Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identification of Novel Nrf2 Activator via Protein-ligand Interactions as Remedy for Oxidative Stress in Diabetes Mellitus

Author(s): Afolashade Toritseju Onunkun*, Opeyemi Iwaloye and Olusola Olalekan Elekofehinti

Volume 19, Issue 2, 2022

Published on: 13 April, 2021

Page: [79 - 91] Pages: 13

DOI: 10.2174/1570180818666210413131108

Price: $65

Abstract

Background: Oxidative stress is a significant player in the pathogenesis of diabetes mellitus and the Kelch-like ECH-associated protein1/nuclear factor erythroid 2-related factor 2/antioxidant response element (Keap1/Nrf2/ARE) signaling pathway serves as the essential defense system to mitigate oxidative stress. Nrf2 is responsible for the mitigation of oxidative stress while Keap1 represses Nrf2’s activation upon binding. Identification of Nrf2 activators has started to pick up enthusiasm as they can be used as therapeutic agents against diabetes mellitus. One of the ongoing mechanisms in the activation of Nrf2 is to disrupt Keap1/Nrf2 protein-protein interaction. This study aimed at using computational analysis to screen natural compounds capable of inhibiting Keap1/Nrf2 protein-protein interaction.

Methods: A manual curated library of natural compounds was screened against crystal structure of Keap1 using glide docking algorithm. Binding free energy of the docked complexes, and adsorption, digestion, metabolism and excretion (ADME) properties were further employed to identify the hit compounds. The bioactivity of the identified hit against Keap1 was predicted using quantitative structure-activity relationship (QSAR) model.

Results: A total of 7 natural compounds (Compound 222, 230, 310, 208, 210, 229 and 205) identified from different medicinal plants were found to be potent against Keap1 based on their binding affinity and binding free energy. The internal validated model kpls_radial_30 with R2 of 0.9109, Q2 of 0.7287 was used to predict the compounds’ bioactivities. Compound 205 was considered as the ideal drug candidate because it showed moderation for ADME properties, had predicted pIC50 of 6.614 and obeyed Lipinski’s rule of five.

Conclusion: This study revealed that Compound 205, a compound isolated from Amphipterygium adstringens is worth considering for further experimental analysis.

Keywords: Oxidative stress, Keap1/Nrf2/ARE, glide docking algorithm, binding affinity, binding free energy, diabetes mellitus, natural compounds.

« Previous
Graphical Abstract

[1]
Abdalla, K.O.; Fadlalla, A.A.; Ahmed, A.A. Effect of camel milk on lipid metabolism in type 1 diabetic patients. Biomed. Res. Rev., 2018, 1(1), 102.
[2]
International Diabetes Federation IDF Diabetes Atlas, (8th edition.), Available from:http://www.diabetesatlas.org
[3]
Lotfy, M.; Adeghate, J.; Kalasz, H.; Singh, J.; Adeghate, E. Chronic complications of Diabetes mellitus: A mini review. Curr. Diabetes Rev., 2017, 13(1), 3-10.
[http://dx.doi.org/10.2174/1573399812666151016101622] [PMID: 26472574]
[4]
David, J.A.; Rifkin, W.J.; Rabbani, P.S.; Ceradini, D.J. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus; J; Diab. Res, 2015, pp. 1-15.
[5]
Chikezie, P.C.; Ojiako, O.A.; Ogbuji, A.C. Oxidative stress in diabetes mellitus. Intl. J. Biol. Chem, 2015, 9(3), 92-109.
[http://dx.doi.org/10.3923/ijbc.2015.92.109]
[6]
Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis., 2019, 10(3), 637-651.
[http://dx.doi.org/10.14336/AD.2018.0513] [PMID: 31165007]
[7]
Raghunth, A.; Nagarajan, R.; Sundarraj, K.; Palnisamy, K.; Perumal, E. Identification of compounds that inhibit the binding of Keap1a/Keap1b Kelch DGR domain with Nrf2 ETGE/DLG motifs in zebrafish. Basic Clin. Pharmacol. Toxicol., 2019, 1125, 259-270.
[8]
Uruno, A.; Yagishita, Y.; Yamamoto, M. The Keap1-Nrf2 system and diabetes mellitus. Arch. Biochem. Biophys., 2015, 566, 76-84.
[http://dx.doi.org/10.1016/j.abb.2014.12.012] [PMID: 25528168]
[9]
Long, M.; Rojo de la Vega, M.; Wen, Q.; Bharara, M.; Jiang, T.; Zhang, R.; Zhou, S.; Wong, P.K.; Wondrak, G.T.; Zheng, H.; Zhang, D.D. Wen, An essential role of Nrf2 in diabetic wound healing. Diabetes, 2016, 65(3), 780-793.
[http://dx.doi.org/10.2337/db15-0564] [PMID: 26718502]
[10]
Jiménez-Osorio, A.S.; Picazo, A.; González-Reyes, S.; Barrera-Oviedo, D.; Rodríguez-Arellano, M.E.; Pedraza-Chaverri, J. Nrf2 and redox status in prediabetic and diabetic patients. Int. J. Mol. Sci., 2014, 15(11), 20290-20305.
[http://dx.doi.org/10.3390/ijms151120290] [PMID: 25383674]
[11]
Sola, D.; Rossi, L.; Schianca, G.P.; Maffioli, P.; Bigliocca, M.; Mella, R.; Corlianò, F.; Fra, G.P.; Bartoli, E.; Derosa, G. Sulfonylureas and their use in clinical practice. Arch. Med. Sci., 2015, 11(4), 840-848.
[http://dx.doi.org/10.5114/aoms.2015.53304] [PMID: 26322096]
[12]
Fatima, M.; Saleha, S.; Saeed, U.N. Metformin and its gastrointestinal problems: A review. BioMed Res. Int., 2018, 29(11), 2285-2289.
[13]
Sarkar, S.; Donner, T. Insulin-pharmacology, therapeutic regimens, and principles of intensive insulin therapy. Nat. Centre Biotechnol. Info, 2019, 8, 2-7.
[14]
Lee, S.; Hu, L. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction. Med. Chem. Res., 2020, 29(5), 846-867.
[http://dx.doi.org/10.1007/s00044-020-02539-y] [PMID: 32390710]
[15]
Matzinger, M.; Fischhuber, K.; Heiss, E.H. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol. Adv., 2018, 36(6), 1738-1767.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.015] [PMID: 29289692]
[16]
Abdel-Aziz, S.M.; Aeron, A.; Kahil, T.A. Health benefits and possible risks of herbal medicine; Microbes in food and health, 2016, p. pp. 97-116.
[http://dx.doi.org/10.1007/978-3-319-25277-3_6]
[17]
Al-Hrout, A.; Chaiboonchoe, A.; Khraiwesh, B.; Murali, C.; Baig, B.; El-Awady, R.; Tarazi, H.; Alzahmi, A.; Nelson, D.R.; Greish, Y.E.; Ramadan, W.; Salehi-Ashtiani, K.; Amin, A. Safranal induces DNA double-strand breakage and ER-stress-mediated cell death in hepatocellular carcinoma cells. Sci. Rep., 2018, 8(1), 16951.
[http://dx.doi.org/10.1038/s41598-018-34855-0] [PMID: 30446676]
[18]
Lankatillake, C.; Huynh, T.; Dias, D.A. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods, 2019, 15, 105.
[http://dx.doi.org/10.1186/s13007-019-0487-8] [PMID: 31516543]
[19]
Coman, C.; Rugina, O.D.; Socaciu, C. Plants and natural compounds with antidiabetic action. Not. Bot. Horti Agrobot. Cluj-Napoca, 2012, 40(1), 314-325.
[http://dx.doi.org/10.15835/nbha4017205]
[20]
Prajapat, P.; Agarwal, S.; Talesara, G.L. Significance of computer aided drug design and 3D QSAR in modern drug discovery. J. Med. Org. Chem, 2017, 1(1), 1-5.
[21]
Iwaloye, O.; Elekofehinti, O.O.; Kikiowo, B.; Oluwarotimi, E.A.; Fadipe, T.M. Machine learning-based virtual screening strategy reveals some natural compounds as potential PAK4 inhibitors in triple negative breast cancer. Curr. Proteomics, 2021, 18, 1.
[22]
Suite, S. Protein Preparation Wizard; Epik version 2.3; Schrödinger, LLC: New York, NY, 2012. Impact version 5.8; Schrödinger, LLC: New York, NY, 2012. Prime version 3.1; Schrödinger, LLC: New York, NY, 2012.
[23]
Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa Predictions. J. Chem. Theory Comput., 2011, 7(2), 525-537.
[http://dx.doi.org/10.1021/ct100578z] [PMID: 26596171]
[24]
Pilón-Jiménez, B.A.; Saldívar-González, F.I.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. BIOFACQUIM: A Mexican compound database of natural products. Biomolecules, 2019, 9(1), 31.
[http://dx.doi.org/10.3390/biom9010031] [PMID: 30658522]
[25]
Xian, Z.; Peng, Z.; Weidong, H.; Chu, Q.; Shangying, C.; Lin, T.; Yali, W.; Ying, T.; Dan, G.; Bohua, W.; Zhe, C.; Weiping, C.; Yu, Y.; Yu, Z. NPASS: naturalproduct activity and species source database for natural product research, discovery and tooldevelopment. Nucleic Acids Res., 2018, 46, 217-222.
[26]
Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24, 591-604.
[http://dx.doi.org/10.1007/s10822-010-9349-1]
[27]
Prime, version 3.9; Schrodinger, LLC: New York, NY, 2018.
[28]
Release, S. 2018-1: QikProp; Schrödinger, LLC: New York, NY, 2018.
[29]
Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 2013, 2, 353.
[http://dx.doi.org/10.1186/2193-1801-2-353] [PMID: 23961417]
[30]
Matysiak, J. Evaluation of electronic, lipophilic and membrane affinity effects on antiproliferative activity of 5-substituted-2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles against various human cancer cells. Eur. J. Med. Chem., 2007, 42(7), 940-947.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.033] [PMID: 17320247]
[31]
Dixon, S.L.; Duan, J.; Smith, E.; Von Bargen, C.D.; Sherman, W.; Repasky, M.P. AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling. Future Med. Chem., 2016, 8(15), 1825-1839.
[http://dx.doi.org/10.4155/fmc-2016-0093] [PMID: 27643715]
[32]
De Oliveira, M.T.; Katekawa, E. On the Virtues of Automated QSAR - The New Kid on the Block; Fut Med Chem, 2017.
[33]
Deepak, K.G.K.; Nageswara, R.R.N.; Surekha, C. Role of antidiabetic compounds on glucose metabolism – A special focus on medicinal plant: Salacia sps. Med. Chem., 2014, 4, 373-381.
[34]
Iwaloye, O.; Elekofehinti, O.O.; Babatomiwa, K.; Fadipe, T.M. In silico molecular studies of selected compounds as novel inhibitors for phosphodiesterase-5 (PDE5) in the management of erectile dysfunction. J. Comput. Sci. Syst. Biol., 2020, 13(2), 1-7.
[35]
Maffucci, I.; Hu, X.; Fumagalli, V.; Contini, A. An efficient implementation of the Nwat-MMGBSA method to rescore docking results in medium-throughput virtual screening. Front Chem., 2018, 6, 43.
[http://dx.doi.org/10.3389/fchem.2018.00043] [PMID: 29556494]
[36]
Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P. Assessing the performance of the MM/PBSA and MM/GBSA methods, improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys., 2013, 34(12), 1592-1606.
[PMID: 25205360]
[37]
Ramsay, R.R.; Tipton, K.F. Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules, 2017, 22(7), 1-47.
[http://dx.doi.org/10.3390/molecules22071192] [PMID: 28714881]
[38]
Chandrabose, S.; Sunil, T.; Karnati, R.; Kumar, S.S. Tool development for prediction of pIC50 from IC50 values: A pIC50 value calculator. Curr. Trends Biotechnol. Pharm., 2011, 5, 1104-1109.
[39]
Ravichandran, V.; Harish, R.; Abhishek, J.; Shalini, S.; Christapher, P.V.; Ram, K.A. Validation of QSAR models - strategies and importance. Intl. J. Drug. Des. Dis, 2011, 511-519.
[40]
Wade, R.C.; Goodford, P.J. The role of hydrogen-bonds in drug binding. Prog. Clin. Biol. Res., 1989, 289, 433-444.
[PMID: 2726808]
[41]
Ansslyn, V.E.; Dougherty, D.A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, 2006.
[42]
Brylinski, M. Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions. Chem. Biol. Drug Des., 2018, 91(2), 380-390.
[http://dx.doi.org/10.1111/cbdd.13084] [PMID: 28816025]
[43]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[44]
Luo, S.; Kansara, V.S.; Zhu, X.; Mandava, N.K.; Pal, D.; Mitra, A.K. Functional characterization of sodium-dependent multivitamin transporter in MDCK-MDR1 cells and its utilization as a target for drug delivery. Mol. Pharm., 2006, 3(3), 329-339.
[http://dx.doi.org/10.1021/mp0500768] [PMID: 16749865]
[45]
Jin, X.; Luong, T.L.; Reese, N.; Gaona, H.; Collazo-Velez, V.; Vuong, C.; Potter, B.; Sousa, J.C.; Olmeda, R.; Li, Q.; Xie, L.; Zhang, J.; Zhang, P.; Reichard, G.; Melendez, V.; Marcsisin, S.R.; Pybus, B.S. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J. Pharmacol. Toxicol. Methods, 2014, 70(2), 188-194.
[http://dx.doi.org/10.1016/j.vascn.2014.08.002] [PMID: 25150934]
[46]
van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol., 2005, 1(2), 175-185.
[http://dx.doi.org/10.1517/17425255.1.2.175] [PMID: 16922635]

© 2024 Bentham Science Publishers | Privacy Policy