Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Inactivation of Parathyroid Hormone: Perspectives of Drug Discovery to Combating Hyperparathyroidism

Author(s): Amit Kumar* and Jochen Balbach*

Volume 15, Issue 2, 2022

Published on: 26 January, 2021

Article ID: e170322190727 Pages: 14

DOI: 10.2174/1874467214666210126112839

Price: $65

Abstract

Hormonal coordination is tightly regulated within the human body and thus regulates human physiology. The parathyroid hormone (PTH), a member of the endocrine system, regulates the calcium and phosphate level within the human body. Under non-physiological conditions, PTH levels get upregulated (hyperparathyroidism) or downregulated (hypoparathyroidism) due to external or internal factors. In case of hyperparathyroidism, elevated PTH stimulates cellular receptors present in the bones, kidneys, and intestines to increase the blood calcium level, leading to calcium deposition. This eventually causes various symptoms, including kidney stones. Currently, there is no known medication that directly targets PTH in order to suppress its function. Therefore, it is of great interest to find novel small molecules or any other means that can modulate PTH function. The molecular signaling of PTH starts by binding its N-terminus to the G-protein coupled PTH1/2 receptor. Therefore, any intervention that affects the N-terminus of PTH could be a lead candidate for treating hyperparathyroidism. As a proof-of-concept, there are various possibilities to inhibit molecular PTH function by (i) a small molecule, (ii) N-terminal PTH phosphorylation, (iii) fibril formation and (iv) residue-specific mutations. These modifications put PTH into an inactive state, which will be discussed in detail in this review article. We anticipate that exploring small molecules or other means that affect the N-terminus of PTH could be lead candidates in combating hyperparathyroidism.

Keywords: Hormone function, hyperparathyroidism treatment, PTH hormone, small molecules, protein phosphorylation, amyloid formation.

Graphical Abstract

[1]
Audet, M.; Bouvier, M. Restructuring G-protein- coupled receptor activation. Cell, 2012, 151(1), 14-23.
[http://dx.doi.org/10.1016/j.cell.2012.09.003] [PMID: 23021212]
[2]
Barwell, J.; Wheatley, M.; Conner, A.C.; Taddese, B.; Vohra, S.; Reynolds, C.A.; Poyner, D.R. The activation of the CGRP receptor. Biochem. Soc. Trans., 2013, 41(1), 180-184.
[http://dx.doi.org/10.1042/BST20120251] [PMID: 23356280]
[3]
Bouvier, M. Unraveling the structural basis of GPCR activation and inactivation. Nat. Struct. Mol. Biol., 2013, 20(5), 539-541.
[http://dx.doi.org/10.1038/nsmb.2584] [PMID: 23649361]
[4]
Kelly, R.B. Pathways of protein secretion in eukaryotes. Science, 1985, 230(4721), 25-32.
[http://dx.doi.org/10.1126/science.2994224] [PMID: 2994224]
[5]
Gensure, R.C.; Gardella, T.J.; Jüppner, H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem. Biophys. Res. Commun., 2005, 328(3), 666-678.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.069] [PMID: 15694400]
[6]
Orwoll, E.S.; Scheele, W.H.; Paul, S.; Adami, S.; Syversen, U.; Diez-Perez, A.; Kaufman, J.M.; Clancy, A.D.; Gaich, G.A. The effect of teriparatide human parathyroid hormone (1-34) therapy on bone density in men with osteoporosis. J. Bone Miner. Res., 2003, 18(1), 9-17.
[http://dx.doi.org/10.1359/jbmr.2003.18.1.9] [PMID: 12510800]
[7]
Fraser, W.D. Hyperparathyroidism. Lancet, 2009, 374(9684), 145-158.
[http://dx.doi.org/10.1016/S0140-6736(09)60507-9] [PMID: 19595349]
[8]
Ganesan, C.; Weia, B.; Thomas, I.C.; Song, S.; Velaer, K.; Seib, C.D.; Conti, S.; Elliott, C.; Chertow, G.M.; Kurella Tamura, M.; Leppert, J.T.; Pao, A.C. Analysis of Primary Hyperparathyroidism Screening Among US Veterans With Kidney Stones. JAMA Surg., 2020, 155(9), 861-868.
[http://dx.doi.org/10.1001/jamasurg.2020.2423] [PMID: 32725208]
[9]
Oberger Marques, J.V.; Moreira, C.A. Primary hyperparathyroidism. Best Pract. Res. Clin. Rheumatol., 2020, 34(3), 101514.
[http://dx.doi.org/10.1016/j.berh.2020.101514] [PMID: 32336576]
[10]
Silverberg, S.J.; Bilezikian, J.P. Endocrinology: Adult and Pediatric; Elsevier, 2010.
[11]
Yadav, S.K.; Johri, G.; Bichoo, R.A.; Jha, C.K.; Kintu-Luwaga, R.; Mishra, S.K. Primary hyperparathyroidism in developing world: a systematic review on the changing clinical profile of the disease. Arch. Endocrinol. Metab., 2020, 64(2), 105-110.
[PMID: 32236309]
[12]
Allerheiligen, D. A.; Schoeber, J.; Houston, R. E.; Mohl, V. K.; Wildman, K. M. 1998.
[13]
Michels, T.C.; Kelly, K.M. Parathyroid disorders. Am. Fam. Physician, 2013, 88(4), 249-257.
[PMID: 23944728]
[14]
Sulaiman, L.; Nilsson, I.L.; Juhlin, C.C.; Haglund, F.; Höög, A.; Larsson, C.; Hashemi, J. Genetic characterization of large parathyroid adenomas. Endocr. Relat. Cancer, 2012, 19(3), 389-407.
[http://dx.doi.org/10.1530/ERC-11-0140] [PMID: 22454399]
[15]
Notarfranchi, L.; Marchica, V.; Dalla Palma, B.; Pelagatti, L.; Burroughs-Garcia, J.; Pedrazzoni, M.; Ruffini, L.; Cetani, F.; Marcocci, C.; Giuliani, N. Concomitant Primary Hyperparathyroidism in Patients with Multiple Myeloma: A Possible Link? Acta Haematol., 2020, 1-6.
[http://dx.doi.org/10.1159/000509768] [PMID: 32906140]
[16]
Agarwal, S.K. Multiple endocrine neoplasia type 1. Front. Horm. Res., 2013, 41, 1-15.
[http://dx.doi.org/10.1159/000345666] [PMID: 23652667]
[17]
Agarwal, S.K. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr. Relat. Cancer, 2017, 24(10), T119-T134.
[http://dx.doi.org/10.1530/ERC-17-0199] [PMID: 28899949]
[18]
Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol. Cell. Endocrinol., 2014, 386(1-2), 2-15.
[http://dx.doi.org/10.1016/j.mce.2013.08.002] [PMID: 23933118]
[19]
Byrd, C.; Kashyap, S.; Kwartowitz, G. Parathyroid Cancer; Stat Pearls: Treasure Island, FL, 2020.
[20]
Golden, S.H.; Robinson, K.A.; Saldanha, I.; Anton, B.; Ladenson, P.W. Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: a comprehensive review. J. Clin. Endocrinol. Metab., 2009, 94(6), 1853-1878.
[http://dx.doi.org/10.1210/jc.2008-2291] [PMID: 19494161]
[21]
Rubin, M.R.; Maurer, M.S.; McMahon, D.J.; Bilezikian, J.P.; Silverberg, S.J. Arterial stiffness in mild primary hyperparathyroidism. J. Clin. Endocrinol. Metab., 2005, 90(6), 3326-3330.
[http://dx.doi.org/10.1210/jc.2004-1400] [PMID: 15769995]
[22]
Smith, J.C.; Page, M.D.; John, R.; Wheeler, M.H.; Cockcroft, J.R.; Scanlon, M.F.; Davies, J.S. Augmentation of central arterial pressure in mild primary hyperparathyroidism. J. Clin. Endocrinol. Metab., 2000, 85(10), 3515-3519.
[http://dx.doi.org/10.1210/jcem.85.10.6880] [PMID: 11061493]
[23]
Yu, N.; Donnan, P.T.; Flynn, R.W.; Murphy, M.J.; Smith, D.; Rudman, A.; Leese, G.P. Increased mortality and morbidity in mild primary hyperparathyroid patients. Clin. Endocrinol. (Oxf.), 2010, 73(1), 30-34.
[PMID: 20039887]
[24]
Tassone, F.; Procopio, M.; Gianotti, L.; Visconti, G.; Pia, A.; Terzolo, M.; Borretta, G. Insulin resistance is not coupled with defective insulin secretion in primary hyperparathyroidism. Diabet. Med., 2009, 26(10), 968-973.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02804.x] [PMID: 19900227]
[25]
Christensen, M.H.; Dankel, S.N.; Nordbø, Y.; Varhaug, J.E.; Almås, B.; Lien, E.A.; Mellgren, G. Primary hyperparathyroidism influences the expression of inflammatory and metabolic genes in adipose tissue. PLoS One, 2011, 6(6), e20481.
[http://dx.doi.org/10.1371/journal.pone.0020481] [PMID: 21698093]
[26]
Löwik, C.W.; van der Pluijm, G.; Bloys, H.; Hoekman, K.; Bijvoet, O.L.; Aarden, L.A.; Papapoulos, S.E. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem. Biophys. Res. Commun., 1989, 162(3), 1546-1552.
[http://dx.doi.org/10.1016/0006-291X(89)90851-6] [PMID: 2548501]
[27]
Mitnick, M.A.; Grey, A.; Masiukiewicz, U.; Bartkiewicz, M.; Rios-Velez, L.; Friedman, S.; Xu, L.; Horowitz, M.C.; Insogna, K. Parathyroid hormone induces hepatic production of bioactive interleukin-6 and its soluble receptor. Am. J. Physiol. Endocrinol. Metab., 2001, 280(3), E405-E412.
[http://dx.doi.org/10.1152/ajpendo.2001.280.3.E405] [PMID: 11171594]
[28]
McCarty, M.F. Secondary hyperparathyroidism promotes the acute phase response -- a rationale for supplemental vitamin D in prevention of vascular events in the elderly. Med. Hypotheses, 2005, 64(5), 1022-1026.
[http://dx.doi.org/10.1016/j.mehy.2004.03.041] [PMID: 15780504]
[29]
Talat, N.; Diaz-Cano, S.; Schulte, K.M. Inflammatory diseases of the parathyroid gland. Histopathology, 2011, 59(5), 897-908.
[http://dx.doi.org/10.1111/j.1365-2559.2011.04001.x] [PMID: 22074407]
[30]
Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol., 2015, 10(7), 1257-1272.
[http://dx.doi.org/10.2215/CJN.09750913] [PMID: 25287933]
[31]
Turner, J.J.O. Hypercalcaemia - presentation and management. Clin. Med. (Lond.), 2017, 17(3), 270-273.
[http://dx.doi.org/10.7861/clinmedicine.17-3-270] [PMID: 28572230]
[32]
Eastell, R.; Arnold, A.; Brandi, M.L.; Brown, E.M.; D’Amour, P.; Hanley, D.A.; Rao, D.S.; Rubin, M.R.; Goltzman, D.; Silverberg, S.J.; Marx, S.J.; Peacock, M.; Mosekilde, L.; Bouillon, R.; Lewiecki, E.M. Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J. Clin. Endocrinol. Metab., 2009, 94(2), 340-350.
[http://dx.doi.org/10.1210/jc.2008-1758] [PMID: 19193909]
[33]
Bilezikian, J.P. Primary hyperparathyroidism. Endocr. Pract., 2012, 18(5), 781-790.
[http://dx.doi.org/10.4158/EP12166.RA] [PMID: 22982802]
[34]
Nikodimopoulou, M.; Liakos, S. Secondary hyperparathyroidism and target organs in chronic kidney disease. Hippokratia, 2011, 15(Suppl. 1), 33-38.
[PMID: 21897756]
[35]
Ballinger, A.E.; Palmer, S.C.; Nistor, I.; Craig, J.C.; Strippoli, G.F. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst. Rev., 2014, 12(12), CD006254.
[http://dx.doi.org/10.1002/14651858.CD006254.pub2] [PMID: 25490118]
[36]
Kilav-Levin, R.; Hassan, A.; Nechama, M.; Shilo, V.; Silver, J.; Ben-Dov, I.Z.; Naveh-Many, T. Post-transcriptional mechanisms regulating parathyroid hormone gene expression in secondary hyperparathyroidism. FEBS J., 2020, 287(14), 2903-2913.
[http://dx.doi.org/10.1111/febs.15300] [PMID: 32191397]
[37]
Winer, K.K.; Zhang, B.; Shrader, J.A.; Peterson, D.; Smith, M.; Albert, P.S.; Cutler, G.B. Jr Synthetic human parathyroid hormone 1-34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J. Clin. Endocrinol. Metab., 2012, 97(2), 391-399.
[PMID: 22090268]
[38]
Cohn, D.V.; MacGregor, R.R. The biosynthesis, intracellular processing, and secretion of parathormone. Endocr. Rev., 1981, 2(1), 1-26.
[http://dx.doi.org/10.1210/edrv-2-1-1] [PMID: 6271544]
[39]
Lazure, C.; Gauthier, D.; Jean, F.; Boudreault, A.; Seidah, N.G.; Bennett, H.P.; Hendy, G.N. In vitro cleavage of internally quenched fluorogenic human proparathyroid hormone and proparathyroid-related peptide substrates by furin. Generation of a potent inhibitor. J. Biol. Chem., 1998, 273(15), 8572-8580.
[http://dx.doi.org/10.1074/jbc.273.15.8572] [PMID: 9535830]
[40]
Gardella, T.J.; Axelrod, D.; Rubin, D.; Keutmann, H.T.; Potts, J.T., Jr; Kronenberg, H.M.; Nussbaum, S.R. Mutational analysis of the receptor-activating region of human parathyroid hormone. J. Biol. Chem., 1991, 266(20), 13141-13146.
[PMID: 1649179]
[41]
Nussbaum, S.R.; Rosenblatt, M.; Potts, J.T. Jr Parathyroid hormone. renal receptor interactions. Demonstration of two receptor-binding domains. J. Biol. Chem., 1980, 255(21), 10183-10187.
[PMID: 6253465]
[42]
Murray, T.M.; Rao, L.G.; Divieti, P.; Bringhurst, F.R. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr. Rev., 2005, 26(1), 78-113.
[http://dx.doi.org/10.1210/er.2003-0024] [PMID: 15689574]
[43]
Vilardaga, J.P.; Romero, G.; Friedman, P.A.; Gardella, T.J. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell. Mol. Life Sci., 2011, 68(1), 1-13.
[http://dx.doi.org/10.1007/s00018-010-0465-9] [PMID: 20703892]
[44]
White, A.D.; Fang, F.; Jean-Alphonse, F.G.; Clark, L.J.; An, H.J.; Liu, H.; Zhao, Y.; Reynolds, S.L.; Lee, S.; Xiao, K.; Sutkeviciute, I.; Vilardaga, J.P. Ca2+ allostery in PTH-receptor signaling. Proc. Natl. Acad. Sci. USA, 2019, 116(8), 3294-3299.
[http://dx.doi.org/10.1073/pnas.1814670116] [PMID: 30718391]
[45]
Beck-Sickinger, A.G.; Budisa, N. Genetically encoded photocrosslinkers as molecular probes to study G-protein-coupled receptors (GPCRs). Angew. Chem. Int. Ed. Engl., 2012, 51(2), 310-312.
[http://dx.doi.org/10.1002/anie.201107211] [PMID: 22128109]
[46]
Rosenbaum, D.M.; Rasmussen, S.G.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature, 2009, 459(7245), 356-363.
[http://dx.doi.org/10.1038/nature08144] [PMID: 19458711]
[47]
Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 639-650.
[http://dx.doi.org/10.1038/nrm908] [PMID: 12209124]
[48]
Flock, T.; Hauser, A.S.; Lund, N.; Gloriam, D.E.; Balaji, S.; Babu, M.M. Selectivity determinants of GPCR-G-protein binding. Nature, 2017, 545(7654), 317-322.
[http://dx.doi.org/10.1038/nature22070] [PMID: 28489817]
[49]
Ghosh, E.; Nidhi, K.; Shukla, A. K. 2014.
[50]
Pupo, A.S.; Duarte, D.A.; Lima, V.; Teixeira, L.B. Parreiras-E-Silva, L.T.; Costa-Neto, C.M. Recent updates on GPCR biased agonism. Pharmacol. Res., 2016, 112, 49-57.
[http://dx.doi.org/10.1016/j.phrs.2016.01.031] [PMID: 26836887]
[51]
Ehrenmann, J.; Schöppe, J.; Klenk, C.; Rappas, M.; Kummer, L.; Doré, A.S.; Plückthun, A. High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. Nat. Struct. Mol. Biol., 2018, 25(12), 1086-1092.
[http://dx.doi.org/10.1038/s41594-018-0151-4] [PMID: 30455434]
[52]
Drechsler, N.; Fröbel, J.; Jahreis, G.; Gopalswamy, M.; Balbach, J.; Bosse-Doenecke, E.; Rudolph, R. Binding specificity of the ectodomain of the parathyroid hormone receptor. Biophys. Chem., 2011, 154(2-3), 66-72.
[http://dx.doi.org/10.1016/j.bpc.2011.01.002] [PMID: 21339037]
[53]
Bosse-Doenecke, E.; Weininger, U.; Gopalswamy, M.; Balbach, J.; Knudsen, S.M.; Rudolph, R. High yield production of recombinant native and modified peptides exemplified by ligands for G-protein coupled receptors. Protein Expr. Purif., 2008, 58(1), 114-121.
[http://dx.doi.org/10.1016/j.pep.2007.10.012] [PMID: 18248821]
[54]
Lim, S.K.; Lee, E.J.; Kim, H.Y.; Lee, W. The 10th and 11th residues of short length N-terminal PTH(1-12) analogue are important for its optimum potency. J. Pept. Res., 2004, 64(1), 25-32.
[http://dx.doi.org/10.1111/j.1399-3011.2004.00163.x] [PMID: 15200475]
[55]
Vilardaga, J.P.; Agnati, L.F.; Fuxe, K.; Ciruela, F. G-protein-coupled receptor heteromer dynamics. J. Cell Sci., 2010, 123(Pt 24), 4215-4220.
[http://dx.doi.org/10.1242/jcs.063354] [PMID: 21123619]
[56]
Agus, Z.S.; Gardner, L.B.; Beck, L.H.; Goldberg, M. Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium, and phosphate. Am. J. Physiol., 1973, 224(5), 1143-1148.
[http://dx.doi.org/10.1152/ajplegacy.1973.224.5.1143] [PMID: 4349532]
[57]
Gardella, T.J.; Jüppner, H. Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol. Metab., 2001, 12(5), 210-217.
[http://dx.doi.org/10.1016/S1043-2760(01)00409-X] [PMID: 11397646]
[58]
Raisz, L.G. Stimulation of bone resorption by parathyroid hormone in tissue culture. Nature, 1963, 197, 1015-1016.
[http://dx.doi.org/10.1038/1971015a0] [PMID: 13990534]
[59]
Cusano, N.E.; Rubin, M.R.; Bilezikian, J.P. PTH(1-84) replacement therapy for the treatment of hypoparathyroidism. Expert Rev. Endocrinol. Metab., 2015, 10(1), 5-13.
[http://dx.doi.org/10.1586/17446651.2015.971755] [PMID: 25705243]
[60]
Cusano, N.E.; Rubin, M.R.; Bilezikian, J.P. Parathyroid hormone therapy for hypoparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab., 2015, 29(1), 47-55.
[http://dx.doi.org/10.1016/j.beem.2014.09.001] [PMID: 25617172]
[61]
Hausch, F. Structures of class B G protein-coupled receptors: prospects for drug discovery. Angew. Chem. Int. Ed. Engl., 2013, 52(49), 12783-12785.
[http://dx.doi.org/10.1002/anie.201307542] [PMID: 24127232]
[62]
Pietrogrande, L. Update on the efficacy, safety, and adherence to treatment of full length parathyroid hormone, PTH (1-84), in the treatment of postmenopausal osteoporosis. Int. J. Womens Health, 2010, 1, 193-203.
[PMID: 21072288]
[63]
Swarthout, J.T.; Doggett, T.A.; Lemker, J.L.; Partridge, N.C. Stimulation of extracellular signal-regulated kinases and proliferation in rat osteoblastic cells by parathyroid hormone is protein kinase C-dependent. J. Biol. Chem., 2001, 276(10), 7586-7592.
[http://dx.doi.org/10.1074/jbc.M007400200] [PMID: 11108712]
[64]
Verheijen, M.H.; Defize, L.H. Parathyroid hormone activates mitogen-activated protein kinase via a cAMP-mediated pathway independent of Ras. J. Biol. Chem., 1997, 272(6), 3423-3429.
[http://dx.doi.org/10.1074/jbc.272.6.3423] [PMID: 9013586]
[65]
Cole, J.A. Parathyroid hormone activates mitogen-activated protein kinase in opossum kidney cells. Endocrinology, 1999, 140(12), 5771-5779.
[http://dx.doi.org/10.1210/endo.140.12.7173] [PMID: 10579343]
[66]
Lederer, E.D.; Sohi, S.S.; McLeish, K.R. Parathyroid hormone stimulates extracellular signal-regulated kinase (ERK) activity through two independent signal transduction pathways: role of ERK in sodium-phosphate cotransport. J. Am. Soc. Nephrol., 2000, 11(2), 222-231.
[PMID: 10665929]
[67]
Siddhanti, S.R.; Hartle, J.E., II; Quarles, L.D. Forskolin inhibits protein kinase C-induced mitogen activated protein kinase activity in MC3T3-E1 osteoblasts. Endocrinology, 1995, 136(11), 4834-4841.
[http://dx.doi.org/10.1210/endo.136.11.7588214] [PMID: 7588214]
[68]
Turner, P.R.; Mefford, S.; Christakos, S.; Nissenson, R.A. Apoptosis mediated by activation of the G protein-coupled receptor for parathyroid hormone (PTH)/PTH-related protein (PTHrP). Mol. Endocrinol., 2000, 14(2), 241-254.
[http://dx.doi.org/10.1210/mend.14.2.0417] [PMID: 10674397]
[69]
Jilka, R.L.; Weinstein, R.S.; Bellido, T.; Roberson, P.; Parfitt, A.M.; Manolagas, S.C. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Invest., 1999, 104(4), 439-446.
[http://dx.doi.org/10.1172/JCI6610] [PMID: 10449436]
[70]
Donowitz, M.; Cha, B.; Zachos, N.C.; Brett, C.L.; Sharma, A.; Tse, C.M.; Li, X. NHERF family and NHE3 regulation. J. Physiol., 2005, 567(Pt 1), 3-11.
[http://dx.doi.org/10.1113/jphysiol.2005.090399] [PMID: 15905209]
[71]
Dransfield, D.T.; Bradford, A.J.; Smith, J.; Martin, M.; Roy, C.; Mangeat, P.H.; Goldenring, J.R. Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J., 1997, 16(1), 35-43.
[http://dx.doi.org/10.1093/emboj/16.1.35] [PMID: 9009265]
[72]
Magyar, C.E.; White, K.E.; Rojas, R.; Apodaca, G.; Friedman, P.A. Plasma membrane Ca2+-ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells. Am. J. Physiol. Renal Physiol., 2002, 283(1), F29-F40.
[http://dx.doi.org/10.1152/ajprenal.00252.2000] [PMID: 12060584]
[73]
Weinstein, R.S.; Manolagas, S.C. Apoptosis and osteoporosis. Am. J. Med., 2000, 108(2), 153-164.
[http://dx.doi.org/10.1016/S0002-9343(99)00420-9] [PMID: 11126309]
[74]
Swarthout, J.T.; D’Alonzo, R.C.; Selvamurugan, N.; Partridge, N.C. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene, 2002, 282(1-2), 1-17.
[http://dx.doi.org/10.1016/S0378-1119(01)00798-3] [PMID: 11814673]
[75]
Bilezikian, J.P.; Silverberg, S.J. Clinical practice. Asymptomatic primary hyperparathyroidism. N. Engl. J. Med., 2004, 350(17), 1746-1751.
[http://dx.doi.org/10.1056/NEJMcp032200] [PMID: 15103001]
[76]
Bilezikian, J.P.; Brandi, M.L.; Eastell, R.; Silverberg, S.J.; Udelsman, R.; Marcocci, C.; Potts, J.T., Jr Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop. J. Clin. Endocrinol. Metab., 2014, 99(10), 3561-3569.
[http://dx.doi.org/10.1210/jc.2014-1413] [PMID: 25162665]
[77]
Minisola, S.; Cipriani, C.; Diacinti, D.; Tartaglia, F.; Scillitani, A.; Pepe, J.; Scott-Coombes, D. Imaging of the parathyroid glands in primary hyperparathyroidism. Eur. J. Endocrinol., 2016, 174(1), D1-D8.
[http://dx.doi.org/10.1530/EJE-15-0565] [PMID: 26340967]
[78]
Ott, S.M. Calcimimetics--new drugs with the potential to control hyperparathyroidism. J. Clin. Endocrinol. Metab., 1998, 83(4), 1080-1082.
[PMID: 9543121]
[79]
Palmer, S.C.; Mavridis, D.; Johnson, D.W.; Tonelli, M.; Ruospo, M.; Strippoli, G.F.M. Comparative Effectiveness of Calcimimetic Agents for Secondary Hyperparathyroidism in Adults: A Systematic Review and Network Meta-analysis. Am. J. Kidney Dis., 2020, 76(3), 321-330.
[http://dx.doi.org/10.1053/j.ajkd.2020.02.439] [PMID: 32475604]
[80]
Bandaru, S.; Manthri, S.; Nallala, D.; Mamillapalli, C.K.; Jakoby, M.G. IV Novel Use of Calcimimetic Activity to Diagnose Primary Hyperparathyroidism in a Patient With Persistently Low-Normal Parathyroid Hormone Level. Cureus, 2020, 12(7), e9360.
[PMID: 32850231]
[81]
Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr. Rev., 2001, 22(4), 477-501.
[http://dx.doi.org/10.1210/edrv.22.4.0437] [PMID: 11493580]
[82]
Lips, P.; Duong, T.; Oleksik, A.; Black, D.; Cummings, S.; Cox, D.; Nickelsen, T. A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J. Clin. Endocrinol. Metab., 2001, 86(3), 1212-1221.
[http://dx.doi.org/10.1210/jcem.86.3.7327] [PMID: 11238511]
[83]
Gasparri, G.; Camandona, M.; Palestini, N. Primary, Secondary and Tertiary Hyperparathyroidism; Springer-Verlag Mailand, 2016, p. 236.
[http://dx.doi.org/10.1007/978-88-470-5758-6]
[84]
Yuen, N.K.; Ananthakrishnan, S.; Campbell, M.J. Hyperparathyroidism of Renal Disease. Perm. J., 2016, 20(3), 15-127.
[PMID: 27479950]
[85]
Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16(12), 829-842.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[86]
Hauser, A. S.; Chavali, S.; Masuho, I.; Jahn, L. J.; Martemyanov, K. A.; Gloriam, D. E.; Babu, M. M. Pharmacogenomics of GPCR Drug Targets., 2018.
[87]
Kumar, A.; Gopalswamy, M.; Wishart, C.; Henze, M.; Eschen-Lippold, L.; Donnelly, D.; Balbach, J. N-terminal phosphorylation of parathyroid hormone (PTH) abolishes its receptor activity. ACS Chem. Biol., 2014, 9(11), 2465-2470.
[http://dx.doi.org/10.1021/cb5004515] [PMID: 25158085]
[88]
Rabbani, S.A.; Kremer, R.; Bennett, H.P.; Goltzman, D. Phosphorylation of parathyroid hormone by human and bovine parathyroid glands. J. Biol. Chem., 1984, 259(5), 2949-2955.
[PMID: 6699002]
[89]
D’Amour, P.; Brossard, J.H.; Rousseau, L.; Roy, L.; Gao, P.; Cantor, T. Amino-terminal form of parathyroid hormone (PTH) with immunologic similarities to hPTH(1-84) is overproduced in primary and secondary hyperparathyroidism. Clin. Chem., 2003, 49(12), 2037-2044.
[http://dx.doi.org/10.1373/clinchem.2003.021592] [PMID: 14633875]
[90]
Rubin, M.R.; Silverberg, S.J.; D’Amour, P.; Brossard, J.H.; Rousseau, L.; Sliney, J., Jr; Cantor, T.; Bilezikian, J.P. An N-terminal molecular form of parathyroid hormone (PTH) distinct from hPTH(1 84) is overproduced in parathyroid carcinoma. Clin. Chem., 2007, 53(8), 1470-1476.
[http://dx.doi.org/10.1373/clinchem.2007.085506] [PMID: 17599957]
[91]
Vieira, J.G.; Assays, P.T.H. PTH Assays: Understanding What We Have and Forecasting What We Will Have. J. Osteoporos., 2012, 2012, 523246.
[http://dx.doi.org/10.1155/2012/523246] [PMID: 22548199]
[92]
Martin, K.J.; Jüppner, H.; Sherrard, D.J.; Goodman, W.G.; Kaplan, M.R.; Nassar, G.; Campbell, P.; Curzi, M.; Charytan, C.; McCary, L.C.; Guo, M.D.; Turner, S.A.; Bushinsky, D.A. First- and second-generation immunometric PTH assays during treatment of hyperparathyroidism with cinacalcet HCl. Kidney Int., 2005, 68(3), 1236-1243.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00517.x] [PMID: 16105056]
[93]
Wood, C.; González, E.A.; Martin, K.J. Challenges in the therapy of secondary hyperparathyroidism. Ther. Apher. Dial., 2005, 9(1), 4-8.
[http://dx.doi.org/10.1111/j.1774-9987.2005.00208.x] [PMID: 15828898]
[94]
Cavalier, E.; Delanaye, P.; Lukas, P.; Carlisi, A.; Gadisseur, R.; Souberbielle, J.C. Standardization of DiaSorin and Roche automated third generation PTH assays with an International Standard: impact on clinical populations. Clin. Chem. Lab. Med., 2014, 52(8), 1137-1141.
[http://dx.doi.org/10.1515/cclm-2013-1027] [PMID: 24670360]
[95]
Cavalier, E.; Betea, D.; Schleck, M.L.; Gadisseur, R.; Vroonen, L.; Delanaye, P.; Daly, A.F.; Beckers, A. The third/second generation PTH assay ratio as a marker for parathyroid carcinoma: evaluation using an automated platform. J. Clin. Endocrinol. Metab., 2014, 99(3), E453-E457.
[http://dx.doi.org/10.1210/jc.2013-3730] [PMID: 24423313]
[96]
Bringhurst, F.R. Circulating forms of parathyroid hormone: peeling back the onion. Clin. Chem., 2003, 49(12), 1973-1975.
[http://dx.doi.org/10.1373/clinchem.2003.026948] [PMID: 14633866]
[97]
Kumar, A.; Balbach, J. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule. Sci. Rep., 2017, 7, 42141.
[http://dx.doi.org/10.1038/srep42141] [PMID: 28176839]
[98]
Kumar, A.; Kuhn, L.T.; Balbach, J.; In-Cell, N.M.R. In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int. J. Mol. Sci., 2019, 20(2), 378.
[http://dx.doi.org/10.3390/ijms20020378] [PMID: 30658393]
[99]
Serber, Z.; Selenko, P.; Hänsel, R.; Reckel, S.; Löhr, F.; Ferrell, J.E., Jr; Wagner, G.; Dötsch, V. Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat. Protoc., 2006, 1(6), 2701-2709.
[http://dx.doi.org/10.1038/nprot.2006.181] [PMID: 17406526]
[100]
Kumar, A.; Gopalswamy, M.; Wolf, A.; Brockwell, D.J.; Hatzfeld, M.; Balbach, J. Phosphorylation-induced unfolding regulates p19INK4d during the human cell cycle. Proc. Natl. Acad. Sci. USA, 2018, 115(13), 3344-3349.
[http://dx.doi.org/10.1073/pnas.1719774115] [PMID: 29531090]
[101]
Lefkowitz, R.J. A brief history of G-protein coupled receptors (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2013, 52(25), 6366-6378.
[http://dx.doi.org/10.1002/anie.201301924] [PMID: 23650015]
[102]
Wang, W.; Qiao, Y.; Li, Z. New Insights into Modes of GPCR Activation. Trends Pharmacol. Sci., 2018, 39(4), 367-386.
[http://dx.doi.org/10.1016/j.tips.2018.01.001] [PMID: 29395118]
[103]
Gilman, A.G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem., 1987, 56, 615-649.
[http://dx.doi.org/10.1146/annurev.bi.56.070187.003151] [PMID: 3113327]
[104]
Kumar, A. A small-molecule acts as a ‘roadblock’ on DNA, hampering its fundamental processes. J. Inorg. Biochem., 2017, 176, 134-139.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.023] [PMID: 28892676]
[105]
Kumar, A.; Kuhn, L.T.; Balbach, J.; Cu, A.A. Cu2+ complex induces the aggregation of human papillomavirus oncoprotein E6 and stabilizes p53. FEBS J., 2018, 285(16), 3013-3025.
[http://dx.doi.org/10.1111/febs.14591] [PMID: 29931810]
[106]
Kumar, A.; Ramanujam, B.; Singhal, N.K.; Mitra, A.; Rao, C.P. Interaction of aromatic imino glycoconjugates with jacalin: experimental and computational docking studies. Carbohydr. Res., 2010, 345(17), 2491-2498.
[http://dx.doi.org/10.1016/j.carres.2010.09.014] [PMID: 20961532]
[107]
Kumar, A.; Singhal, N.K.; Ramanujam, B.; Mitra, A.; Rameshwaram, N.R.; Nadimpalli, S.K.; Rao, C.P.C. (1)-/C(2)-aromatic-imino-glyco-conjugates: experimental and computational studies of binding, inhibition and docking aspects towards glycosidases isolated from soybean and jack bean. Glycoconj. J., 2009, 26(4), 495-510.
[http://dx.doi.org/10.1007/s10719-008-9199-4] [PMID: 18953653]
[108]
Gasser, G.; Metzler-Nolte, N. The potential of organometallic complexes in medicinal chemistry. Curr. Opin. Chem. Biol., 2012, 16(1-2), 84-91.
[http://dx.doi.org/10.1016/j.cbpa.2012.01.013] [PMID: 22366385]
[109]
Medici, S.; Peana, M.F.; Zoroddu, M.A. Noble Metals in Pharmaceuticals: Applications and Limitations; Springer: Cham, 2018.
[110]
Kumar, A.; Chinta, J.P.; Ajay, A.K.; Bhat, M.K.; Rao, C.P. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine. Dalton Trans., 2011, 40(41), 10865-10872.
[http://dx.doi.org/10.1039/c1dt10201j] [PMID: 21709916]
[111]
Jaouen, G. Bioorganometallics: Biomolecules, Labeling, Medicine; Jaouen, G., Ed.; Wiley-VCH, 2005.
[http://dx.doi.org/10.1002/3527607692]
[112]
Jaouen, G.; Metzler-Nolte, M. Medicinal Organometallic Chemistry., 2010.
[113]
Manet, I.; Manoli, F.; Donzello, M.P.; Viola, E.; Masi, A.; Andreano, G.; Ricciardi, G.; Rosa, A.; Cellai, L.; Ercolani, C.; Monti, S. Pyrazinoporphyrazines with externally appended pyridine rings. 13. Structure, UV-visible spectral features, and noncovalent interaction with DNA of a positively charged binuclear (Zn(II)/Pt(II)) macrocycle with multimodal anticancer potentialities. Inorg. Chem., 2013, 52(1), 321-328.
[http://dx.doi.org/10.1021/ic3020755] [PMID: 23244699]
[114]
Zhou, X.Q.; Meng, L.B.; Huang, Q.; Li, J.; Zheng, K.; Zhang, F.L.; Liu, J.Y.; Xue, J.P. Synthesis and in vitro anticancer activity of zinc(II) phthalocyanines conjugated with coumarin derivatives for dual photodynamic and chemotherapy. ChemMedChem, 2015, 10(2), 304-311.
[http://dx.doi.org/10.1002/cmdc.201402401] [PMID: 25369981]
[115]
Abu Ali, H.; Fares, H.; Darawsheh, M.; Rappocciolo, E.; Akkawi, M.; Jaber, S. Synthesis, characterization and biological activity of new mixed ligand complexes of Zn(II) naproxen with nitrogen based ligands. Eur. J. Med. Chem., 2015, 89, 67-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.032] [PMID: 25462227]
[116]
Yamgar, R.S.; Nivid, Y.; Nalawade, S.; Mandewale, M.; Atram, R.G.; Sawant, S.S. Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies. Bioinorg. Chem. Appl., 2014, 2014, 276598.
[http://dx.doi.org/10.1155/2014/276598] [PMID: 24707242]
[117]
Raman, N.; Mahalakshmi, R.; Arun, T.; Packianathan, S.; Rajkumar, R. Metal based pharmacologically active complexes of Cu(II), Ni(II) and Zn(II): synthesis, spectral, XRD, antimicrobial screening, DNA interaction and cleavage investigation. J. Photochem. Photobiol. B, 2014, 138, 211-222.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.05.018] [PMID: 24976625]
[118]
Li, G.; Zhu, D.; Wang, X.; Su, Z.; Bryce, M.R. Dinuclear metal complexes: multifunctional properties and applications. Chem. Soc. Rev., 2020, 49(3), 765-838.
[http://dx.doi.org/10.1039/C8CS00660A] [PMID: 31942586]
[119]
Navarroa, J.A.R.; Lippert, B. Simple 1:1 and 1:2 complexes of metal ions with heterocycles as building blocks for discrete molecular as well as polymeric assemblies. Coord. Chem. Rev., 2001, 222(1), 219-250.
[http://dx.doi.org/10.1016/S0010-8545(01)00390-3]
[120]
Banci, L.; Bertini, I.; Blaževitš, O.; Calderone, V.; Cantini, F.; Mao, J.; Trapananti, A.; Vieru, M.; Amori, I.; Cozzolino, M.; Carrì, M.T. Interaction of cisplatin with human superoxide dismutase. J. Am. Chem. Soc., 2012, 134(16), 7009-7014.
[http://dx.doi.org/10.1021/ja211591n] [PMID: 22471402]
[121]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[122]
Berg, J.M. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J. Biol. Chem., 1990, 265(12), 6513-6516.
[PMID: 2108957]
[123]
Ebert, J.C.; Altman, R.B. Robust recognition of zinc binding sites in proteins. Protein Sci., 2008, 17(1), 54-65.
[http://dx.doi.org/10.1110/ps.073138508] [PMID: 18042678]
[124]
Krężel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys., 2016, 611, 3-19.
[http://dx.doi.org/10.1016/j.abb.2016.04.010] [PMID: 27117234]
[125]
Sodhi, R.K.; Paul, S. Metal Complexes in Medicine: An Overview and Update from Drug Design Perspective. Canc. Therapy & Oncol. Int. J., 2019, 14, 555883.
[126]
Yoshikawa, Y.; Yasui, H. Zinc complexes developed as metallopharmaceutics for treating diabetes mellitus based on the bio-medicinal inorganic chemistry. Curr. Top. Med. Chem., 2012, 12(3), 210-218.
[http://dx.doi.org/10.2174/156802612799078874] [PMID: 22236156]
[127]
Georgiades, S.N.; Mak, L.H.; Angurell, I.; Rosivatz, E.; Firouz Mohd Mustapa, M.; Polychroni, C.; Woscholski, R.; Vilar, R. Identification of a potent activator of Akt phosphorylation from a novel series of phenolic, picolinic, pyridino, and hydroxamic zinc(II) complexes. J. Biol. Inorg. Chem., 2011, 16(2), 195-208.
[http://dx.doi.org/10.1007/s00775-010-0716-0] [PMID: 20972690]
[128]
Kumar, A.; Baumann, M.; Balbach, J. Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N-Terminal Peptide Binding. Sci. Rep., 2016, 6, 22533.
[http://dx.doi.org/10.1038/srep22533] [PMID: 26932583]
[129]
Carter, P.H.; Liu, R.Q.; Foster, W.R.; Tamasi, J.A.; Tebben, A.J.; Favata, M.; Staal, A.; Cvijic, M.E.; French, M.H.; Dell, V.; Apanovitch, D.; Lei, M.; Zhao, Q.; Cunningham, M.; Decicco, C.P.; Trzaskos, J.M.; Feyen, J.H. Discovery of a small molecule antagonist of the parathyroid hormone receptor by using an N-terminal parathyroid hormone peptide probe. Proc. Natl. Acad. Sci. USA, 2007, 104(16), 6846-6851.
[http://dx.doi.org/10.1073/pnas.0605125104] [PMID: 17428923]
[130]
Ulamec, S.M.; Radford, S.E. Spot the Difference: Function versus Toxicity in Amyloid Fibrils. Trends Biochem. Sci., 2020, 45(8), 635-636.
[http://dx.doi.org/10.1016/j.tibs.2020.04.007] [PMID: 32376150]
[131]
Owen, M.C.; Gnutt, D.; Gao, M.; Wärmländer, S.K.T.S.; Jarvet, J.; Gräslund, A.; Winter, R.; Ebbinghaus, S.; Strodel, B. Effects of in vivo conditions on amyloid aggregation. Chem. Soc. Rev., 2019, 48(14), 3946-3996.
[http://dx.doi.org/10.1039/C8CS00034D] [PMID: 31192324]
[132]
Giorgetti, S.; Greco, C.; Tortora, P.; Aprile, F.A. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. Int. J. Mol. Sci., 2018, 19(9), 2677.
[http://dx.doi.org/10.3390/ijms19092677] [PMID: 30205618]
[133]
Chiti, F.; Dobson, C.M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem., 2017, 86, 27-68.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045115] [PMID: 28498720]
[134]
Kotler, S.A.; Walsh, P.; Brender, J.R.; Ramamoorthy, A. Differences between amyloid-β aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6692-6700.
[http://dx.doi.org/10.1039/C3CS60431D] [PMID: 24464312]
[135]
DeToma, A.S.; Salamekh, S.; Ramamoorthy, A.; Lim, M.H. Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem. Soc. Rev., 2012, 41(2), 608-621.
[http://dx.doi.org/10.1039/C1CS15112F] [PMID: 21818468]
[136]
Gopalswamy, M.; Kumar, A.; Adler, J.; Baumann, M.; Henze, M.; Kumar, S.T.; Fändrich, M.; Scheidt, H.A.; Huster, D.; Balbach, J. Structural characterization of amyloid fibrils from the human parathyroid hormone. Biochim. Biophys. Acta, 2015, 1854(4), 249-257.
[http://dx.doi.org/10.1016/j.bbapap.2014.12.020] [PMID: 25554227]
[137]
Otzen, D.; Riek, R. Functional Amyloids. Cold Spring Harb. Perspect. Biol., 2019, 11(12), a033860.
[http://dx.doi.org/10.1101/cshperspect.a033860] [PMID: 31088827]
[138]
Taylor, J.D.; Matthews, S.J. New insight into the molecular control of bacterial functional amyloids. Front. Cell. Infect. Microbiol., 2015, 5, 33.
[http://dx.doi.org/10.3389/fcimb.2015.00033] [PMID: 25905048]
[139]
Barnhart, M.M.; Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol., 2006, 60, 131-147.
[http://dx.doi.org/10.1146/annurev.micro.60.080805.142106] [PMID: 16704339]
[140]
Fowler, D.M.; Koulov, A.V.; Alory-Jost, C.; Marks, M.S.; Balch, W.E.; Kelly, J.W. Functional amyloid formation within mammalian tissue. PLoS Biol., 2006, 4(1), e6.
[http://dx.doi.org/10.1371/journal.pbio.0040006] [PMID: 16300414]
[141]
Iconomidou, V.A.; Vriend, G.; Hamodrakas, S.J. Amyloids protect the silkmoth oocyte and embryo. FEBS Lett., 2000, 479(3), 141-145.
[http://dx.doi.org/10.1016/S0014-5793(00)01888-3] [PMID: 10981723]
[142]
Maddelein, M.L.; Dos Reis, S.; Duvezin-Caubet, S.; Coulary-Salin, B.; Saupe, S.J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7402-7407.
[http://dx.doi.org/10.1073/pnas.072199199] [PMID: 12032295]
[143]
Dobson, C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2001, 356(1406), 133-145.
[http://dx.doi.org/10.1098/rstb.2000.0758] [PMID: 11260793]
[144]
Westermark, P. On the nature of the amyloid in human islets of langerhans. Histochemistry, 1974, 38, 27-33.
[http://dx.doi.org/10.1007/BF00490217]
[145]
Maji, S.K.; Perrin, M.H.; Sawaya, M.R.; Jessberger, S.; Vadodaria, K.; Rissman, R.A.; Singru, P.S.; Nilsson, K.P.; Simon, R.; Schubert, D.; Eisenberg, D.; Rivier, J.; Sawchenko, P.; Vale, W.; Riek, R. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science, 2009, 325(5938), 328-332.
[http://dx.doi.org/10.1126/science.1173155] [PMID: 19541956]
[146]
Westermark, P. Amyloid and polypeptide hormones: What is their interrelationship? Amyloid, 1994, 1(1), 47-60.
[http://dx.doi.org/10.3109/13506129409148624]
[147]
Evgrafova, Z.; Voigt, B.; Baumann, M.; Stephani, M.; Binder, W.H.; Balbach, J. Probing Polymer Chain Conformation and Fibril Formation of Peptide Conjugates. ChemPhysChem, 2019, 20(2), 236-240.
[http://dx.doi.org/10.1002/cphc.201800867] [PMID: 30221816]
[148]
Huang, R.; Vivekanandan, S.; Brender, J.R.; Abe, Y.; Naito, A.; Ramamoorthy, A. NMR characterization of monomeric and oligomeric conformations of human calcitonin and its interaction with EGCG. J. Mol. Biol., 2012, 416(1), 108-120.
[http://dx.doi.org/10.1016/j.jmb.2011.12.023] [PMID: 22200484]
[149]
Ahn, T.G.; Antonarakis, S.E.; Kronenberg, H.M.; Igarashi, T.; Levine, M.A. Familial isolated hypoparathyroidism: a molecular genetic analysis of 8 families with 23 affected persons. Medicine (Baltimore), 1986, 65(2), 73-81.
[http://dx.doi.org/10.1097/00005792-198603000-00001] [PMID: 3005800]
[150]
Cui, J.; Chen, W.; Sun, J.; Guo, H.; Madley, R.; Xiong, Y.; Pan, X.; Wang, H.; Tai, A.W.; Weiss, M.A.; Arvan, P.; Liu, M. Competitive Inhibition of the Endoplasmic Reticulum Signal Peptidase by Non-cleavable Mutant Preprotein Cargos. J. Biol. Chem., 2015, 290(47), 28131-28140.
[http://dx.doi.org/10.1074/jbc.M115.692350] [PMID: 26446786]
[151]
Cheloha, R.W.; Gellman, S.H.; Vilardaga, J.P.; Gardella, T.J. PTH receptor-1 signalling-mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol., 2015, 11(12), 712-724.
[http://dx.doi.org/10.1038/nrendo.2015.139] [PMID: 26303600]
[152]
Datta, N.S.; Abou-Samra, A.B. PTH and PTHrP signaling in osteoblasts. Cell. Signal., 2009, 21(8), 1245-1254.
[http://dx.doi.org/10.1016/j.cellsig.2009.02.012] [PMID: 19249350]
[153]
Kovacs, C.S.; Lanske, B.; Hunzelman, J.L.; Guo, J.; Karaplis, A.C.; Kronenberg, H.M. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc. Natl. Acad. Sci. USA, 1996, 93(26), 15233-15238.
[http://dx.doi.org/10.1073/pnas.93.26.15233] [PMID: 8986793]
[154]
Mundy, G.R.; Edwards, J.R. PTH-related peptide (PTHrP) in hypercalcemia. J. Am. Soc. Nephrol., 2008, 19(4), 672-675.
[http://dx.doi.org/10.1681/ASN.2007090981] [PMID: 18256357]
[155]
Takasu, H.; Gardella, T.J.; Luck, M.D.; Potts, J.T., Jr; Bringhurst, F.R. Amino-terminal modifications of human parathyroid hormone (PTH) selectively alter phospholipase C signaling via the type 1 PTH receptor: implications for design of signal-specific PTH ligands. Biochemistry, 1999, 38(41), 13453-13460.
[http://dx.doi.org/10.1021/bi990437n] [PMID: 10521252]
[156]
Monticelli, L.; Mammi, S.; Mierke, D.F. Molecular characterization of a ligand-tethered parathyroid hormone receptor. Biophys. Chem., 2002, 95(2), 165-172.
[http://dx.doi.org/10.1016/S0301-4622(02)00005-4] [PMID: 11897155]
[157]
Shimizu, M.; Potts, J.T., Jr; Gardella, T.J. Minimization of parathyroid hormone. Novel amino-terminal parathyroid hormone fragments with enhanced potency in activating the type-1 parathyroid hormone receptor. J. Biol. Chem., 2000, 275(29), 21836-21843.
[http://dx.doi.org/10.1074/jbc.M909861199] [PMID: 10777513]
[158]
Zull, J.E.; Smith, L.M.; Chuang, J.; Jentoft, J. Deletion of lysine 13 alters the structure and function of parathyroid hormone. Mol. Cell. Endocrinol., 1987, 51(3), 267-271.
[http://dx.doi.org/10.1016/0303-7207(87)90037-2] [PMID: 3109980]
[159]
Roubini, E.; Duong, L.T.; Gibbons, S.W.; Leu, C.T.; Caulfield, M.P.; Chorev, M.; Rosenblatt, M. Synthesis of fully active biotinylated analogues of parathyroid hormone and parathyroid hormone-related protein as tools for the characterization of parathyroid hormone receptors. Biochemistry, 1992, 31(16), 4026-4033.
[http://dx.doi.org/10.1021/bi00131a018] [PMID: 1314656]
[160]
Newman, W.; Beall, L.D.; Levine, M.A.; Cone, J.L.; Randhawa, Z.I.; Bertolini, D.R. Biotinylated parathyroid hormone as a probe for the parathyroid hormone receptor. Structure-function analysis and detection of specific binding to cultured bone cells by flow cytometry. J. Biol. Chem., 1989, 264(28), 16359-16365.
[PMID: 2550439]
[161]
Zaman, G.; Saphier, P.W.; Loveridge, N.; Kimura, T.; Sakakibara, S.; Bernier, S.M.; Hendy, G.N. Biological properties of synthetic human parathyroid hormone: effect of deamidation at position 76 on agonist and antagonist activity. Endocrinology, 1991, 128(5), 2583-2590.
[http://dx.doi.org/10.1210/endo-128-5-2583] [PMID: 1850358]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy