134.x] [PMID: 22034964]
[61]
Yang, P.; Zhang, W.; Wang, Y.; Peng, X.; Chen, B.; Qiu, X.; Li, G.; Li, S.; Wu, C.; Yao, K.; Li, W.; Yan, W.; Li, J.; You, Y.; Chen, C.C.; Jiang, T. IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget, 2015, 6(38), 40896-40906.
[http://dx.doi.org/10.18632/oncotarget.5683] [PMID: 26503470]
[62]
Yuan, Y.; Qi, C.; Maling, G.; Xiang, W.; Yanhui, L.; Ruofei, L.; Yunhe, M.; Jiewen, L.; Qing, M. TERT mutation in glioma: Frequency, prognosis and risk. J. Clin. Neurosci., 2016, 26, 57-62.
[http://dx.doi.org/10.1016/j.jocn.2015.05.066] [PMID: 26765760]
[63]
Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol., 2017, 35(21), 2402-2409.
[http://dx.doi.org/10.1200/JCO.2017.73.0119] [PMID: 28640706]
[64]
Felthun, J.; Reddy, R.; McDonald, K.L. How immunotherapies are targeting the glioblastoma immune environment. J. Clin. Neurosci., 2017.
[http://dx.doi.org/10.1016/j.jocn.2017.10.019] [PMID: 29042147]
[65]
Batash, R.; Asna, N.; Schaffer, P.; Francis, N.; Schaffer, M. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr. Med. Chem., 2017, 24(27), 3002-3009.
[http://dx.doi.org/10.2174/0929867324666170516123206] [PMID: 28521700]
[66]
Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release, 2017, 264, 306-332.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[67]
Bharadwaj, V.N.; Nguyen, D.T.; Kodibagkar, V.D.; Stabenfeldt, S.E. Nanoparticle-based therapeutics for brain injury. Adv. Healthc. Mater., 2017.
[http://dx.doi.org/10.1002/adhm.201700668] [PMID: 29034608]
[68]
Comoglu, T.; Arisoy, S.; Akkus, Z.B. Nanocarriers for effective brain drug delivery. Curr. Top. Med. Chem., 2017, 17(13), 1490-1506.
[http://dx.doi.org/10.2174/1568026616666161222101355] [PMID: 28017157]
[69]
Kafa, H.; Wang, J.T.; Al-Jamal, K.T. Current perspective of carbon nanotubes application in neurology. Int. Rev. Neurobiol., 2016, 130, 229-263.
[http://dx.doi.org/10.1016/bs.irn.2016.07.001] [PMID: 27678179]
[70]
Cheng, S.; Jin, Y.; Wang, N.; Cao, F.; Zhang, W.; Bai, W.; Zheng, W.; Jiang, X. Self-adjusting, polymeric multilayered roll that can keep the shapes of the blood vessel scaffolds during biodegradation. Adv. Mater., 2017, 29(28)
[http://dx.doi.org/10.1002/adma.201700171] [PMID: 28514016]
[71]
Cholewa, H.; Duda, K.; Labuzek, K.; Okopien, B. [The newest perspectives on the treatment of glioblastoma multiforme] Pol. Merkuriusz Lek., 2014, 37(218), 119-123.
[PMID: 25252449]
[72]
Maity, A.R.; Stepensky, D. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies. Int. J. Pharm., 2015, 496(2), 268-274.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.053] [PMID: 26516100]
[73]
Bharadwaj, R.; Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene, 2004, 23(11), 2016-2027.
[http://dx.doi.org/10.1038/sj.onc.1207374] [PMID: 15021889]
[74]
Shen, Y.; Pi, Z.; Yan, F.; Yeh, C.K.; Zeng, X.; Diao, X.; Hu, Y.; Chen, S.; Chen, X.; Zheng, H. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int. J. Nanomedicine, 2017, 12, 5613-5629.
