Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods

Author(s): Adriana Mika*, Tomasz Sledzinski and Piotr Stepnowski

Volume 26, Issue 1, 2019

Page: [60 - 103] Pages: 44

DOI: 10.2174/0929867324666171003121127

Price: $65

Abstract

Background: Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases.

Objective: We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases.

Method: Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article.

Results: The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry.

Conclusion: Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.

Keywords: Combined techniques, fatty acids, gas chromatography, liquid chromatography, metabolic diseases, mass spectrometry imaging, phospholipids, shotgun lipidomics.

[1]
Redinger, R.N. The pathophysiology of obesity and its clinical manifestations. Gastroenterol. Hepatol. (N. Y.), 2007, 3(11), 856-863.
[2]
Pietiläinen, K.H.; Sysi-Aho, M.; Rissanen, A.; Seppänen-Laakso, T.; Yki-Järvinen, H.; Kaprio, J.; Orešič, M. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects--a monozygotic twin study. PLoS One, 2007, 2(2), e218.
[3]
Donovan, E.L.; Pettine, S.M.; Hickey, M.S.; Hamilton, K.L.; Miller, B.F. Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol. Metab. Syndr., 2013, 5(1), 24.
[4]
Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol., 2009, 53(21), 1925-1932.
[5]
Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Cardiovascular benefits of bariatric surgery in morbidly obese patients. Obes. Rev., 2011, 12(7), 515-524.
[6]
Yetukuri, L.; Katajamaa, M.; Medina-Gomez, G.; Seppänen-Laakso, T.; Vidal-Puig, A.; Orešič, M. Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol., 2007, 1(1), 12.
[7]
Vaziri, N.D. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am. J. Physiol. Renal Physiol., 2006, 290(2), F262-F272.
[8]
Bargiota, A.; Diamanti-Kandarakis, E. The effects of old, new and emerging medicines on metabolic aberrations in PCOS. Ther. Adv. Endocrinol. Metab., 2012, 3(1), 27-47.
[9]
Blomberg, M.I.; Källén, B. Maternal obesity and morbid obesity: the risk for birth defects in the offspring. Birth Defects Res. A Clin. Mol. Teratol., 2010, 88(1), 35-40.
[10]
Adosraku, R.K.; Choi, G.T.Y.; Constantinou-Kokotos, V.; Anderson, M.M.; Gibbons, W.A. NMR lipid profiles of cells, tissues, and body fluids: proton NMR analysis of human erythrocyte lipids. J. Lipid Res., 1994, 35(11), 1925-1931.
[11]
Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem., 2003, 49(11), 1797-1817.
[12]
Ekroos, K.; Jänis, M.; Tarasov, K.; Hurme, R.; Laaksonen, R. Lipidomics: a tool for studies of atherosclerosis. Curr. Atheroscler. Rep., 2010, 12(4), 273-281.
[13]
Blanksby, S.J.; Mitchell, T.W. Advances in mass spectrometry for lipidomics. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2010, 3, 433-465.
[14]
Gowda, G.A.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn., 2008, 8(5), 617-633.
[15]
Teo, C.C.; Chong, W.P.K.; Tan, E.; Basri, N.B.; Low, Z.J.; Ho, Y.S. Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. TrAC -. Trends Analyt. Chem., 2015, 66, 1-18.
[16]
Watson, A.D. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J. Lipid Res., 2006, 47(10), 2101-2111.
[17]
Wang, M.; Wang, C.; Han, R.H.; Han, X. Novel advances in shotgun lipidomics for biology and medicine. Prog. Lipid Res., 2016, 61, 83-108.
[18]
Lin, Y.H.; Hanson, J.A.; Strandjord, S.E.; Salem, N.M.; Dretsch, M.N.; Haub, M.D.; Hibbeln, J.R. Fast transmethylation of total lipids in dried blood by microwave irradiation and its application to a population study. Lipids, 2014, 49(8), 839-851.
[19]
Bamba, T.; Lee, J.W.; Matsubara, A.; Fukusaki, E. Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J. Chromatogr. A, 2012, 1250, 212-219.
[20]
Kopf, T.; Schmitz, G. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 938, 22-26.
[21]
Nishijima, F.; Hidaka, E.; Kubota, N.; Ono, T.; Nakamura, T.; Honda, T.; Hongo, M.; Hidaka, H. [Rapid and Easy Measurement of Serum Fatty Acid Composition of Neonates, Infants and Young People Using the Gas Chromatography Mass Spectrometry]. Rinsho Byori, 2015, 63(2), 187-193.
[22]
Li, X.; Xu, Z.; Lu, X.; Yang, X.; Yin, P.; Kong, H.; Yu, Y.; Xu, G. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Anal. Chim. Acta, 2009, 633(2), 257-262.
[23]
Chen, J.; Wang, W.; Lv, S.; Yin, P.; Zhao, X.; Lu, X.; Zhang, F.; Xu, G. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal. Chim. Acta, 2009, 650(1), 3-9.
[24]
Lísa, M.; Cífková, E.; Holčapek, M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A, 2011, 1218(31), 5146-5156.
[25]
García-Cañaveras, J.C.; Donato, M.T.; Castell, J.V.; Lahoz, A. A comprehensive untargeted metabonomic analysis of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals important metabolic alterations. J. Proteome Res., 2011, 10(10), 4825-4834.
[26]
Holčapek, M.; Cífková, E.; Červená, B.; Lísa, M.; Vostálová, J.; Galuszka, J. Determination of nonpolar and polar lipid classes in human plasma, erythrocytes and plasma lipoprotein fractions using ultrahigh-performance liquid chromatography-mass spectrometry. J. Chromatogr. A, 2015, 1377, 85-91.
[27]
Holčapek, M.; Červená, B.; Cífková, E.; Lísa, M.; Chagovets, V.; Vostálová, J.; Bancířová, M.; Galuszka, J.; Hill, M. Lipidomic analysis of plasma, erythrocytes and lipoprotein fractions of cardiovascular disease patients using UHPLC/MS, MALDI-MS and multivariate data analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 990, 52-63.
[28]
Calderón-Santiago, M.; Priego-Capote, F.; Galache-Osuna, J.G.; Luque de Castro, M.D. Analysis of serum phospholipid profiles by liquid chromatography-tandem mass spectrometry in high resolution mode for evaluation of atherosclerotic patients. J. Chromatogr. A, 2014, 1371, 154-162.
[29]
Bletsou, A.A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N.S. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC -. Trends Analyt. Chem., 2015, 66, 32-44.
[30]
Hu, Q.; Noll, R.J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R. The Orbitrap: a new mass spectrometer. J. Mass Spectrom., 2005, 40(4), 430-443.
[31]
Yamada, T.; Uchikata, T.; Sakamoto, S.; Yokoi, Y.; Fukusaki, E.; Bamba, T. Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J. Chromatogr. A, 2013, 1292, 211-218.
[32]
Blanksby, S.J.; Mitchell, T.W. Advances in mass spectrometry for lipidomics. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2010, 3, 433-465.
[33]
Prasain, J.K.; Wilson, L.; Hoang, H.D.; Moore, R.; Miller, M.A. Comparative Lipidomics of Caenorhabditis elegans Metabolic Disease Models by SWATH Non-Targeted Tandem Mass Spectrometry. Metabolites, 2015, 5(4), 677-696.
[34]
Jelonek, K.; Ros, M.; Pietrowska, M. Cancer biomarkers and mass spectrometry-based analyses of phospholipids in body fluids. Clin. Lipidol., 2013, 8(1), 137-150.
[35]
Levery, S.B. Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol., 2005, 405(405), 300-369.
[36]
Kim, Y.; Shanta, S.R.; Zhou, L-H.; Kim, K.P. Mass spectrometry based cellular phosphoinositides profiling and phospholipid analysis: a brief review. Exp. Mol. Med., 2010, 42(1), 1-11.
[37]
Li, L.; Han, J.; Wang, Z.; Liu, J.; Wei, J.; Xiong, S.; Zhao, Z. Mass spectrometry methodology in lipid analysis. Int. J. Mol. Sci., 2014, 15(6), 10492-10507.
[38]
Jäverfalk-Hoyes, E.; Upsaliensis, A.U. Development of methods in CE, CE-MS and MS / MS. Applications in pharmaceutical, biomedical and forensic sciences. Acta Univ. Ups., 2001, 257(1), 39.
[39]
Cruwys, J.A.; Dinsdale, R.M.; Hawkes, F.R.; Hawkes, D.L. Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters. J. Chromatogr. A, 2002, 945(1-2), 195-209.
[40]
McDonald, J.G.; Thompson, B.M.; McCrum, E.C.; Russell, D.W. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry. Methods Enzymol., 2007, 432(7), 145-170.
[41]
Schiller, J.; Süss, R.; Arnhold, J.; Fuchs, B.; Lessig, J.; Müller, M.; Petković, M.; Spalteholz, H.; Zschörnig, O.; Arnold, K. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog. Lipid Res., 2004, 43(5), 449-488.
[42]
Lodowska, J.; Zięba, A.; Wolny, D.; Węglarz, L.; Dzierzewicz, Z. [Methods of lipopolysaccharide component derivation in evaluating their structures by chromatographic techniques]. Postepy Hig. Med. Dosw., 2006, 60, 113-128.
[43]
Ichihara, K.; Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res., 2010, 51(3), 635-640.
[44]
Xu, F.; Zou, L.; Ong, C.N. Multiorigination of chromatographic peaks in derivatized GC/MS metabolomics: a confounder that influences metabolic pathway interpretation. J. Proteome Res., 2009, 8(12), 5657-5665.
[45]
Hall, L. M.; Murphy, R. C. Analysis of Stable Oxidized Molecular Species of Glycerophospholipids Following Treatment of Red Blood Cell Ghosts with t - Butylhydroperoxide 1998, 194, (2), 184-194.
[46]
Raftery, D. High-throughput NMR spectroscopy. Anal. Bioanal. Chem., 2004, 378(6), 1403-1404.
[47]
O’Hagan, S.; Dunn, W.B.; Knowles, J.D.; Broadhurst, D.; Williams, R.; Ashworth, J.J.; Cameron, M.; Kell, D.B. Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Anal. Chem., 2007, 79(2), 464-476.
[48]
Pasikanti, K.K.; Ho, P.C.; Chan, E.C.Y. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 871(2), 202-211.
[49]
Payeur, A.L.; Lorenz, M.A.; Kennedy, R.T. Analysis of fatty acid composition in insulin secreting cells by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 187-192.
[50]
Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246(4926), 64-71.
[51]
Duncan, M.W.; Roder, H.; Hunsucker, S.W. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief. Funct. Genomics Proteomics, 2008, 7(5), 355-370.
[52]
Pitt, J.J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin. Biochem. Rev., 2009, 30(1), 19-34.
[53]
Johanson, R.A.; Buccafusca, R.; Quong, J.N.; Shaw, M.A.; Berry, G.T. Phosphatidylcholine removal from brain lipid extracts expands lipid detection and enhances phosphoinositide quantification by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Anal. Biochem., 2007, 362(2), 155-167.
[54]
Schiller, J.; Hammerschmidt, S.; Wirtz, H.; Arnhold, J.; Arnold, K. Lipid analysis of bronchoalveolar lavage fluid (BAL) by MALDI-TOF mass spectrometry and 31P NMR spectroscopy. Chem. Phys. Lipids, 2001, 112(1), 67-79.
[55]
Vergara, D.; D’Alessandro, M.; Rizzello, A.; De Riccardis, L.; Lunetti, P.; Del Boccio, P.; De Robertis, F.; Trianni, G.; Maffia, M.; Giudetti, A.M. A lipidomic approach to the study of human CD4(+) T lymphocytes in multiple sclerosis. BMC Neurosci., 2015, 16(1), 46.
[56]
Hidaka, H.; Hanyu, N.; Sugano, M.; Kawasaki, K.; Yamauchi, K.; Katsuyama, T. Analysis of human serum lipoprotein lipid composition using MALDI-TOF mass spectrometry. Ann. Clin. Lab. Sci., 2007, 37(3), 213-221.
[57]
Cornett, D.S.; Reyzer, M.L.; Chaurand, P.; Caprioli, R.M. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods, 2007, 4(10), 828-833.
[58]
Christie, W.W. Introduction to mass spectrometric analysis of lipids in lipidomics; Lipid Anal (4th ed.), 2012, pp. 277-303.
[59]
Chughtai, K.; Heeren, R.M.A. Mass spectrometric imaging for biomedical tissue analysis. Chem. Rev., 2010, 110(5), 3237-3277.
[60]
Seeley, E.H.; Caprioli, R.M. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol., 2011, 29(3), 136-143.
[61]
Manicke, N.E.; Nefliu, M.; Wu, C.; Woods, J.W.; Reiser, V.; Hendrickson, R.C.; Cooks, R.G. Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal. Chem., 2009, 81(21), 8702-8707.
[62]
Malmberg, P.; Börner, K.; Chen, Y.; Friberg, P.; Hagenhoff, B.; Månsson, J.E.; Nygren, H. Localization of lipids in the aortic wall with imaging TOF-SIMS. Biochim. Biophys. Acta, 2007, 1771(2), 185-195.
[63]
Mas, S.; Touboul, D.; Brunelle, A.; Aragoncillo, P.; Egido, J.; Laprévote, O.; Vivanco, F. Lipid cartography of atherosclerotic plaque by cluster-TOF-SIMS imaging. Analyst (Lond.), 2007, 132(1), 24-26.
[64]
Lehti, S.; Sjövall, P.; Käkelä, R.; Mäyränpää, M.I.; Kovanen, P.T.; Öörni, K. Spatial distributions of lipids in atherosclerosis of human coronary arteries studied by time-of-flight secondary ion mass spectrometry. Am. J. Pathol., 2015, 185(5), 1216-1233.
[65]
Fuchs, B.; Süss, R.; Schiller, J. An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res., 2010, 49(4), 450-475.
[66]
Fuchs, B. Mass spectrometry and inflammation--MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal. Bioanal. Chem., 2014, 406(5), 1291-1306.
[67]
Köfeler, H.C.; Fauland, A.; Rechberger, G.N.; Trötzmüller, M. Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites, 2012, 2(1), 19-38.
[68]
Schwudke, D.; Schuhmann, K.; Herzog, R.; Bornstein, S.R.; Shevchenko, A. Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb. Perspect. Biol., 2011, 3(9), a004614.
[69]
Puri, P.; Baillie, R.A.; Wiest, M.M.; Mirshahi, F.; Choudhury, J.; Cheung, O.; Sargeant, C.; Contos, M.J.; Sanyal, A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology, 2007, 46(4), 1081-1090.
[70]
Lobasso, S.; Lopalco, P.; Angelini, R.; Vitale, R.; Huber, H.; Müller, V.; Corcelli, A. Coupled TLC and MALDI-TOF/MS analyses of the lipid extract of the hyperthermophilic archaeon Pyrococcus furiosus. Archaea, 2012, 2012, 957852.
[71]
Elizondo, A.; Araya, J.; Rodrigo, R.; Poniachik, J.; Csendes, A.; Maluenda, F.; Díaz, J.C.; Signorini, C.; Sgherri, C.; Comporti, M.; Videla, L.A. Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity (Silver Spring), 2007, 15(1), 24-31.
[72]
Wilson, I.D.; Plumb, R.; Granger, J.; Major, H.; Williams, R.; Lenz, E.M. HPLC-MS-based methods for the study of metabonomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 817(1), 67-76.
[73]
Wilson, I.D.; Nicholson, J.K.; Castro-Perez, J.; Granger, J.H.; Johnson, K.A.; Smith, B.W.; Plumb, R.S. High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res., 2005, 4(2), 591-598.
[74]
Knittelfelder, O.L.; Weberhofer, B.P.; Eichmann, T.O.; Kohlwein, S.D.; Rechberger, G.N. A versatile ultra-high performance LC-MS method for lipid profiling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 951-952(1), 119-128.
[75]
Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal., 2014, 87, 12-25.
[76]
Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem., 2005, 77(13), 4108-4116.
[77]
Pourfarzam, M.; Zadhoush, F. Newborn Screening for inherited metabolic disorders; news and views. J. Res. Med. Sci., 2013, 18(9), 801-808.
[78]
Wilcken, B.; Wiley, V.; Hammond, J.; Carpenter, K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med., 2003, 348(23), 2304-2312.
[79]
Yi, L.Z.; He, J.; Liang, Y.Z.; Yuan, D.L.; Chau, F.T. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett., 2006, 580(30), 6837-6845.
[80]
Yi, L.; He, J.; Liang, Y.; Yuan, D.; Gao, H.; Zhou, H. Simultaneously quantitative measurement of comprehensive profiles of esterified and non-esterified fatty acid in plasma of type 2 diabetic patients. Chem. Phys. Lipids, 2007, 150(2), 204-216.
[81]
Pang, L.Q.; Liang, Q.L.; Wang, Y.M.; Ping, L.; Luo, G.A. Simultaneous determination and quantification of seven major phospholipid classes in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry and the application in diabetes nephropathy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 869(1-2), 118-125.
[82]
Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; Defronzo, R.A.; Kirwan, J.P. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes, 2009, 58(2), 337-343.
[83]
Puri, P.; Wiest, M.M.; Cheung, O.; Mirshahi, F.; Sargeant, C.; Min, H.K.; Contos, M.J.; Sterling, R.K.; Fuchs, M.; Zhou, H.; Watkins, S.M.; Sanyal, A.J. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 2009, 50(6), 1827-1838.
[84]
Feldstein, A.E.; Lopez, R.; Tamimi, T.A.; Yerian, L.; Chung, Y.M.; Berk, M.; Zhang, R.; McIntyre, T.M.; Hazen, S.L. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Lipid Res., 2010, 51(10), 3046-3054.
[85]
Bertea, M.; Rütti, M.F.; Othman, A.; Marti-Jaun, J.; Hersberger, M.; von Eckardstein, A.; Hornemann, T. Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis., 2010, 9, 84.
[86]
Zhao, X.; Fritsche, J.; Wang, J.; Chen, J.; Rittig, K.; Schmitt-Kopplin, P.; Fritsche, A.; Häring, H.U.; Schleicher, E.D.; Xu, G.; Lehmann, R. Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics, 2010, 6(3), 362-374.
[87]
Chen, X.; Liu, L.; Palacios, G.; Gao, J.; Zhang, N.; Li, G.; Lu, J.; Song, T.; Zhang, Y.; Lv, H. Plasma metabolomics reveals biomarkers of the atherosclerosis. J. Sep. Sci., 2010, 33(17-18), 2776-2783.
[88]
Han, L.D.; Xia, J.F.; Liang, Q.L.; Wang, Y.; Wang, Y.M.; Hu, P.; Li, P.; Luo, G.A. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal. Chim. Acta, 2011, 689(1), 85-91.
[89]
Othman, A.; Rütti, M.F.; Ernst, D.; Saely, C.H.; Rein, P.; Drexel, H.; Porretta-Serapiglia, C.; Lauria, G.; Bianchi, R.; von Eckardstein, A.; Hornemann, T. Plasma deoxysphingolipids: a novel class of biomarkers for the metabolic syndrome? Diabetologia, 2012, 55(2), 421-431.
[90]
Chen, S.; Chu, Y.; Zhao, X.; Gao, P.; Zhang, L.; Zhan, L.; Xu, G. HPLC-MS-Based Metabonomics Reveals Disordered Lipid Metabolism in Patients with Metabolic Syndrome. J. Anal. Sci. Technol., 2011, 2(Suppl. A), A173-A178.
[91]
Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; O’Donnell, C.J.; Carr, S.A.; Mootha, V.K.; Florez, J.C.; Souza, A.; Melander, O.; Clish, C.B.; Gerszten, R.E. Metabolite profiles and the risk of developing diabetes. Nat. Med., 2011, 17(4), 448-453.
[92]
Kalhan, S.C.; Guo, L.; Edmison, J.; Dasarathy, S.; McCullough, A.J.; Hanson, R.W.; Milburn, M. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism, 2011, 60(3), 404-413.
[93]
Rhee, E.P.; Cheng, S.; Larson, M.G.; Walford, G.A.; Lewis, G.D.; McCabe, E.; Yang, E.; Farrell, L.; Fox, C.S.; O’Donnell, C.J.; Carr, S.A.; Vasan, R.S.; Florez, J.C.; Clish, C.B.; Wang, T.J.; Gerszten, R.E. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest., 2011, 121(4), 1402-1411.
[94]
Barber, M.N.; Risis, S.; Yang, C.; Meikle, P.J.; Staples, M.; Febbraio, M.A.; Bruce, C.R. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One, 2012, 7(7), e41456.
[95]
Zhao, Y.; Fu, L.; Li, R.; Wang, L.N.; Yang, Y.; Liu, N.N.; Zhang, C.M.; Wang, Y.; Liu, P.; Tu, B.B.; Zhang, X.; Qiao, J. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med., 2012, 10(153), 153.
[96]
Escobar-Morreale, H.F.; Samino, S.; Insenser, M.; Vinaixa, M.; Luque-Ramírez, M.; Lasunción, M.A.; Correig, X. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: plasma metabolomic approach using GC-MS. Clin. Chem., 2012, 58(6), 999-1009.
[97]
Orešič, M.; Hyötyläinen, T.; Kotronen, A.; Gopalacharyulu, P.; Nygren, H.; Arola, J.; Castillo, S.; Mattila, I.; Hakkarainen, A.; Borra, R.J.H.; Honka, M.J.; Verrijken, A.; Francque, S.; Iozzo, P.; Leivonen, M.; Jaser, N.; Juuti, A.; Sørensen, T.I.; Nuutila, P.; Van Gaal, L.; Yki-Järvinen, H. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia, 2013, 56(10), 2266-2274.
[98]
Hellmuth, C.; Demmelmair, H.; Schmitt, I.; Peissner, W.; Blüher, M.; Koletzko, B. Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One, 2013, 8(10), e74927.
[99]
Strassburg, K.; Esser, D.; Vreeken, R.J.; Hankemeier, T.; Müller, M.; van Duynhoven, J.; van Golde, J.; van Dijk, S.J.; Afman, L.A.; Jacobs, D.M. Postprandial fatty acid specific changes in circulating oxylipins in lean and obese men after high-fat challenge tests. Mol. Nutr. Food Res., 2014, 58(3), 591-600.
[100]
Zhang, X.J.; Huang, L.L.; Su, H.; Chen, Y.X.; Huang, J.; He, C.; Li, P.; Yang, D.Z.; Wan, J.B. Characterizing plasma phospholipid fatty acid profiles of polycystic ovary syndrome patients with and without insulin resistance using GC-MS and chemometrics approach. J. Pharm. Biomed. Anal., 2014, 95, 85-92.
[101]
Niu, Z.; Lin, N.; Gu, R.; Sun, Y.; Feng, Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J. Clin. Endocrinol. Metab., 2014, 99(11), E2269-E2276.
[102]
Pickens, C.A.; Sordillo, L.M.; Comstock, S.S.; Harris, W.S.; Hortos, K.; Kovan, B.; Fenton, J.I. Plasma phospholipids, non-esterified plasma polyunsaturated fatty acids and oxylipids are associated with BMI. Prostaglandins Leukot. Essent. Fatty Acids, 2015, 95, 31-40.
[103]
Kasumov, T.; Solomon, T.P.J.; Hwang, C.; Huang, H.; Haus, J.M.; Zhang, R.; Kirwan, J.P. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes. Obesity (Silver Spring), 2015, 23(7), 1414-1421.
[104]
Zhu, Q.F.; Hao, Y.H.; Liu, M.Z.; Yue, J.; Ni, J.; Yuan, B.F.; Feng, Y.Q. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. J. Chromatogr. A, 2015, 1410, 154-163.
[105]
El-Najjar, N.; Orsó, E.; Wallner, S.; Liebisch, G.; Schmitz, G. Increased Levels of Sphingosylphosphorylcholine (SPC) in Plasma of Metabolic Syndrome Patients. PLoS One, 2015, 10(10), e0140683.
[106]
Loomba, R.; Quehenberger, O.; Armando, A.; Dennis, E.A. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J. Lipid Res., 2015, 56(1), 185-192.
[107]
Haoula, Z.; Ravipati, S.; Stekel, D.J.; Ortori, C.A.; Hodgman, C.; Daykin, C.; Raine-Fenning, N.; Barrett, D.A.; Atiomo, W. Lipidomic analysis of plasma samples from women with polycystic ovary syndrome. Metabolomics, 2015, 11(3), 657-666.
[108]
Chen, Y.X.; Zhang, X.J.; Huang, J.; Zhou, S.J.; Liu, F.; Jiang, L.L.; Chen, M.; Wan, J.B.; Yang, D.Z. UHPLC/Q-TOFMS-based plasma metabolomics of polycystic ovary syndrome patients with and without insulin resistance. J. Pharm. Biomed. Anal., 2016, 121, 141-150.
[109]
Yamazaki, Y.; Kondo, K.; Maeba, R.; Nishimukai, M.; Nezu, T.; Hara, H. Proportion of nervonic acid in serum lipids is associated with serum plasmalogen levels and metabolic syndrome. J. Oleo Sci., 2014, 63(5), 527-537.
[110]
Marchesini, G.; Brizi, M.; Bianchi, G.; Tomassetti, S.; Bugianesi, E.; Lenzi, M.; McCullough, A.J.; Natale, S.; Forlani, G.; Melchionda, N. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes, 2001, 50(8), 1844-1850.
[111]
Yang, J.; Xu, G.; Hong, Q.; Liebich, H.M.; Lutz, K.; Schmülling, R.M.; Wahl, H.G. Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 813(1-2), 53-58.
[112]
Zhang, J.; Yan, L.; Chen, W.; Lin, L.; Song, X.; Yan, X.; Hang, W.; Huang, B. Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC-oaTOF-MS system. Anal. Chim. Acta, 2009, 650(1), 16-22.
[113]
Kotronen, A.; Seppänen-Laakso, T.; Westerbacka, J.; Kiviluoto, T.; Arola, J.; Ruskeepää, A-L.; Yki-Järvinen, H.; Oresic, M. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity (Silver Spring), 2010, 18(5), 937-944.
[114]
Kotronen, A.; Velagapudi, V.R.; Yetukuri, L.; Westerbacka, J.; Bergholm, R.; Ekroos, K.; Makkonen, J.; Taskinen, M-R.; Orešič, M.; Yki-Järvinen, H. Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia, 2009, 52(4), 684-690.
[115]
Barr, J.; Alonso, C.; Vázquez-chantada, M. Pérez-, M.; Mayo, R.; Galán, A.; Caballería, J.; Martín-duce, A.; Wagner, C.; Luka, Z.; Lu, S. C.; Castro, A.; Le Marchand-Brustel, Y.; Martínez-Chantar, M. L.; Veyrie, N.; Clément, K.; Tordjman, J.; Gual, P.; Mato, J. M. Liquid Chromatography-Mass Spectrometry (LC/MS)-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of non-alcoholic fatty liver disease. J. Proteome Res., 2011, 9(9), 4501-4512.
[116]
Sysi-Aho, M.; Koikkalainen, J.; Seppänen-Laakso, T.; Kaartinen, M.; Kuusisto, J.; Peuhkurinen, K.; Kärkkäinen, S.; Antila, M.; Lauerma, K.; Reissell, E.; Jurkko, R.; Lötjönen, J.; Heliö, T.; Orešič, M. Serum lipidomics meets cardiac magnetic resonance imaging: Profiling of subjects at risk of dilated cardiomyopathy. PLoS One, 2011, 6(1), e15744.
[117]
Vinaixa, M.; Rodriguez, M.A.; Samino, S.; Díaz, M.; Beltran, A.; Mallol, R.; Bladé, C.; Ibañez, L.; Correig, X.; Yanes, O. Metabolomics reveals reduction of metabolic oxidation in women with polycystic ovary syndrome after pioglitazone-flutamide-metformin polytherapy. PLoS One, 2011, 6(12), e29052.
[118]
Sledzinski, T.; Mika, A.; Stepnowski, P.; Proczko-Markuszewska, M.; Kaska, L.; Stefaniak, T.; Swierczynski, J. Identification of cyclopropaneoctanoic acid 2-hexyl in human adipose tissue and serum. Lipids, 2013, 48(8), 839-848.
[119]
Xu, F.; Tavintharan, S.; Sum, C.F.; Woon, K.; Lim, S.C.; Ong, C.N. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J. Clin. Endocrinol. Metab., 2013, 98(6), E1060-E1065.
[120]
Orešič, M.; Gopalacharyulu, P.; Mykkänen, J.; Lietzen, N.; Mäkinen, M.; Nygren, H.; Simell, S.; Simell, V.; Hyöty, H.; Veijola, R.; Ilonen, J.; Sysi-Aho, M.; Knip, M.; Hyötyläinen, T.; Simell, O. Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes, 2013, 62(9), 3268-3274.
[121]
Tokushige, K.; Hashimoto, E.; Kodama, K.; Tobari, M.; Matsushita, N.; Kogiso, T.; Taniai, M.; Torii, N.; Shiratori, K.; Nishizaki, Y.; Ohga, T.; Ohashi, Y.; Sato, T. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J. Gastroenterol., 2013, 48(12), 1392-1400.
[122]
Hanamatsu, H.; Ohnishi, S.; Sakai, S.; Yuyama, K.; Mitsutake, S.; Takeda, H.; Hashino, S.; Igarashi, Y. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutr. Diabetes, 2014, 4(10), e141.
[123]
Kaska, L.; Mika, A.; Stepnowski, P.; Proczko, M.; Ratnicki-Sklucki, K.; Sledzinski, T.; Goyke, E.; Swierczynski, J. The relationship between specific Fatty acids of serum lipids and serum high sensitivity C- reactive protein levels in morbidly obese women. Cell. Physiol. Biochem., 2014, 34(4), 1101-1108.
[124]
Lin, Z.; Vicente Gonçalves, C.M.; Dai, L.; Lu, H.M.; Huang, J.H.; Ji, H.; Wang, D.S.; Yi, L.Z.; Liang, Y.Z. Exploring metabolic syndrome serum profiling based on gas chromatography mass spectrometry and random forest models. Anal. Chim. Acta, 2014, 827, 22-27.
[125]
Nishimukai, M.; Maeba, R.; Yamazaki, Y.; Nezu, T.; Sakurai, T.; Takahashi, Y.; Hui, S.P.; Chiba, H.; Okazaki, T.; Hara, H. Serum choline plasmalogens, particularly those with oleic acid in sn-2, are associated with proatherogenic state. J. Lipid Res., 2014, 55(5), 956-965.
[126]
Hyysalo, J.; Gopalacharyulu, P.; Bian, H.; Hyötyläinen, T.; Leivonen, M.; Jaser, N.; Juuti, A.; Honka, M.J.; Nuutila, P.; Olkkonen, V.M.; Oresic, M.; Yki-Järvinen, H. Circulating triacylglycerol signatures in nonalcoholic fatty liver disease associated with the I148M variant in PNPLA3 and with obesity. Diabetes, 2014, 63(1), 312-322.
[127]
Anjani, K.; Lhomme, M.; Sokolovska, N.; Poitou, C.; Aron-Wisnewsky, J.; Bouillot, J.L.; Lesnik, P.; Bedossa, P.; Kontush, A.; Clement, K.; Dugail, I.; Tordjman, J. Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity. J. Hepatol., 2015, 62(4), 905-912.
[128]
Liu, L.; Feng, R.; Guo, F.; Li, Y.; Jiao, J.; Sun, C. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects. Diabetes Res. Clin. Pract., 2015, 108(1), 84-93.
[129]
Mika, A.; Kaska, L.; Korczynska, J.; Mirowska, A.; Stepnowski, P.; Proczko, M.; Ratnicki-Sklucki, K.; Goyke, E.; Sledzinski, T. Visceral and subcutaneous adipose tissue stearoyl-CoA desaturase-1 mRNA levels and fatty acid desaturation index positively correlate with BMI in morbidly obese women. Eur. J. Lipid Sci. Technol., 2015, 117(7), 926-932.
[130]
Dai, L.; Gonçalves, C.M.V.; Lin, Z.; Huang, J.; Lu, H.; Yi, L.; Liang, Y.; Wang, D.; An, D. Exploring metabolic syndrome serum free fatty acid profiles based on GC-SIM-MS combined with random forests and canonical correlation analysis. Talanta, 2015, 135, 108-114.
[131]
Münzker, J.; Hofer, D.; Trummer, C.; Ulbing, M.; Harger, A.; Pieber, T.; Owen, L.; Keevil, B.; Brabant, G.; Lerchbaum, E.; Obermayer-Pietsch, B. Testosterone to dihydrotestosterone ratio as a new biomarker for an adverse metabolic phenotype in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2015, 100(2), 653-660.
[132]
Huang, C.F.; Cheng, M.L.; Fan, C.M.; Hong, C.Y.; Shiao, M.S. Nicotinuric acid: a potential marker of metabolic syndrome through a metabolomics-based approach. Diabetes Care, 2013, 36(6), 1729-1731.
[133]
Bollard, M.E.; Stanley, E.G.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed., 2005, 18(3), 143-162.
[134]
Gowda, G.A.N.; Ijare, O.B.; Somashekar, B.S.; Sharma, A.; Kapoor, V.K.; Khetrapal, C.L. Single-step analysis of individual conjugated bile acids in human bile using 1H NMR spectroscopy. Lipids, 2006, 41(6), 591-603.
[135]
Bala, L.; Ghoshal, U.C.; Ghoshal, U.; Tripathi, P.; Misra, A.; Gowda, G.A.N.; Khetrapal, C.L. Malabsorption syndrome with and without small intestinal bacterial overgrowth: a study on upper-gut aspirate using 1H NMR spectroscopy. Magn. Reson. Med., 2006, 56(4), 738-744.
[136]
Mueller, P.; Schulze, A.; Schindler, I.; Ethofer, T.; Buehrdel, P.; Ceglarek, U. Validation of an ESI-MS/MS screening method for acylcarnitine profiling in urine specimens of neonates, children, adolescents and adults. Clin. Chim. Acta, 2003, 327(1-2), 47-57.
[137]
Okun, J.G.; Kölker, S.; Schulze, A.; Kohlmüller, D.; Olgemöller, K.; Lindner, M.; Hoffmann, G.F.; Wanders, R.J.A.; Mayatepek, E. A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim. Biophys. Acta, 2002, 1584(2-3), 91-98.
[138]
Chace, D.H.; Pons, R.; Chiriboga, C.A.; McMahon, D.J.; Tein, I.; Naylor, E.W.; De Vivo, D.C. Neonatal blood carnitine concentrations: normative data by electrospray tandem mass spectometry. Pediatr. Res., 2003, 53(5), 823-829.
[139]
Braida, L.; Crovella, S.; Boniotto, M.; Luchesi, A.; de Vonderweid, U.; Casetta, B.; Amoroso, A. A rapid and quantitative mass spectrometry method for determining the concentration of acylcarnitines and aminoacids in amniotic fluid. Prenat. Diagn., 2001, 21(7), 543-546.
[140]
Shigematsu, Y.; Hata, I.; Nakai, A.; Kikawa, Y.; Sudo, M.; Tanaka, Y.; Yamaguchi, S.; Jakobs, C. Prenatal diagnosis of organic acidemias based on amniotic fluid levels of acylcarnitines. Pediatr. Res., 1996, 39(4 Pt 1), 680-684.
[141]
Cataldi, T.; Cordeiro, F.B. Costa, Ldo.V.; Pilau, E.J.; Ferreira, C.R.; Gozzo, F.C.; Eberlin, M.N.; Bertolla, R.P.; Cedenho, A.P.; Turco, E.G. Lipid profiling of follicular fluid from women undergoing IVF: young poor ovarian responders versus normal responders. Hum. Fertil. (Camb.), 2013, 16(4), 269-277.
[142]
Cordeiro, F.B.; Cataldi, T.R.; do Vale Teixeira da Costa, L.; de Lima, C.B.; Stevanato, J.; Zylbersztejn, D.S.; Ferreira, C.R.; Eberlin, M.N.; Cedenho, A.P.; Turco, E.G. Follicular fluid lipid fingerprinting from women with PCOS and hyper response during IVF treatment. J. Assist. Reprod. Genet., 2015, 32(1), 45-54.
[143]
Niu, Z.; Lin, N.; Gu, R.; Sun, Y.; Feng, Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J. Clin. Endocrinol. Metab., 2014, 99(11), E2269-E2276.
[144]
Griffin, J.L.; Kauppinen, R.A. Tumour metabolomics in animal models of human cancer. J. Proteome Res., 2007, 6(2), 498-505.
[145]
Gorden, D.L.; Ivanova, P.T.; Myers, D.S.; McIntyre, J.O.; VanSaun, M.N.; Wright, J.K.; Matrisian, L.M.; Brown, H.A. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS One, 2011, 6(8), e22775.
[146]
Quintás, G.; Portillo, N.; García-Cañaveras, J.C.; Castell, J.V.; Ferrer, A.; Lahoz, A. Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics, 2012, 8(1), 86-98.
[147]
Arendt, B.M.; Ma, D.W.; Simons, B.; Noureldin, S.A.; Therapondos, G.; Guindi, M.; Sherman, M.; Allard, J.P. Nonalcoholic fatty liver disease is associated with lower hepatic and erythrocyte ratios of phosphatidylcholine to phosphatidylethanolamine. Appl. Physiol. Nutr. Metab., 2013, 38(3), 334-340.
[148]
Waddington, E.; Sienuarine, K.; Puddey, I.; Croft, K. Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography. Anal. Biochem., 2001, 292(2), 234-244.
[149]
Waddington, E.I.; Croft, K.D.; Sienuarine, K.; Latham, B.; Puddey, I.B. Fatty acid oxidation products in human atherosclerotic plaque: an analysis of clinical and histopathological correlates. Atherosclerosis, 2003, 167(1), 111-120.
[150]
Pettinella, C.; Lee, S.H.; Cipollone, F.; Blair, I.A. Targeted quantitative analysis of fatty acids in atherosclerotic plaques by high sensitivity liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 850(1-2), 168-176.
[151]
Lehti, S.; Käkelä, R.; Hörkkö, S.; Kummu, O.; Helske-Suihko, S.; Kupari, M.; Werkkala, K.; Kovanen, P.T.; Oörni, K. Modified lipoprotein-derived lipid particles accumulate in human stenotic aortic valves. PLoS One, 2013, 8(6), e65810.
[152]
Kolak, M.; Westerbacka, J.; Velagapudi, V.R.; Wågsäter, D.; Yetukuri, L.; Makkonen, J.; Rissanen, A.; Häkkinen, A-M.; Lindell, M.; Bergholm, R.; Hamsten, A.; Eriksson, P.; Fisher, R.M.; Oresic, M.; Yki-Järvinen, H. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes, 2007, 56(8), 1960-1968.
[153]
Adams, J.M., II; Pratipanawatr, T.; Berria, R.; Wang, E.; DeFronzo, R.A.; Sullards, M.C.; Mandarino, L.J. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes, 2004, 53(1), 25-31.
[154]
de la Maza, M.P.; Rodriguez, J.M.; Hirsch, S.; Leiva, L.; Barrera, G.; Bunout, D. Skeletal muscle ceramide species in men with abdominal obesity. J. Nutr. Health Aging, 2015, 19(4), 389-396.
[155]
Reinehr, T.; Kulle, A.; Wolters, B.; Lass, N.; Welzel, M.; Riepe, F.; Holterhus, P-M. Steroid hormone profiles in prepubertal obese children before and after weight loss. J. Clin. Endocrinol. Metab., 2013, 98(6), E1022-E1030.
[156]
Son, H.H.; Moon, J.Y.; Seo, H.S.; Kim, H.H.; Chung, B.C.; Choi, M.H. High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina. J. Lipid Res., 2014, 55(1), 155-162.
[157]
del Genio, G.; Ferreri, C.; Marfella, R.; Pournaras, D.; le Roux, C.W.; del Genio, F.; Paolo, L.; Tolone, S.; Docimo, L.; Puca, A.A. Morbid Obesity is Associated to Altered Fatty Acid Profile of Erythrocyte Membranes. J. Diabetes Metab., 2015, 6(8), 582.
[158]
Dong, F.; Deng, D.; Chen, H.; Cheng, W.; Li, Q.; Luo, R.; Ding, S. Serum metabolomics study of polycystic ovary syndrome based on UPLC-QTOF-MS coupled with a pattern recognition approach. Anal. Bioanal. Chem., 2015, 407(16), 4683-4695.
[159]
Beger, R.D. A review of applications of metabolomics in cancer. Metabolites, 2013, 3(3), 552-574.
[160]
Wu, H.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem., 2008, 372(2), 204-212.
[161]
Arendt, B.M.; Ma, D.W.; Simons, B.; Noureldin, S.A.; Therapondos, G.; Guindi, M.; Sherman, M.; Allard, J.P. Nonalcoholic fatty liver disease is associated with lower hepatic and erythrocyte ratios of phosphatidylcholine to phosphatidylethanolamine. Appl. Physiol. Nutr. Metab., 2013, 38(3), 334-340.
[162]
Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 1957, 226(1), 497-509.
[163]
Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 1959, 37(8), 911-917.
[164]
Christie, W. W. Gas Chromatography and lipids - a practical guide 1989.
[165]
Sánchez-Avila, N.; Mata-Granados, J.M.; Ruiz-Jiménez, J.; Luque de Castro, M.D. Fast, sensitive and highly discriminant gas chromatography-mass spectrometry method for profiling analysis of fatty acids in serum. J. Chromatogr. A, 2009, 1216(40), 6864-6872.
[166]
Roberts, L.D.; McCombie, G.; Titman, C.M.; Griffin, J.L. A matter of fat: an introduction to lipidomic profiling methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 871(2), 174-181.
[167]
Nier, A.O. A mass spectrometer for isotope and gas analysis. Rev. Sci. Instrum., 1947, 18(6), 398-411.
[168]
Munson, M.S.B.; Field, F.H. Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc., 1966, 88(12), 2621-2630.
[169]
Gordin, A.; Fialkov, A.B.; Amirav, A. Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams. Rapid Commun. Mass Spectrom., 2008, 22(17), 2660-2666.
[170]
Schiller, J.; Arnold, K.; Meyers, R.A.E. Encyclopedia of analytical chemistry; , 2000, pp. 559-585.
[171]
Sickmann, A.; Mreyen, M.; Meyer, H.E. Mass spectrometry--a key technology in proteome research. Adv. Biochem. Eng. Biotechnol., 2003, 83, 141-176.
[172]
Li, M.; Zhou, Z.; Nie, H.; Bai, Y.; Liu, H. Recent advances of chromatography and mass spectrometry in lipidomics. Anal. Bioanal. Chem., 2011, 399(1), 243-249.
[173]
Byrdwell, W.C. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids, 2001, 36(4), 327-346.
[174]
Souverain, S.; Rudaz, S.; Veuthey, J-L. Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. J. Chromatogr. A, 2004, 1058(1-2), 61-66.
[175]
Byrdwell, W.C. Dual parallel mass spectrometers for analysis of sphingolipid, glycerophospholipid and plasmalogen molecular species. Rapid Commun. Mass Spectrom., 1998, 12(5), 256-272.
[176]
Cai, S-S.; Syage, J.A. Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal. Chem., 2006, 78(4), 1191-1199.
[177]
Chernushevich, I.V.; Loboda, A.V.; Thomson, B.A. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom., 2001, 36(8), 849-865.
[178]
Holčapek, M.; Jirásko, R.; Lísa, M. Recent developments in liquid chromatography-mass spectrometry and related techniques. J. Chromatogr. A, 2012, 1259, 3-15.
[179]
Loizides-Mangold, U. On the future of mass-spectrometry-based lipidomics. FEBS J., 2013, 280(12), 2817-2829.
[180]
Teuber, K.; Schiller, J.; Jakop, U.; Lüpold, S.; Orledge, J.M.; Blount, J.D.; Royle, N.J.; Hoodless, A.; Müller, K. MALDI-TOF mass spectrometry as a simple tool to determine the phospholipid/glycolipid composition of sperm: pheasant spermatozoa as one selected example. Anim. Reprod. Sci., 2011, 123(3-4), 270-278.
[181]
Ivanova, P.T.; Milne, S.B.; Byrne, M.O.; Xiang, Y.; Brown, H.A. Lipidomics and bioactive lipids: mass-spectrometrybased lipid analysis. Methods Enzymol, H. Alex Brown Ed.; Elsevier Science B.V.: USA, 2007; Vol. 432.
[182]
Sobott, F.; Watt, S.J.; Smith, J.; Edelmann, M.J.; Kramer, H.B.; Kessler, B.M. Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. J. Am. Soc. Mass Spectrom., 2009, 20(9), 1652-1659.
[183]
Marczak, Ł. Analysis of protein posttranslational modifications using mass spectrometry. Biotechnologia, 2009, 2(85), 27-38.
[184]
Bird, S.S.; Marur, V.R.; Sniatynski, M.J.; Greenberg, H.K.; Kristal, B.S. Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal. Chem., 2011, 83(3), 940-949.
[185]
Lam, S.M.; Shui, G. Lipidomics as a principal tool for advancing biomedical research. J. Genet. Genomics, 2013, 40(8), 375-390.
[186]
Ståhlman, M.; Ejsing, C.S.; Tarasov, K.; Perman, J.; Borén, J.; Ekroos, K. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(26), 2664-2672.
[187]
Harkewicz, R.; Dennis, E.A. Applications of mass spectrometry to lipids and membranes. Annu. Rev. Biochem., 2011, 80(80), 301-325.
[188]
Zhao, Z.; Xu, Y. Measurement of endogenous lysophosphatidic acid by ESI-MS/MS in plasma samples requires pre-separation of lysophosphatidylcholine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(29), 3739-3742.
[189]
Mika, A.; Swiezewska, E.; Stepnowski, P. Polar and neutral lipid composition and fatty acids profile in selected fish meals depending on raw material and grade of products. Lebensm. Wiss. Technol., 2016, 70, 199-207.
[190]
Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 2011, 1811(11), 637-647.
[191]
Craig Byrdwell, Wm. http://byrdwell.com/ [accessed Mar 12, 2016]
[192]
Cífková, E.; Holčapek, M.; Lísa, M.; Ovčačíková, M.; Lyčka, A.; Lynen, F.; Sandra, P. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal. Chem., 2012, 84(22), 10064-10070.
[193]
Bryan, K.; Brennan, L.; Cunningham, P. MetaFIND: a feature analysis tool for metabolomics data. BMC Bioinformatics, 2008, 9, 470.
[194]
Lourenço, C.; Turner, C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites, 2014, 4(2), 465-498.
[195]
Breiman, L. Random Forests. Mach. Learn., 2001, 45(1), 5-32.
[196]
Legette, L.L.; Reed, R.L.; Murty, L.; Maier, C.S.; Stevens, J.F. Application of paper strip extraction in combination with LC-MS-MS in pharmacokinetics. Spectroscopy (Springf.), 2013, 39(10), s18-s25.
[197]
Bosomworth, N.J. Approach to identifying and managing atherogenic dyslipidemia: a metabolic consequence of obesity and diabetes. Can. Fam. Physician, 2013, 59(11), 1169-1180.
[198]
Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell, 2008, 134(6), 933-944.
[199]
Pinnick, K.E.; Neville, M.J.; Fielding, B.A.; Frayn, K.N.; Karpe, F.; Hodson, L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes, 2012, 61(6), 1399-1403.
[200]
Burns, T.A.; Kadegowda, A.K.G.; Duckett, S.K.; Pratt, S.L.; Jenkins, T.C. Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures. Lipids, 2012, 47(12), 1143-1153.
[201]
Waguri, T.; Goda, T.; Kasezawa, N.; Yamakawa-Kobayashi, K. The combined effects of genetic variations in the GPR120 gene and dietary fat intake on obesity risk. Biomed. Res., 2013, 34(2), 69-74.
[202]
Popeijus, H.E.; Saris, W.H.M.; Mensink, R.P. Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. Int. J. Obes., 2008, 32(7), 1076-1082.
[203]
Calder, P.C. Long-chain fatty acids and inflammation. Proc. Nutr. Soc., 2012, 71(2), 284-289.
[204]
Perreault, M.; Zulyniak, M.A.; Badoud, F.; Stephenson, S.; Badawi, A.; Buchholz, A.; Mutch, D.M. A distinct fatty acid profile underlies the reduced inflammatory state of metabolically healthy obese individuals. PLoS One, 2014, 9(2), e88539.
[205]
Mika, A.; Stepnowski, P.; Kaska, L.; Proczko, M.; Wisniewski, P.; Sledzinski, M. Obesity a comprehensive study of serum odd- and branched-chain fatty acids in patients with excess weight Obes. (Silver Spring), 2016, 24, (8), 1669-1676.
[206]
Mika, A.; Stepnowski, P.; Chmielewski, M.; Malgorzewicz, S.; Kaska, L.; Proczko, M.; Ratnicki-Sklucki, K.; Sledzinski, M.; Sledzinski, T. Increased serum level of cyclopropaneoctanoic acid 2-hexyl in patients with hypertriglyceridemia-related disorders. Lipids, 2016, 51(7), 867-873.
[207]
Okada, T.; Furuhashi, N.; Kuromori, Y.; Miyashita, M.; Iwata, F.; Harada, K. Plasma palmitoleic acid content and obesity in children. Am. J. Clin. Nutr., 2005, 82(4), 747-750.
[208]
Rössner, S.; Walldius, G.; Björvell, H. Fatty acid composition in serum lipids and adipose tissue in severe obesity before and after six weeks of weight loss. Int. J. Obes., 1989, 13(5), 603-612.
[209]
Warensjö, E.; Ohrvall, M.; Vessby, B. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr. Metab. Cardiovasc. Dis., 2006, 16(2), 128-136.
[210]
Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.; Hotamisligil, G.S. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr., 2010, 92(6), 1350-1358.
[211]
Karlsson, M.; Mårild, S.; Brandberg, J.; Lönn, L.; Friberg, P.; Strandvik, B. Serum phospholipid fatty acids, adipose tissue, and metabolic markers in obese adolescents. Obesity (Silver Spring), 2006, 14(11), 1931-1939.
[212]
Tremblay, A.J.; Després, J.P.; Piché, M.E.; Nadeau, A.; Bergeron, J.; Alméras, N.; Tremblay, A.; Lemieux, S. Associations between the fatty acid content of triglyceride, visceral adipose tissue accumulation, and components of the insulin resistance syndrome. Metabolism, 2004, 53(3), 310-317.
[213]
Warensjö, E.; Risérus, U.; Vessby, B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia, 2005, 48(10), 1999-2005.
[214]
Kim, O.Y.; Lim, H.H.; Lee, M.J.; Kim, J.Y.; Lee, J.H. Association of fatty acid composition in serum phospholipids with metabolic syndrome and arterial stiffness. Nutr. Metab. Cardiovasc. Dis., 2013, 23(4), 366-374.
[215]
Sethom, M.M.; Fares, S.; Feki, M.; Hadj-Taieb, S.; Elasmi, M.; Omar, S.; Sanhaji, H.; Jemaa, R.; Kaabachi, N. Plasma fatty acids profile and estimated elongase and desaturases activities in Tunisian patients with the metabolic syndrome. Prostaglandins Leukot. Essent. Fatty Acids, 2011, 85(3-4), 137-141.
[216]
Mayneris-Perxachs, J.; Guerendiain, M.; Castellote, A.I.; Estruch, R.; Covas, M.I.; Fitó, M.; Salas-Salvadó, J.; Martínez-González, M.A.; Aros, F.; Lamuela-Raventós, R.M.; López-Sabater, M.C. Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease. Clin. Nutr., 2014, 33(1), 90-97.
[217]
O’Connor, J.P.; Manigrasso, M.B.; Kim, B.D.; Subramanian, S. Fracture healing and lipid mediators. Bonekey Rep., 2014, 3, 517.
[218]
Błachnio-Zabielska, A.U.; Pułka, M.; Baranowski, M.; Nikołajuk, A.; Zabielski, P.; Górska, M.; Górski, J. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J. Cell. Physiol., 2012, 227(2), 550-557.
[219]
Kowalski, G.M.; Carey, A.L.; Selathurai, A.; Kingwell, B.A.; Bruce, C.R. Plasma sphingosine-1-phosphate is elevated in obesity. PLoS One, 2013, 8(9), e72449.
[220]
Kim, J.Y.; Park, J.Y.; Kim, O.Y.; Ham, B.M.; Kim, H.J.; Kwon, D.Y.; Jang, Y.; Lee, J.H. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J. Proteome Res., 2010, 9(9), 4368-4375.
[221]
Fekete, K.; Györei, E.; Lohner, S.; Verduci, E.; Agostoni, C.; Decsi, T. Long-chain polyunsaturated fatty acid status in obesity: a systematic review and meta-analysis. Obes. Rev., 2015, 16(6), 488-497.
[222]
Serna, J.; García-Seisdedos, D.; Alcázar, A.; Lasunción, M.Á.; Busto, R.; Pastor, Ó. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry. Chem. Phys. Lipids, 2015, 189, 7-18.
[223]
Vergès, B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia, 2015, 58(5), 886-899.
[224]
Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997, 46(1), 3-10.
[225]
Shayman, J.A. Sphingolipids: their role in intracellular signaling and renal growth. J. Am. Soc. Nephrol., 1996, 7(2), 171-182.
[226]
Janikiewicz, J.; Hanzelka, K.; Kozinski, K.; Kolczynska, K.; Dobrzyn, A. Islet β-cell failure in type 2 diabetes--Within the network of toxic lipids. Biochem. Biophys. Res. Commun., 2015, 460(3), 491-496.
[227]
de Mello, V.D.F.; Lankinen, M.; Schwab, U.; Kolehmainen, M.; Lehto, S.; Seppänen-Laakso, T.; Oresic, M.; Pulkkinen, L.; Uusitupa, M.; Erkkilä, A.T. Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia, 2009, 52(12), 2612-2615.
[228]
Denimal, D.; Pais de Barros, J-P.; Petit, J-M.; Bouillet, B.; Vergès, B.; Duvillard, L. Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration. Atherosclerosis, 2015, 241(2), 752-760.
[229]
Vessby, B.; Aro, A.; Skarfors, E.; Berglund, L.; Salminen, I.; Lithell, H. The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes, 1994, 43(11), 1353-1357.
[230]
Vessby, B.; Tengblad, S.; Lithell, H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia, 1994, 37(10), 1044-1050.
[231]
Stefan, N.; Kantartzis, K.; Celebi, N.; Staiger, H.; Machann, J.; Schick, F.; Cegan, A.; Elcnerova, M.; Schleicher, E.; Fritsche, A.; Häring, H.U. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care, 2010, 33(2), 405-407.
[232]
Gunes, O.; Tascilar, E.; Sertoglu, E.; Tas, A.; Serdar, M.A.; Kaya, G.; Kayadibi, H.; Ozcan, O. Associations between erythrocyte membrane fatty acid compositions and insulin resistance in obese adolescents. Chem. Phys. Lipids, 2014, 184, 69-75.
[233]
Needleman, P.; Turk, J.; Jakschik, B.A.; Morrison, A.R.; Lefkowith, J.B. Arachidonic acid metabolism. Annu. Rev. Biochem., 1986, 55, 69-102.
[234]
Srikanthan, K.; Feyh, A.; Visweshwar, H.; Shapiro, J.I.; Sodhi, K. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the west virginian population. Int. J. Med. Sci., 2016, 13(1), 25-38.
[235]
Zoeller, R.A.; Lake, A.C.; Nagan, N.; Gaposchkin, D.P.; Legner, M.A.; Lieberthal, W. Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem. J., 1999, 338(Pt 3), 769-776.
[236]
Jové, M.; Naudí, A.; Portero-Otin, M.; Cabré, R.; Rovira-Llopis, S.; Bañuls, C.; Rocha, M.; Hernández-Mijares, A.; Victor, V.M.; Pamplona, R. Plasma lipidomics discloses metabolic syndrome with a specific HDL phenotype. FASEB J., 2014, 28(12), 5163-5171.
[237]
Rinaldo, P.; Schmidt-Sommerfeld, E.; Posca, A.P.; Heales, S.J.; Woolf, D.A.; Leonard, J.V. Effect of treatment with glycine and L-carnitine in medium-chain acyl-coenzyme A dehydrogenase deficiency. J. Pediatr., 1993, 122(4), 580-584.
[238]
Majumdar, I.; Mastrandrea, L.D. Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome. Endocrine, 2012, 41(3), 442-449.
[239]
Lankinen, M.; Schwab, U.; Kolehmainen, M.; Paananen, J.; Nygren, H.; Seppänen-Laakso, T.; Poutanen, K.; Hyötyläinen, T.; Risérus, U.; Savolainen, M.J.; Hukkanen, J.; Brader, L.; Marklund, M.; Rosqvist, F.; Hermansen, K.; Cloetens, L.; Önning, G.; Thorsdottir, I.; Gunnarsdottir, I.; Åkesson, B.; Dragsted, L.O.; Uusitupa, M.; Orešič, M. A Healthy nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention. J. Nutr., 2016, jn220459.
[240]
Warshauer, J.T.; Lopez, X.; Gordillo, R.; Hicks, J.; Holland, W.L.; Anuwe, E.; Blankfard, M.B.; Scherer, P.E.; Lingvay, I. Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome. Diabetes Metab. Res. Rev., 2015, 31(7), 734-744.
[241]
Ng, T.W.K.; Ooi, E.M.M.; Watts, G.F.; Chan, D.C.; Meikle, P.J.; Barrett, P.H.R. Association of Plasma Ceramides and Sphingomyelin With VLDL apoB-100 Fractional Catabolic Rate Before and After Rosuvastatin Treatment. J. Clin. Endocrinol. Metab., 2015, 100(6), 2497-2501.
[242]
Ross, R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[243]
Kolovou, G.; Kolovou, V.; Mavrogeni, S. Lipidomics in vascular health: current perspectives. Vasc. Health Risk Manag., 2015, 11, 333-342.
[244]
Proudfoot, J.; Barden, A.; Mori, T.A.; Burke, V.; Croft, K.D.; Beilin, L.J.; Puddey, I.B. Measurement of urinary F(2)-isoprostanes as markers of in vivo lipid peroxidation-A comparison of enzyme immunoassay with gas chromatography/mass spectrometry. Anal. Biochem., 1999, 272(2), 209-215.
[245]
Yoshino, G.; Tanaka, M.; Nakano, S.; Matsumoto, T.; Kojima, M.; Murakami, E.; Morita, T. Effect of rosuvastatin on concentrations of plasma lipids, urine and plasma oxidative stress markers, and plasma high-sensitivity C-reactive protein in hypercholesterolemic patients with and without type 2 diabetes mellitus: A 12-week, open-label, pilot study. Curr. Ther. Res. Clin. Exp., 2009, 70(6), 439-448.
[246]
Ohashi, N.; Yoshikawa, M. Rapid and sensitive quantification of 8-isoprostaglandin F2alpha in human plasma and urine by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2000, 746(1), 17-24.
[247]
Obata, T.; Tomaru, K.; Nagakura, T.; Izumi, Y.; Kawamoto, T. Smoking and oxidant stress: assay of isoprostane in human urine by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2000, 746(1), 11-15.
[248]
Sjövall, P.; Lausmaa, J.; Johansson, B. Mass spectrometric imaging of lipids in brain tissue. Anal. Chem., 2004, 76(15), 4271-4278.
[249]
Stegemann, C.; Drozdov, I.; Shalhoub, J.; Humphries, J.; Ladroue, C.; Didangelos, A.; Baumert, M.; Allen, M.; Davies, A.H.; Monaco, C.; Smith, A.; Xu, Q.; Mayr, M. Comparative lipidomics profiling of human atherosclerotic plaques. Circ Cardiovasc Genet, 2011, 4(3), 232-242.
[250]
Teul, J.; Rupérez, F.J.; Garcia, A.; Vaysse, J.; Balayssac, S.; Gilard, V.; Malet-Martino, M.; Martin-Ventura, J.L.; Blanco-Colio, L.M.; Tuñón, J.; Egido, J.; Barbas, C. Improving metabolite knowledge in stable atherosclerosis patients by association and correlation of GC-MS and 1H NMR fingerprints. J. Proteome Res., 2009, 8(12), 5580-5589.
[251]
Leitinger, N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol., 2003, 14(5), 421-430.
[252]
Berliner, J.A.; Subbanagounder, G.; Leitinger, N.; Watson, A.D.; Vora, D. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc. Med., 2001, 11(3-4), 142-147.
[253]
Watson, A.D.; Leitinger, N.; Navab, M.; Faull, K.F.; Hörkkö, S.; Witztum, J.L.; Palinski, W.; Schwenke, D.; Salomon, R.G.; Sha, W.; Subbanagounder, G.; Fogelman, A.M.; Berliner, J.A. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem., 1997, 272(21), 13597-13607.
[254]
Dunn, W.B.; Goodacre, R.; Neyses, L.; Mamas, M. Integration of metabolomics in heart disease and diabetes research: current achievements and future outlook. Bioanalysis, 2011, 3(19), 2205-2222.
[255]
Brügger, B.; Erben, G.; Sandhoff, R.; Wieland, F.T.; Lehmann, W.D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. USA, 1997, 94(6), 2339-2344.
[256]
Houjou, T.; Yamatani, K.; Nakanishi, H.; Imagawa, M.; Shimizu, T.; Taguchi, R. Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. Rapid Commun. Mass Spectrom., 2004, 18(24), 3123-3130.
[257]
Greiner, M. R A. T.; Gmbh, M.; Kg, C. Capillary Electrophoresis coupling to Mass Spectrometry (CE-MS), an advanced technique orthogonal to LC-MS for high resolution separation and accurate molecule identification., 2010, 9- 10.
[258]
Yin, P.; Wan, D.; Zhao, C.; Chen, J.; Zhao, X.; Wang, W.; Lu, X.; Yang, S.; Gu, J.; Xu, G. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol. Biosyst., 2009, 5(8), 868-876.
[259]
Spagou, K.; Tsoukali, H.; Raikos, N.; Gika, H.; Wilson, I.D.; Theodoridis, G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J. Sep. Sci., 2010, 33(6-7), 716-727.
[260]
Gika, H.G.; Theodoridis, G.A.; Wilson, I.D. Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabonomic analysis of Zucker rat urine. J. Sep. Sci., 2008, 31(9), 1598-1608.
[261]
Saleh, J.; Sniderman, A.D.; Cianflone, K. Regulation of Plasma fatty acid metabolism. Clin. Chim. Acta, 1999, 286(1-2), 163-180.
[262]
Wan, J-B.; Huang, L-L.; Rong, R.; Tan, R.; Wang, J.; Kang, J.X. Endogenously decreasing tissue n-6/n-3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation. Arterioscler. Thromb. Vasc. Biol., 2010, 30(12), 2487-2494.
[263]
Spickett, C.M.; Pitt, A.R. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid. Redox Signal., 2015, 22(18), 1646-1666.
[264]
Forbes, R.; Gasevic, D.; Watson, E.M.; Ziegler, T.R.; Lin, E.; Burgess, J.R.; Gletsu-Miller, N. Essential Fatty Acid Plasma Profiles Following Gastric Bypass and Adjusted Gastric Banding Bariatric Surgeries. Obes. Surg., 2016, 26(6), 1237-1246.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy