[1]
Mirnezami, R.; Nicholson, J.; Darzi, A. Preparing for precision medicine. N. Engl. J. Med., 2012, 366(6), 489-491.
[2]
Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29(11), 1181-1189.
[3]
Raamsdonk, L.M.; Teusink, B.; Broadhurst, D.; Zhang, N.; Hayes, A.; Walsh, M.C.; Berden, J.A.; Brindle, K.M.; Kell, D.B.; Rowland, J.J.; Westerhoff, H.V.; van Dam, K.; Oliver, S.G. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol., 2001, 19(1), 45-50.
[4]
Fiehn, O. “Cellular Metabolomics : The Quest for Pathway
Structure,” in The Handbook of Metabonomics and Metabolomics. , 2007; p. 35-54.
[5]
Nicholson, J.K.; Holmes, E.; Kinross, J.M.; Darzi, A.W.; Takats, Z.; Lindon, J.C. Metabolic phenotyping in clinical and surgical environments. Nature, 2012, 491(7424), 384-392.
[6]
Bales, J.R.; Higham, D.P.; Howe, I.; Nicholson, J.K.; Sadler, P.J. Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin. Chem., 1984, 30(3), 426-432.
[7]
Tate, A.R.R.; Griffiths, J.R.R.; Martínez-Pérez, I.; Moreno, A.; Barba, I.; Cabañas, M.E.M.E.M.E.; Watson, D.; Alonso, J.; Bartumeus, F.; Isamat, F.; Ferrer, I.; Vila, F.; Ferrer, E.; Capdevila, A.; Arús, C.; Moreno-Torres, À.; Barba, I.; Cabañas, M.E.M.E.M.E.; Watson, D.; Alonso, J.; Bartumeus, F.; Isamat, F.; Ferrer, I.; Vila, F.; Ferrer, E.; Capdevila, A.; Arús, C. Towards a method for automated classification of 1H MRS spectra from brain tumours. NMR Biomed., 1998, 11(4-5), 177-191.
[8]
Griffin, J.L.; Atherton, H.; Shockcor, J.; Atzori, L. Metabolomics as a tool for cardiac research. Nat. Rev. Cardiol., 2011, 8(11), 630-643.
[9]
Heather, L.C.; Wang, X.; West, J.A.; Griffin, J.L. A practical guide to metabolomic profiling as a discovery tool for human heart disease. J. Mol. Cell. Cardiol., 2013, 55(1), 2-11.
[10]
Kolwicz, S.C., Jr; Purohit, S.; Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res., 2013, 113(5), 603-616.
[11]
Kannel, W.B.; Dawber, T.R.; Friedman, G.D.; Glennon, W.E.; McNamara, P.M. Risk Factors in Coronary Heart Disease: An Evaluation of Several Serum Lipids as Predictors of Coronary Heart Disease: The Framingham Study. Ann. Intern. Med., 1964, 61(5), 888-899.
[12]
Barabási, A-L.; Oltvai, Z.N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet., 2004, 5(2), 101-113.
[13]
Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabási, A-L. The large-scale organization of metabolic networks. Nature, 2000, 407(6804), 651-654.
[14]
Aderem, A. Systems biology: its practice and challenges. Cell, 2005, 121(4), 511-513.
[15]
Ellis, D.I.; Dunn, W.B.; Griffin, J.L.; Allwood, J.W.; Goodacre, R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 2007, 8(9), 1243-1266.
[16]
Bollard, M.E.; Stanley, E.G.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed., 2005, 18(3), 143-162.
[17]
Houtkooper, R.H.; Argmann, C.; Houten, S.M.; Cantó, C.; Jeninga, E.H.; Andreux, P.A.; Thomas, C.; Doenlen, R.; Schoonjans, K.; Auwerx, J. The metabolic footprint of aging in mice. Sci. Rep., 2011, 1, 134.
[18]
Atherton, H.J.; Gulston, M.K.; Bailey, N.J.; Cheng, K-K.; Zhang, W.; Clarke, K.; Griffin, J.L. Metabolomics of the interaction between PPAR-alpha and age in the PPAR-alpha-null mouse. Mol. Syst. Biol., 2009, 5(259), 259.
[19]
Zhang, S.; Liu, L.; Steffen, D.; Ye, T.; Raftery, D. Metabolic profiling of gender: Headspace-SPME/GC–MS and 1H NMR analysis of urine. Metabolomics, 2011, 8(2), 1-12.
[20]
Krumsiek, J.; Mittelstrass, K.; Do, K.T.; Stückler, F.; Ried, J.; Adamski, J.; Peters, A.; Illig, T.; Kronenberg, F.; Friedrich, N.; Nauck, M.; Pietzner, M.; Mook-Kanamori, D.O.; Suhre, K.; Gieger, C.; Grallert, H.; Theis, F.J.; Kastenmüller, G. Gender-specific pathway differences in the human serum metabolome. Metabolomics, 2015, 11(6), 1815-1833.
[21]
Holmes, E.; Loo, R.L.; Stamler, J.; Bictash, M.; Yap, I.K.S.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I.J.; Veselkov, K.A.; Daviglus, M.L.; Kesteloot, H.; Ueshima, H.; Zhao, L.; Nicholson, J.K.; Elliott, P. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 2008, 453(7193), 396-400.
[22]
Griffin, J.L.; Wang, X.; Stanley, E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet, 2015, 8(1), 187-191.
[23]
Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Houston Miller, N.; Hubbard, V.S.; Lee, I-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; Nonas, C.A.; Sacks, F.M.; Smith, S.C.; Svetkey, L.P.; Wadden, T.A.; Yanovski, S.Z. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol, 63(25 Pt B), 2960-84.Jul;2014.
[24]
Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.; Blum, C.; Goldberg, A.; Gordon, D.; Levy, D.; Lloyd-Jones, D.P. BcBride, J. Schwartz, S. Shero, S. Smith, K. Watson, and P. Wilson, “2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Disease Risk in Adults. J. Am. Coll. Cardiol., 2014, 63(25), 2889-2934.
[25]
van der Greef, J.; Stroobant, P.; van der Heijden, R. The role of analytical sciences in medical systems biology. Curr. Opin. Chem. Biol., 2004, 8(5), 559-565.
[26]
Mäkinen, V-P.; Soininen, P.; Forsblom, C.; Parkkonen, M.; Ingman, P.; Kaski, K.; Groop, P-H.; Ala-Korpela, M. 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death. Mol. Syst. Biol., 2008, 4(167), 167.
[27]
McGill, H.C., Jr; McMahan, C.A.; Zieske, A.W.; Tracy, R.E.; Malcom, G.T.; Herderick, E.E.; Strong, J.P. Association of coronary heart disease risk factors with microscopic qualities of coronary atherosclerosis in youth. Circulation, 2000, 102(4), 374-379.
[28]
Robertson, D.G. Metabonomics in toxicology: a review. Toxicol. Sci., 2005, 85(2), 809-822.
[29]
Krauss, R.M.; Zhu, H.; Kaddurah-Daouk, R. Pharmacometabolomics of statin response. Clin. Pharmacol. Ther., 2013, 94(5), 562-565.
[30]
Clayton, T.A.; Lindon, J.C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J-P.P.; Le Net, J-L.L.; Baker, D.; Walley, R.J.; Everett, J.R.; Nicholson, J.K.; Andrew Clayton, T.; Lindon, J.C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J-P.P.; Le Net, J-L.L.; Baker, D.; Walley, R.J.; Everett, J.R.; Nicholson, J.K. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature, 2006, 440(7087), 1073-1077.
[31]
Everett, J.R.; Loo, R.L.; Pullen, F.S. Pharmacometabonomics and personalized medicine. Ann. Clin. Biochem., 2013, 50(Pt 6), 523-545.
[32]
Trupp, M.; Zhu, H.; Wikoff, W.R.; Baillie, R.A.; Zeng, Z.B.; Karp, P.D.; Fiehn, O.; Krauss, R.M.; Kaddurah-Daouk, R. Metabolomics reveals amino acids contribute to variation in response to simvastatin treatment. PLoS One, 2012, 7(7), e38386.
[33]
Bollard, M.E.; Murray, A.J.; Clarke, K.; Nicholson, J.K.; Griffin, J.L. A study of metabolic compartmentation in the rat heart and cardiac mitochondria using high-resolution magic angle spinning 1H NMR spectroscopy. FEBS Lett., 2003, 553(1-2), 73-78.
[34]
Barba, I.; Jaimez-Auguets, E.; Rodriguez-Sinovas, A.; Garcia-Dorado, D. 1H NMR-based metabolomic identification of at-risk areas after myocardial infarction in swine. MAGMA, 2007, 20(5-6), 265-271.
[35]
Takeda, I.; Stretch, C.; Barnaby, P.; Bhatnager, K.; Rankin, K.; Fu, H.; Weljie, A.; Jha, N.; Slupsky, C. Understanding the human salivary metabolome. NMR Biomed., 2009, 22(6), 577-584.
[36]
Barba, I.; Garcia-Ramírez, M.; Hernández, C.; Alonso, M.A.; Masmiquel, L.; García-Dorado, D.; Simó, R. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest. Ophthalmol. Vis. Sci., 2010, 51(9), 4416-4421.
[37]
Lutz, N.W.; Viola, A.; Malikova, I.; Confort-Gouny, S.; Audoin, B.; Ranjeva, J.P.; Pelletier, J.; Cozzone, P.J. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One, 2007, 2(7), e595.
[38]
Li, S.; Todor, A.; Luo, R. Blood transcriptomics and metabolomics for personalized medicine. Comput. Struct. Biotechnol. J., 2015, 14, 1-7.
[39]
Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; Young, N.; Xia, J.; Knox, C.; Dong, E.; Huang, P.; Hollander, Z.; Pedersen, T.L.; Smith, S.R.; Bamforth, F.; Greiner, R.; McManus, B.; Newman, J.W.; Goodfriend, T.; Wishart, D.S. The human serum metabolome. PLoS One, 2011, 6(2), e16957.
[40]
Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z.T.; Poelzer, J.; Huynh, J.; Yallou, F.S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D.S. The human urine metabolome. PLoS One, 2013, 8(9), e73076.
[41]
Awonusonu, F.; Srinivasan, S.; Strange, J.; Al-Jumaily, W.; Bruce, M.C. Developmental shift in the relative percentages of lung fibroblast subsets: role of apoptosis postseptation. Am. J. Physiol., 1999, 277(4 Pt 1), L848-L859.
[42]
Shah, S.H.; Hauser, E.R.; Bain, J.R.; Muehlbauer, M.J.; Haynes, C.; Stevens, R.D.; Wenner, B.R.; Dowdy, Z.E.; Granger, C.B.; Ginsburg, G.S.; Newgard, C.B.; Kraus, W.E. High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol. Syst. Biol., 2009, 5(258), 258.
[43]
Gieger, C.; Geistlinger, L.; Altmaier, E.; Hrabé de Angelis, M.; Kronenberg, F.; Meitinger, T.; Mewes, H.W.; Wichmann, H.E.; Weinberger, K.M.; Adamski, J.; Illig, T.; Suhre, K. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet., 2008, 4(11), e1000282.
[44]
Hartiala, J.A.; Tang, W.H.W.; Wang, Z.; Crow, A.L.; Stewart, A.F.R.; Roberts, R.; McPherson, R.; Erdmann, J.; Willenborg, C.; Hazen, S.L.; Allayee, H. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat. Commun., 2016, 7, 10558.
[45]
Mayr, M.; Chung, Y-L.; Mayr, U.; Yin, X.; Ly, L.; Troy, H.; Fredericks, S.; Hu, Y.; Griffiths, J.R.; Xu, Q. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol., 2005, 25(10), 2135-2142.
[46]
Mayr, M.; Madhu, B.; Xu, Q. Proteomics and metabolomics combined in cardiovascular research. Trends Cardiovasc. Med., 2007, 17(2), 43-48.
[47]
Mayr, M.; Siow, R.; Chung, Y.L.; Mayr, U.; Griffiths, J.R.; Xu, Q. Proteomic and metabolomic analysis of vascular smooth muscle cells: role of PKCdelta. Circ. Res., 2004, 94(10), e87-e96.
[48]
Griffin, J.L.; Des Rosiers, C. Applications of metabolomics and proteomics to the mdx mouse model of Duchenne muscular dystrophy: lessons from downstream of the transcriptome. Genome Med., 2009, 1(3), 32.
[49]
Inserte, J.; Barba, I.; Hernando, V.; Garcia-Dorado, D. Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc. Res., 2009, 81(1), 116-122.
[50]
Fan, T.W-M.; Lane, A.N. NMR-based stable isotope resolved metabolomics in systems biochemistry. J. Biomol. NMR, 2011, 49(3-4), 267-280.
[51]
Bothwell, J.H.F.; Griffin, J.L. An introduction to biological nuclear magnetic resonance spectroscopy. Biol. Rev. Camb. Philos. Soc., 2011, 86(2), 493-510.
[52]
Barba, I.; de León, G.; Martín, E.; Cuevas, A.; Aguade, S.; Candell-Riera, J.; Barrabés, J.A.; Garcia-Dorado, D.; De León, G.; Martín, E.; Cuevas, A.; Aguade, S.; Candell-Riera, J.; Barrabés, J.A.; Garcia-Dorado, D.; de Leon, G.; Martin, E.; Cuevas, A.; Aguade, S.; Candell-Riera, J.; Barrabes, J.A.; Garcia-Dorado, D. Nuclear magnetic resonance-based metabolomics predicts exercise-induced ischemia in patients with suspected coronary artery disease. Magn. Reson. Med., 2008, 60(1), 27-32.
[53]
Mallol, R.; Rodriguez, M.A.; Brezmes, J.; Masana, L.; Correig, X. Human serum/plasma lipoprotein analysis by NMR: application to the study of diabetic dyslipidemia. Prog. Nucl. Magn. Reson. Spectrosc., 2013, 70, 1-24.
[54]
Goonewardena, S.N.; Prevette, L.E.; Desai, A.A. Metabolomics and atherosclerosis. Curr. Atheroscler. Rep., 2010, 12(4), 267-272.
[55]
Gowda, G.A.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn., 2008, 8(5), 617-633.
[56]
Crutchfield, C.A.; Thomas, S.N.; Sokoll, L.J.; Chan, D.W. Advances in mass spectrometry-based clinical biomarker discovery. Clin. Proteomics, 2016, 13, 1-12.
[57]
Näsström, E.; Vu Thieu, N.T.; Dongol, S.; Karkey, A.; Voong Vinh, P.; Ha Thanh, T.; Johansson, A.; Arjyal, A.; Thwaites, G.; Dolecek, C.; Basnyat, B.; Baker, S.; Antti, H. Salmonella Typhi and Salmonella Paratyphi A elaborate distinct systemic metabolite signatures during enteric fever. eLife, 2014, 3, 1-19.
[58]
Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc., 2007, 2(11), 2692-2703.
[59]
Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; Nicholls, A.W.; Wilson, I.D.; Kell, D.B.; Goodacre, R. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc., 2011, 6(7), 1060-1083.
[60]
Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; Maguire, E.; González-Beltrán, A.; Sansone, S.A.; Griffin, J.L.; Steinbeck, C. MetaboLights--an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res., 2013, 41(Database issue), D781-D786.
[61]
Rocca-Serra, P.; Salek, R.M.; Arita, M.; Correa, E.; Dayalan, S.; Gonzalez-Beltran, A.; Ebbels, T.; Goodacre, R.; Hastings, J.; Haug, K.; Koulman, A.; Nikolski, M.; Oresic, M.; Sansone, S.A.; Schober, D.; Smith, J.; Steinbeck, C.; Viant, M.R.; Neumann, S. Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics, 2016, 12(1), 14.
[62]
Lewis, G.D.; Wei, R.; Liu, E.; Yang, E.; Shi, X.; Martinovic, M.; Farrell, L.; Asnani, A.; Cyrille, M.; Ramanathan, A.; Shaham, O.; Berriz, G.; Lowry, P.A.; Palacios, I.F.; Taşan, M.; Roth, F.P.; Min, J.; Baumgartner, C.; Keshishian, H.; Addona, T.; Mootha, V.K.; Rosenzweig, A.; Carr, S.A.; Fifer, M.A.; Sabatine, M.S.; Gerszten, R.E. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J. Clin. Invest., 2008, 118(10), 3503-3512.
[63]
Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 2012, 8(1)(Suppl. 1), 3-16.
[64]
Nyamundanda, G.; Gormley, I.C.; Fan, Y.; Gallagher, W.M.; Brennan, L. MetSizeR: selecting the optimal sample size for metabolomic studies using an analysis based approach. BMC Bioinformatics, 2013, 14, 338.
[65]
Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res., 2015, 43(W1), W251-7.
[66]
Dunn, W.B.; Lin, W.; Broadhurst, D.; Begley, P.; Brown, M.; Zelena, E.; Vaughan, A.A.; Halsall, A.; Harding, N.; Knowles, J.D.; Francis-McIntyre, S.; Tseng, A.; Ellis, D.I.; O’Hagan, S.; Aarons, G.; Benjamin, B.; Chew-Graham, S.; Moseley, C.; Potter, P.; Winder, C.L.; Potts, C.; Thornton, P.; McWhirter, C.; Zubair, M.; Pan, M.; Burns, A.; Cruickshank, J.K.; Jayson, G.C.; Purandare, N.; Wu, F.C.W.; Finn, J.D.; Haselden, J.N.; Nicholls, A.W.; Wilson, I.D.; Goodacre, R.; Kell, D.B. Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics, 2015, 11(1), 9-26.
[67]
Brindle, J.T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.K.; Bethell, H.W.L.; Clarke, S.; Schofield, P.M.; McKilligin, E.; Mosedale, D.E.; Grainger, D.J. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med., 2002, 8(12), 1439-1444.
[68]
Sansbury, B.E.; DeMartino, A.M.; Xie, Z.; Brooks, A.C.; Brainard, R.E.; Watson, L.J.; DeFilippis, A.P.; Cummins, T.D.; Harbeson, M.A.; Brittian, K.R.; Prabhu, S.D.; Bhatnagar, A.; Jones, S.P.; Hill, B.G. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail, 2014, 7(4), 634-642.
[69]
Tenori, L.; Hu, X.; Pantaleo, P.; Alterini, B.; Castelli, G.; Olivotto, I.; Bertini, I.; Luchinat, C.; Gensini, G.F. Metabolomic fingerprint of heart failure in humans: a nuclear magnetic resonance spectroscopy analysis. Int. J. Cardiol., 2013, 168(4), e113-e115.
[70]
Heather, L.C.; Pates, K.M.; Atherton, H.J.; Cole, M.A.; Ball, D.R.; Evans, R.D.; Glatz, J.F.; Luiken, J.J.; Griffin, J.L.; Clarke, K. Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail, 2013, 6(5), 1058-1066.
[71]
Valls-Lacalle, L.; Barba, I.; Miró-Casas, E.; Alburquerque-Béjar, J.J.; Ruiz-Meana, M.; Fuertes-Agudo, M.; Rodríguez-Sinovas, A.; García-Dorado, D.; Juan José Alburquerque-Béjar, M. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc. Res., 2016, 109(3), 374-384. [Succinate.].
[72]
Atherton, H.J.; Bailey, N.J.; Zhang, W.; Taylor, J.; Major, H.; Shockcor, J.; Clarke, K.; Griffin, J.L. A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-alpha null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol. Genomics, 2006, 27(2), 178-186.
[73]
Rodríguez-Sinovas, A.; Sánchez, J.A.; González-Loyola, A.; Barba, I.; Morente, M.; Aguilar, R.; Agulló, E.; Miró-Casas, E.; Esquerda, N.; Ruiz-Meana, M.; García-Dorado, D. Effects of substitution of Cx43 by Cx32 on myocardial energy metabolism, tolerance to ischaemia and preconditioning protection. J. Physiol., 2010, 588(Pt 7), 1139-1151.
[74]
Jones, G.L.A.H.; Sang, E.; Goddard, C.; Mortishire-Smith, R.J.; Sweatman, B.C.; Haselden, J.N.; Davies, K.; Grace, A.A.; Clarke, K.; Griffin, J.L. A functional analysis of mouse models of cardiac disease through metabolic profiling. J. Biol. Chem., 2005, 280(9), 7530-7539.
[75]
Sankaralingam, S.; Lopaschuk, G.D. Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure (2013 Grover Conference Series). Pulm. Circ., 2015, 5(1), 15-28.
[76]
Beer, M.; Seyfarth, T.; Sandstede, J.; Landschütz, W.; Lipke, C.; Köstler, H.; von Kienlin, M.; Harre, K.; Hahn, D.; Neubauer, S. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am. Coll. Cardiol., 2002, 40(7), 1267-1274.
[77]
Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.L.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev., 2010, 90(1), 207-258.
[78]
Kang, S.M.; Park, J.C.; Shin, M.J.; Lee, H.; Oh, J.; Ryu, D.H.; Hwang, G.S.; Chung, J.H. 1H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure. Clin. Biochem., 2011, 44(4), 293-299.
[79]
Du, Z.; Shen, A.; Huang, Y.; Su, L.; Lai, W.; Wang, P.; Xie, Z.; Xie, Z.; Zeng, Q.; Ren, H.; Xu, D. 1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients. PLoS One, 2014, 9(2), e88102.
[80]
Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; Eyassu, F.; Shirley, R.; Hu, C-H.; Dare, A.J.; James, A.M.; Rogatti, S.; Hartley, R.C.; Eaton, S.; Costa, A.S.H.; Brookes, P.S.; Davidson, S.M.; Duchen, M.R.; Saeb-Parsy, K.; Shattock, M.J.; Robinson, A.J.; Work, L.M.; Frezza, C.; Krieg, T.; Murphy, M.P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515(7527), 431-435.
[81]
Turer, A.T. Using metabolomics to assess myocardial metabolism and energetics in heart failure. J. Mol. Cell. Cardiol., 2013, 55(1), 12-18.
[82]
Zordoky, B.N.; Sung, M.M.; Ezekowitz, J.; Mandal, R.; Han, B.; Bjorndahl, T.C.; Bouatra, S.; Anderson, T.; Oudit, G.Y.; Wishart, D.S.; Dyck, J.R.B. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS One, 2015, 10(5), e0124844.
[83]
Cheng, M-L.L.; Wang, C-H.H.; Shiao, M-S.S.; Liu, M-H.H.; Huang, Y-Y.Y.; Huang, C-Y.Y.; Mao, C-T.T.; Lin, J-F.F.; Ho, H-Y.Y.; Yang, N-I.I. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J. Am. Coll. Cardiol., 2015, 65(15), 1509-1520.
[84]
Padeletti, L.; Modesti, P.A.; Cartei, S.; Checchi, L.; Ricciardi, G.; Pieragnolia, P.; Sacchi, S.; Padeletti, M.; Alterini, B.; Pantaleo, P.; Hu, X.; Tenori, L.; Luchinat, C. Metabolomic does not predict response to cardiac resynchronization therapy in patients with heart failure. J. Cardiovasc. Med. (Hagerstown), 2014, 15(4), 295-300.
[85]
Sabatine, M.S.; Liu, E.; Morrow, D.A.; Heller, E.; McCarroll, R.; Wiegand, R.; Berriz, G.F.; Roth, F.P.; Gerszten, R.E. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 2005, 112(25), 3868-3875.
[86]
Rasmiena, A.A.; Ng, T.W.; Meikle, P.J. Metabolomics and ischaemic heart disease. Clin. Sci. (Lond.), 2013, 124(5), 289-306.
[87]
Bodí, V.; Sanchis, J.; Morales, J.M.; Marrachelli, V.G.; Nunez, J.; Forteza, M.J.; Chaustre, F.; Gomez, C.; Mainar, L.; Minana, G.; Rumiz, E.; Husser, O.; Noguera, I.; Diaz, A.; Moratal, D.; Carratala, A.; Bosch, X.; Llacer, A.; Chorro, F.J.; Viña, J.R.; Monleon, D. Metabolomic profile of human myocardial ischemia by nuclear magnetic resonance spectroscopy of peripheral blood serum: a translational study based on transient coronary occlusion models. J. Am. Coll. Cardiol., 2012, 59(18), 1629-1641.
[88]
Turer, A.T.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.J.; van der Westhuizen, J.; Mathew, J.P.; Schwinn, D.A.; Glower, D.D.; Newgard, C.B.; Podgoreanu, M.V. Metabolomic profiling reveals distinct patterns of myocardial substrate use in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia/reperfusion. Circulation, 2009, 119(13), 1736-1746.
[89]
Kirschenlohr, H.L.; Griffin, J.L.; Clarke, S.C.; Rhydwen, R.; Grace, A.A.; Schofield, P.M.; Brindle, K.M.; Metcalfe, J.C. Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nat. Med., 2006, 12(6), 705-710.
[90]
Shah, A.A.; Craig, D.M.; Sebek, J.K.; Haynes, C.; Stevens, R.C.; Muehlbauer, M.J.; Granger, C.B.; Hauser, E.R.; Newby, L.K.; Newgard, C.B.; Kraus, W.E.; Hughes, G.C.; Shah, S.H. Metabolic profiles predict adverse events after coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg., 2012, 143(4), 873-878.
[91]
Würtz, P.; Havulinna, A.S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; Artati, A.; Wang, Q.; Tiainen, M.; Kangas, A.J.; Kettunen, J.; Kaikkonen, J.; Mikkilä, V.; Jula, A.; Kähönen, M.; Lehtimäki, T.; Lawlor, D.A.; Gaunt, T.R.; Hughes, A.D.; Sattar, N.; Illig, T.; Adamski, J.; Wang, T.J.; Perola, M.; Ripatti, S.; Vasan, R.S.; Raitakari, O.T.; Gerszten, R.E.; Casas, J-P.; Chaturvedi, N.; Ala-Korpela, M.; Salomaa, V. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation, 2015, 131(9), 774-785.
[92]
Borodulin, K.; Vartiainen, E.; Peltonen, M.; Jousilahti, P.; Juolevi, A.; Laatikainen, T.; Mannisto, S.; Salomaa, V.; Sundvall, J.; Puska, P. Forty-year trends in cardiovascular risk factors in Finland. Eur. J. Public Health, 2014, 39(2), 504-518.
[93]
Tillin, T.; Forouhi, N.G.; McKeigue, P.M.; Chaturvedi, N. Southall And Brent REvisited: Cohort profile of SABRE, a UK population-based comparison of cardiovascular disease and diabetes in people of European, Indian Asian and African Caribbean origins. Int. J. Epidemiol., 2012, 41(1), 33-42.
[94]
Lawlor, D.A.; Bedford, C.; Taylor, M.; Ebrahim, S. Geographical variation in cardiovascular disease, risk factors, and their control in older women: British Women’s Heart and Health Study. J. Epidemiol. Community Health, 2003, 57(2), 134-140.
[95]
Cheng, S.; Rhee, E.P.; Larson, M.G.; Lewis, G.D.; McCabe, E.L.; Shen, D.; Palma, M.J.; Roberts, L.D.; Dejam, A.; Souza, A.L.; Deik, A.A.; Magnusson, M.; Fox, C.S.; O’Donnell, C.J.; Vasan, R.S.; Melander, O.; Clish, C.B.; Gerszten, R.E.; Wang, T.J. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation, 2012, 125(18), 2222-2231.
[96]
Ganna, A.; Salihovic, S.; Sundström, J.; Broeckling, C.D.; Hedman, A.K.; Magnusson, P.K.E.; Pedersen, N.L.; Larsson, A.; Siegbahn, A.; Zilmer, M.; Prenni, J.; Arnlöv, J.; Lind, L.; Fall, T.; Ingelsson, E. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet., 2014, 10(12), e1004801.
[97]
Basak, T.; Varshney, S.; Hamid, Z.; Ghosh, S.; Seth, S.; Sengupta, S. “Identification of metabolic markers in coronary
artery disease using an untargeted LC-MS based metabolomic
approach,” J. Proteomics, , 127, , (Pt A), 169-177.
[98]
Stegemann, C.; Pechlaner, R.; Willeit, P.; Langley, S.R.; Mangino, M.; Mayr, U.; Menni, C.; Moayyeri, A.; Santer, P.; Rungger, G.; Spector, T.D.; Willeit, J.; Kiechl, S.; Mayr, M. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation, 2014, 129(18), 1821-1831.
[99]
Ala-Korpela, M. Critical evaluation of 1H NMR metabonomics of serum as a methodology for disease risk assessment and diagnostics. Clin. Chem. Lab. Med., 2008, 46(1), 27-42.
[100]
Shah, S.H.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Crosslin, D.R.; Haynes, C.; Dungan, J.; Newby, L.K.; Hauser, E.R.; Ginsburg, G.S.; Newgard, C.B.; Kraus, W.E. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet, 2010, 3(2), 207-214.
[101]
Shah, S.H.; Sun, J-L.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.J.; Pieper, K.S.; Haynes, C.; Hauser, E.R.; Kraus, W.E.; Granger, C.B.; Newgard, C.B.; Califf, R.M.; Newby, L.K. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am. Heart J., 2012, 163(5), 844-850.e1.
[102]
Dunn, W.B.; Goodacre, R.; Neyses, L.; Mamas, M. Integration of metabolomics in heart disease and diabetes research: current achievements and future outlook. Bioanalysis, 2011, 3(19), 2205-2222.
[103]
Friedrich, N. Metabolomics in diabetes research. J. Endocrinol., 2012, 215(1), 29-42.
[104]
Klein, M.S.; Shearer, J. Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application. J. Diabetes Res., 2016, 2016, 3898502.
[105]
Lindon, J.C.; Nicholson, J.K. The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opin. Drug Metab. Toxicol., 2014, 10(7), 915-919.
[106]
Soininen, P.; Kangas, A.J.; Würtz, P.; Suna, T.; Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet, 2015, 8(1), 192-206.
[107]
Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol., 2017, 43, 34-40.
[108]
Tzoulaki, I.; Ebbels, T.M.D.; Valdes, A.; Elliott, P.; Ioannidis, J.P.A. Design and analysis of metabolomics studies in epidemiologic research: a primer on -Omic technologies. Am. J. Epidemiol., 2014, 180(2), 129-139.
[109]
Sharkey, S.W.; Maron, B.J. Epidemiology and clinical profile of Takotsubo cardiomyopathy. Circ. J., 2014, 78(9), 2119-2128.
[110]
Komamura, K.; Fukui, M.; Iwasaku, T.; Hirotani, S.; Masuyama, T. Takotsubo cardiomyopathy: Pathophysiology, diagnosis and treatment. World J. Cardiol., 2014, 6(7), 602-609.
[111]
Eitel, I.; von Knobelsdorff-Brenkenhoff, F.; Bernhardt, P.; Carbone, I.; Muellerleile, K.; Aldrovandi, A.; Francone, M.; Desch, S.; Gutberlet, M.; Strohm, O.; Schuler, G.; Schulz-Menger, J.; Thiele, H.; Friedrich, M.G. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA, 2011, 306(3), 277-286.
[112]
Wittstein, I.S.; Thiemann, D.R.; Lima, J.A.; Baughman, K.L.; Schulman, S.P.; Gerstenblith, G.; Wu, K.C.; Rade, J.J.; Bivalacqua, T.J.; Champion, H.C. Neurohumoral features of myocardial stunning due to sudden emotional stress. N. Engl. J. Med., 2005, 352(6), 539-548.
[113]
Payne, R.A. Cardiovascular risk. Br. J. Clin. Pharmacol., 2012, 74(3), 396-410.
[114]
Novo, S.; Peritore, A.; Trovato, R.L.; Guarneri, F.P.; Di Lisi, D.; Muratori, I.; Novo, G. Preclinical atherosclerosis and metabolic syndrome increase cardio- and cerebrovascular events rate: a 20-year follow up. Cardiovasc. Diabetol., 2013, 12(1), 155.
[115]
Koskinen, J.; Kähönen, M.; Viikari, J. S. A. Conventional Cardiovascular Risk Factors and Metabolic Syndrome in Predicting Carotid Intima-Media Thickness Progression in Young Adults The Cardiovascular Risk in Young Finns Study, 2009.
[116]
Balog, J.; Sasi-Szabó, L.; Kinross, J.; Lewis, M.R.; Muirhead, L.J.; Veselkov, K.; Mirnezami, R.; Dezső, B.; Damjanovich, L.; Darzi, A.; Nicholson, J.K.; Takáts, Z. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med., 2013, 5(194), 194ra93.
[117]
Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. “MetaboAnalyst:
A web server for metabolomic data analysis
and interpretation,” Nucleic Acids Res, 37, (Web Server),
W652-W660.2009,
[118]
Alexander, D.; Lombardi, R.; Rodriguez, G.; Mitchell, M.M.; Marian, A.J. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur. J. Clin. Invest., 2011, 41(5), 527-538.