[http://dx.doi.org/10.2147/IJN.S136401] [PMID: 28848341]
[75]
Xin, H.; Jiang, X.; Gu, J.; Sha, X.; Chen, L.; Law, K.; Chen, Y.; Wang, X.; Jiang, Y.; Fang, X. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 2011, 32(18), 4293-4305.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.044] [PMID: 21427009]
[76]
Rehman, M.; Madni, A.; Shi, D.; Ihsan, A.; Tahir, N.; Chang, K.R.; Javed, I.; Webster, T.J. Enhanced blood brain barrier permeability and glioblastoma cell targeting via thermoresponsive lipid nanoparticles. Nanoscale, 2017, 9(40), 15434-15440.
[http://dx.doi.org/10.1039/C7NR05216B] [PMID: 28976512]
[77]
Kim, S.S.; Rait, A.; Rubab, F.; Rao, A.K.; Kiritsy, M.C.; Pirollo, K.F.; Wang, S.; Weiner, L.M.; Chang, E.H. The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells. Mol. Ther., 2014, 22(2), 278-291.
[http://dx.doi.org/10.1038/mt.2013.231] [PMID: 24113515]
[78]
Yang, Z.; Xiang, B.; Dong, D.; Wang, Z.; Li, J.; Qi, X. Dual receptor-specific peptides modified liposomes as VEGF siRNA vector for tumor-targeting therapy. Curr. Gene Ther., 2014, 14(4), 289-299.
[http://dx.doi.org/10.2174/1566523214666140612151726] [PMID: 25039617]
[79]
Yang, Z.Z.; Gao, W.; Liu, Y.J.; Pang, N.; Qi, X.R. Delivering siRNA and chemotherapeutic molecules across BBB and BTB for intracranial glioblastoma therapy. Mol. Pharm., 2017, 14(4), 1012-1022.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00819] [PMID: 28252970]
[80]
Zhang, H.; Gao, S. Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro. Int. J. Pharm., 2007, 329(1-2), 122-128.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.027] [PMID: 17000068]
[81]
Tian, X.H.; Lin, X.N.; Wei, F.; Feng, W.; Huang, Z.C.; Wang, P.; Ren, L.; Diao, Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int. J. Nanomedicine, 2011, 6, 445-452.
[http://dx.doi.org/10.2147/IJN.S16570 ] [PMID: 21445277]
[82]
Kim, S.S.; Rait, A.; Kim, E.; Pirollo, K.F.; Chang, E.H. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine (Lond.), 2015, 11(2), 301-311.
[http://dx.doi.org/10.1016/j.nano.2014.09.005] [PMID: 25240597]
[83]
De Monte, C.; Carradori, S.; Gentili, A.; Mollica, A.; Trisciuoglio, D.; Supuran, C.T. Dual cyclooxygenase and carbonic anhydrase inhibition by nonsteroidal anti-inflammatory drugs for the treatment of cancer. Curr. Med. Chem., 2015, 22(24), 2812-2818.
[http://dx.doi.org/10.2174/0929867322666150716113501] [PMID: 26180003]
[84]
Suzuki, K.; Gerelchuluun, A.; Hong, Z.; Sun, L.; Zenkoh, J.; Moritake, T.; Tsuboi, K. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress. Neuro-oncol., 2013, 15(9), 1186-1199.
[http://dx.doi.org/10.1093/neuonc/not062] [PMID: 23658321]
[85]
Vera, M.; Barcia, E.; Negro, S.; Marcianes, P.; García-García, L.; Slowing, K.; Fernández-Carballido, A. New celecoxib multiparticulate systems to improve glioblastoma treatment. Int. J. Pharm., 2014, 473(1-2), 518-527.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.028] [PMID: 25066075]
[86]
Allhenn, D.; Neumann, D.; Béduneau, A.; Pellequer, Y.; Lamprecht, A.A. “drug cocktail” delivered by microspheres for the local treatment of rat glioblastoma. J. Microencapsul., 2013, 30(7), 667-673.
[http://dx.doi.org/10.3109/02652048.2013.774446] [PMID: 23448182]
[87]
Costa, P.M.; Cardoso, A.L.; Mendonça, L.S.; Serani, A.; Custódia, C.; Conceição, M.; Simões, S.; Moreira, J.N.; Pereira de Almeida, L.; Pedroso de Lima, M.C. Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Mol. Ther. Nucleic Acids, 2013, 2e100
[http://dx.doi.org/10.1038/mtna.2013.30] [PMID: 23778499]
[88]
Lvov, Y.M.; Pattekari, P.; Zhang, X.; Torchilin, V. Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir, 2011, 27(3), 1212-1217.
[http://dx.doi.org/10.1021/la1041635] [PMID: 21190345]
[89]
Costa, P.M.; Cardoso, A.L.; Custódia, C.; Cunha, P.; Pereira de Almeida, L.; Pedroso de Lima, M.C. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma. J. Control. Release, 2015, 207, 31-39.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.002] [PMID: 25861727]
[90]
Gabizon, A.; Martin, F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs, 1997, 54(Suppl. 4), 15-21.
[http://dx.doi.org/10.2165/00003495-199700544-00005] [PMID: 9361957]
[91]
Madane, R.G.; Mahajan, H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv., 2016, 23(4), 1326-1334.
[PMID: 25367836]
[92]
Kuo, Y.C.; Cheng, S.J. Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int. J. Pharm., 2016, 499(1-2), 10-19.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.054] [PMID: 26721730]
[93]
Joo, K.M.; Kim, S.Y.; Jin, X.; Song, S.Y.; Kong, D.S.; Lee, J.I.; Jeon, J.W.; Kim, M.H.; Kang, B.G.; Jung, Y.; Jin, J.; Hong, S.C.; Park, W.Y.; Lee, D.S.; Kim, H.; Nam, D.H. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab. Invest., 2008, 88(8), 808-815.
[http://dx.doi.org/10.1038/labinvest.2008.57] [PMID: 18560366]
[94]
Setua, S.; Ouberai, M.; Piccirillo, S.G.; Watts, C.; Welland, M. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale, 2014, 6(18), 10865-10873.
[http://dx.doi.org/10.1039/C4NR03693J] [PMID: 25117686]
[95]
Xiao, F.; Zheng, Y.; Cloutier, P.; He, Y.; Hunting, D.; Sanche, L. On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology, 2011, 22(46)465101
[http://dx.doi.org/10.1088/0957-4484/22/46/465101] [PMID: 22024607]
[96]
Xu, R.; Ma, J.; Sun, X.; Chen, Z.; Jiang, X.; Guo, Z.; Huang, L.; Li, Y.; Wang, M.; Wang, C.; Liu, J.; Fan, X.; Gu, J.; Chen, X.; Zhang, Y.; Gu, N. Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Res., 2009, 19(8), 1031-1034.
[http://dx.doi.org/10.1038/cr.2009.89] [PMID: 19621033]
[97]
Orza, A.; Soriţău, O.; Tomuleasa, C.; Olenic, L.; Florea, A.; Pana, O.; Bratu, I.; Pall, E.; Florian, S.; Casciano, D.; Biris, A.S. Reversing chemoresistance of malignant glioma stem cells using gold nanoparticles. Int. J. Nanomedicine, 2013, 8, 689-702.
[http://dx.doi.org/10.2147/IJN.S37481] [PMID: 23467447]
[98]
Irani, M.; Mir Mohamad Sadeghi, G.; Haririan, I. Gold coated poly (ε-caprolactonediol) based polyurethane nanofibers for controlled release of temozolomide. Biomed. Pharmacother., 2017, 88, 667-676.
[http://dx.doi.org/10.1016/j.biopha.2017.01.097] [PMID: 28152475]
[99]
Zhong, Y.; Wang, C.; Cheng, R.; Cheng, L.; Meng, F.; Liu, Z.; Zhong, Z. cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. J. Control. Release, 2014, 195, 63-71.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.054] [PMID: 25108151]
[100]
Barnaby, S.N.; Sita, T.L.; Petrosko, S.H.; Stegh, A.H.; Mirkin, C.A. Therapeutic applications of spherical nucleic acids. Cancer Treat. Res, 2015. 166, 23-50.
[http://dx.doi.org/10.1007/978-3-319-16555-4_2] [PMID: 25895863]
[101]
Bishop, C.J.; Tzeng, S.Y.; Green, J.J. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater., 2015, 11, 393-403.
[http://dx.doi.org/10.1016/j.actbio.2014.09.020] [PMID: 25246314]
[102]
Yue, J.; Feliciano, T.J.; Li, W.; Lee, A.; Odom, T.W. Gold nanoparticle size and shape effects on cellular uptake and intracellular distribution of siRNA nanoconstructs. Bioconjug. Chem., 2017, 28(6), 1791-1800.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00252] [PMID: 28574255]
[103]
Alfardus, H.; McIntyre, A.; Smith, S. MicroRNA regulation of glycolytic metabolism in glioblastoma. BioMed Res. Int., 2017.20179157370
[http://dx.doi.org/10.1155/2017/9157370] [PMID: 28804724]
[104]
Dai, D.W.; Lu, Q.; Wang, L.X.; Zhao, W.Y.; Cao, Y.Q.; Li, Y.N.; Han, G.S.; Liu, J.M.; Yue, Z.J. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM. BMC Cancer, 2013, 13, 478.
[http://dx.doi.org/10.1186/1471-2407-13-478] [PMID: 24124917]
[105]
Zhao, S.; Liu, H.; Liu, Y.; Wu, J.; Wang, C.; Hou, X.; Chen, X.; Yang, G.; Zhao, L.; Che, H.; Bi, Y.; Wang, H.; Peng, F.; Ai, J. miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells. Cancer Lett., 2013, 333(2), 253-260.
[http://dx.doi.org/10.1016/j.canlet.2013.01.039] [PMID: 23376635]
[106]
Kouri, F.M.; Hurley, L.A.; Daniel, W.L.; Day, E.S.; Hua, Y.; Hao, L.; Peng, C.Y.; Merkel, T.J.; Queisser, M.A.; Ritner, C.; Zhang, H.; James, C.D.; Sznajder, J.I.; Chin, L.; Giljohann, D.A.; Kessler, J.A.; Peter, M.E.; Mirkin, C.A.; Stegh, A.H. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev., 2015, 29(7), 732-745.
[http://dx.doi.org/10.1101/gad.257394.114] [PMID: 25838542]
[107]
Yang, T.D.; Choi, W.; Yoon, T.H.; Lee, K.J.; Lee, J.S.; Joo, J.H.; Lee, M.G.; Yim, H.S.; Choi, K.M.; Kim, B.; Lee, J.J.; Kim, H.; Lee, D.Y.; Jung, K.Y.; Baek, S.K. In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells. Biomed. Opt. Express, 2015, 7(1), 185-193.
[http://dx.doi.org/10.1364/BOE.7.000185] [PMID: 26819827]
[108]
Hirschberg, H.; Madsen, S.J. Cell mediated photothermal therapy of brain tumors. J. Neuroimmune Pharmacol., 2017, 12(1), 99-106.
[http://dx.doi.org/10.1007/s11481-016-9690-9] [PMID: 27289473]
[109]
Li, L.; Zhang, L.; Knez, M. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol. Res., 2016, 110, 1-9.
[http://dx.doi.org/10.1016/j.phrs.2016.05.006] [PMID: 27157249]
[110]
He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: biology and translational Medicine. Theranostics, 2018, 8(1), 237-255.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[111]
Li, P.; Feng, J.; Liu, Y.; Liu, Q.; Fan, L.; Liu, Q.; She, X.; Liu, C.; Liu, T.; Zhao, C.; Wang, W.; Li, G.; Wu, M. Novel therapy for glioblastoma multiforme by restoring LRRC4 in tumor cells: lrrc4 inhibits tumor-infitrating regulatory T cells by cytokine and programmed cell death 1-containing exosomes. Front. Immunol., 2017, 8, 1748.
[http://dx.doi.org/10.3389/fimmu.2017.01748] [PMID: 29312296]
[112]
Srivastava, A.; Babu, A.; Filant, J.; Moxley, K.M.; Ruskin, R.; Dhanasekaran, D.; Sood, A.K.; McMeekin, S.; Ramesh, R. Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J. Biomed. Nanotechnol., 2016, 12(6), 1159-1173.
[http://dx.doi.org/10.1166/jbn.2016.2205] [PMID: 27319211]
[113]
Roesch, S.; Rapp, C.; Dettling, S.; Herold-Mende, C. When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int. J. Mol. Sci., 2018, 19(2)E436
[http://dx.doi.org/10.3390/ijms19020436] [PMID: 29389898]
[114]
Sørensen, M.D.; Dahlrot, R.H.; Boldt, H.B.; Hansen, S.; Kristensen, B.W. Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol. Appl. Neurobiol., 2018, 44(2), 185-206.
[http://dx.doi.org/10.1111/nan.12428] [PMID: 28767130]
[115]
Zhu, C.; Mustafa, D.; Zheng, P.P.; van der Weiden, M.; Sacchetti, A.; Brandt, M.; Chrifi, I.; Tempel, D.; Leenen, P.J.M.; Duncker, D.J.; Cheng, C.; Kros, J.M. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro-oncol., 2017, 19(5), 648-659.
[http://dx.doi.org/10.1093/neuonc/now251] [PMID: 28453746]
[116]
Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; Setty, M.; Leslie, C.S.; Oei, Y.; Pedraza, A.; Zhang, J.; Brennan, C.W.; Sutton, J.C.; Holland, E.C.; Daniel, D.; Joyce, J.A. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med., 2013, 19(10), 1264-1272.
[http://dx.doi.org/10.1038/nm.3337] [PMID: 24056773]
[117]
Szulzewsky, F.; Arora, S.; de Witte, L.; Ulas, T.; Markovic, D.; Schultze, J.L.; Holland, E.C.; Synowitz, M.; Wolf, S.A.; Kettenmann, H. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia, 2016, 64(8), 1416-1436.
[http://dx.doi.org/10.1002/glia.23014] [PMID: 27312099]
[118]
Oushy, S.; Hellwinkel, J.E.; Wang, M.; Nguyen, G.J.; Gunaydin, D.; Harland, T.A.; Anchordoquy, T.J.; Graner, M.W. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018. 373(1737), 373.
[http://dx.doi.org/10.1098/rstb.2016.0477] [PMID: 29158308]
[119]
Zhang, L.; Zhang, S.; Yao, J.; Lowery, F.J.; Zhang, Q.; Huang, W.C.; Li, P.; Li, M.; Wang, X.; Zhang, C.; Wang, H.; Ellis, K.; Cheerathodi, M.; McCarty, J.H.; Palmieri, D.; Saunus, J.; Lakhani, S.; Huang, S.; Sahin, A.A.; Aldape, K.D.; Steeg, P.S.; Yu, D. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 2015, 527(7576), 100-104.
[http://dx.doi.org/10.1038/nature15376] [PMID: 26479035]
[120]
Greening, D.W.; Xu, R.; Ji, H.; Tauro, B.J.; Simpson, R.J. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol., 2015, 1295, 179-209.
[http://dx.doi.org/10.1007/978-1-4939-2550-6_15] [PMID: 25820723]
[121]
Smith, Z.J.; Lee, C.; Rojalin, T.; Carney, R.P.; Hazari, S.; Knudson, A.; Lam, K.; Saari, H.; Ibañez, E.L.; Viitala, T.; Laaksonen, T.; Yliperttula, M.; Wachsmann-Hogiu, S. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J. Extracell. Vesicles, 2015, 4, 28533.
[http://dx.doi.org/10.3402/jev.v4.28533] [PMID: 26649679]
[122]
Prabhu, S.; Goda, J.S.; Mutalik, S.; Mohanty, B.S.; Chaudhari, P.; Rai, S.; Udupa, N.; Rao, B.S.S. A polymeric temozolomide nanocomposite against orthotopic glioblastoma xenograft: tumor-specific homing directed by nestin. Nanoscale, 2017, 9(30), 10919-10932.
[http://dx.doi.org/10.1039/C7NR00305F] [PMID: 28731079]
[123]
Nair, R.V.; Santhakumar, H.; Jayasree, R.S. Gold nanorods decorated with a cancer drug for multimodal imaging and therapy. Faraday Discuss., 2018, 207, 423-435.
[http://dx.doi.org/10.1039/C7FD00185A] [PMID: 29355869]
[124]
Lozada-Delgado, E.L.; Grafals-Ruiz, N.; Vivas-Mejía, P.E. RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials. Life Sci., 2017, 188, 26-36.
[http://dx.doi.org/10.1016/j.lfs.2017.08.027] [PMID: 28864225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy