Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Critical Review on Various Buffer Layers used to Enhance the Photovoltaic Performance of Organic Solar Cells

Author(s): Sreejith S.*, Ajayan J., Uma Reddy N.V., Manikandan M. and Radhika J.M.

Volume 20, Issue 6, 2024

Published on: 04 October, 2023

Page: [801 - 819] Pages: 19

DOI: 10.2174/0115734137268768230919170012

open access plus

Abstract

Due to the high need for sustainable energy sources, there has been a tremendous increase in SC (solar cell) production and research in recent years. Despite the fact that inorganic SC has led the SC consumer market due to its exceptional efficiency, its expensive and difficult manufacture method makes it unaffordable. Hence alternative technology for SC has been explored by researchers to overcome the draw backs of inorganic SC fabrication. OSC (organic solar cell) alternatively known as polymer SC has the advantage of having lightweight, low production cost, and simple device structure. During the last few years, significant attention has been given in order to overcome the material and technological barriers in OSC devices to make them commercially viable. Buffer layers play a significant part in improving the power conversion efficiencies in OSCs, thus it is necessary to comprehend the underlying microscopic mechanisms that underlie the advancements in order to support the current qualitative knowledge. In this review article, we have studied extensively the impact of different BLs (buffer-layer) in enhancing the PCE (power conversion efficiency) and absorption capabilities of OSCs.

Graphical Abstract

[1]
Jørgensen, M.; Carlé, J.E.; Søndergaard, R.R.; Lauritzen, M.; Dagnæs-Hansen, N.A.; Byskov, S.L.; Andersen, T.R.; Larsen-Olsen, T.T.; Böttiger, A.P.L.; Andreasen, B.; Fu, L.; Zuo, L.; Liu, Y.; Bundgaard, E.; Zhan, X.; Chen, H.; Krebs, F.C. The state of organic solar cells-A meta analysis. Sol. Energy Mater. Sol. Cells, 2013, 119, 84-93.
[http://dx.doi.org/10.1016/j.solmat.2013.05.034]
[2]
Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated polymer-based organic solar cells. Chem. Rev., 2007, 107(4), 1324-1338.
[http://dx.doi.org/10.1021/cr050149z] [PMID: 17428026]
[3]
Abdulrazzaq, O.A.; Saini, V.; Bourdo, S.; Dervishi, E.; Biris, A.S. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Particul. Sci. Technol., 2013, 31(5), 427-442.
[http://dx.doi.org/10.1080/02726351.2013.769470]
[4]
Ajayan, J.; Nirmal, D.; Mohankumar, P.; Saravanan, M.; Jagadesh, M.; Arivazhagan, L. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct., 2020, 143, 106549.
[http://dx.doi.org/10.1016/j.spmi.2020.106549]
[5]
Alam, M.A.; Ray, B.; Khan, M.R.; Dongaonkar, S. The essence and efficiency limits of bulk-heterostructure organic solar cells: A polymer-to-panel perspective. J. Mater. Res., 2013, 28(4), 541-557.
[http://dx.doi.org/10.1557/jmr.2012.425]
[6]
Bagienski, W.; Gupta, M.C. Temperature dependence of polymer/fullerene organic solar cells. Sol. Energy Mater. Sol. Cells, 2011, 95(3), 933-941.
[http://dx.doi.org/10.1016/j.solmat.2010.11.026]
[7]
Nielsen, T.D.; Cruickshank, C.; Foged, S.; Thorsen, J.; Krebs, F.C. Business, market and intellectual property analysis of polymer solar cells. Sol. Energy Mater. Sol. Cells, 2010, 94(10), 1553-1571.
[http://dx.doi.org/10.1016/j.solmat.2010.04.074]
[8]
Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett., 1986, 48(2), 183-185.
[http://dx.doi.org/10.1063/1.96937]
[9]
Yao, J.; Qiu, B.; Zhang, Z.G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; Xiao, M.; Meng, L.; Li, Y. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun., 2020, 11(1), 2726.
[http://dx.doi.org/10.1038/s41467-020-16509-w] [PMID: 32483159]
[10]
Farooq, W.; Khan, A.D.; Khan, A.D.; Rauf, A.; Khan, S.D.; Ali, H.; Iqbal, J.; Khan, R.U.; Noman, M. Thin-film tandem organic solar cells with improved efficiency. IEEE Access, 2020, 8, 74093-74100.
[http://dx.doi.org/10.1109/ACCESS.2020.2988325]
[11]
Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243), 1789-1791.
[http://dx.doi.org/10.1126/science.270.5243.1789]
[12]
Faist, M.A.; Shoaee, S.; Tuladhar, S.; Dibb, G.F.A.; Foster, S.; Gong, W.; Kirchartz, T.; Bradley, D.D.C.; Durrant, J.R.; Nelson, J. Understanding the reduced efficiencies of organic solar cells employing fullerene multiadducts as acceptors. Adv. Energy Mater., 2013, 3(6), 744-752.
[http://dx.doi.org/10.1002/aenm.201200673]
[13]
Hau, S.K.; Yip, H-L.; Jen, A.K-Y. A review on the development of the inverted polymer solar cell architecture. Polym. Rev., 2010, 50(4), 474-510.
[http://dx.doi.org/10.1080/15583724.2010.515764]
[14]
Salim, M.B.; Nekovei, R.; Jeyakumar, R. Organic tandem solar cells with 18.6% efficiency. Sol. Energy, 2020, 198, 160-166.
[http://dx.doi.org/10.1016/j.solener.2020.01.042]
[15]
Hoppe, H.; Sariciftci, N.S. Organic solar cells: An overview. J. Mater. Res., 2004, 19(7), 1924-1945.
[http://dx.doi.org/10.1557/JMR.2004.0252]
[16]
Sreejith, S.; Ajayan, J.; Kollem, S.; Sivasankari, B. A comprehensive review on thin film amorphous silicon solar cells. Silicon, 2022, 14(14), 8277-8293.
[http://dx.doi.org/10.1007/s12633-021-01644-w]
[17]
Burlingame, Q.; Ball, M.; Loo, Y-L. It’s time to focus on organic solar cell stability. Nat. Energy, 2020, 5(12), 947-949.
[http://dx.doi.org/10.1038/s41560-020-00732-2]
[18]
Jørgensen, M.; Norrman, K.; Gevorgyan, S.A.; Tromholt, T.; Andreasen, B.; Krebs, F.C. Stability of polymer solar cells. Adv. Mater., 2012, 24(5), 580-612.
[http://dx.doi.org/10.1002/adma.201104187] [PMID: 22213056]
[19]
Yang, W.; Luo, Z.; Sun, R.; Guo, J.; Wang, T.; Wu, Y.; Wang, W.; Guo, J.; Wu, Q.; Shi, M.; Li, H.; Yang, C.; Min, J. Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat. Commun., 2020, 11(1), 1218.
[http://dx.doi.org/10.1038/s41467-020-14926-5] [PMID: 32139697]
[20]
Cao, H.; Ishikawa, K. Lateral oxygen diffusion dominated extrinsic degradation of small molecular organic solar cells. Sol. Energy Mater. Sol. Cells, 2013, 109, 215-219.
[http://dx.doi.org/10.1016/j.solmat.2012.10.024]
[21]
Cao, H.; He, W.; Mao, Y.; Lin, X.; Ishikawa, K.; Dickerson, J.H.; Hess, W.P. Recent progress in degradation and stabilization of organic solar cells. J. Power Sources, 2014, 264, 168-183.
[http://dx.doi.org/10.1016/j.jpowsour.2014.04.080]
[22]
Sherafatipour, G.; Benduhn, J.; Patil, B.R.; Ahmadpour, M.; Spoltore, D.; Rubahn, H.G.; Vandewal, K.; Madsen, M. Degradation pathways in standard and inverted DBP-C70 based organic solar cells. Sci. Rep., 2019, 9(1), 4024.
[http://dx.doi.org/10.1038/s41598-019-40541-6] [PMID: 30858539]
[23]
Tavakkoli, M.; Ajeian, R.; Badrabadi, M.; Ardestani, S.; Feiz, S.M.H.; Nasab, K. Progress in stability of organic solar cells exposed to air. Sol. Energy Mater. Sol. Cells, 2011, 95(7), 1964-1969.
[http://dx.doi.org/10.1016/j.solmat.2011.01.029]
[24]
He, Z.; Zhong, C.; Huang, X.; Wong, W.Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater., 2011, 23(40), 4636-4643.
[http://dx.doi.org/10.1002/adma.201103006] [PMID: 21905131]
[25]
Gupta, D.; Mukhopadhyay, S.; Narayan, K.S. Fill factor in organic solar cells. Sol. Energy Mater. Sol. Cells, 2010, 94(8), 1309-1313.
[http://dx.doi.org/10.1016/j.solmat.2008.06.001]
[26]
He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics, 2012, 6(9), 591-595.
[http://dx.doi.org/10.1038/nphoton.2012.190]
[27]
Li, C.Z.; Chueh, C-C.; Yip, H-L.; O’Malley, K.M.; Chen, W-C.; Jen, A.K-Y. Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants. J. Mater. Chem., 2012, 22(17), 8574-8578.
[http://dx.doi.org/10.1039/c2jm30755c]
[28]
Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater., 2010, 22(20), E135-E138.
[http://dx.doi.org/10.1002/adma.200903528] [PMID: 20641094]
[29]
Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun., 2014, 5(1), 5293.
[http://dx.doi.org/10.1038/ncomms6293] [PMID: 25382026]
[30]
Qi, B.; Wang, J. Open-circuit voltage in organic solar cells. J. Mater. Chem., 2012, 22(46), 24315-24325.
[http://dx.doi.org/10.1039/c2jm33719c]
[31]
Qi, B.; Wang, J. Fill factor in organic solar cells. Phys. Chem. Chem. Phys., 2013, 15(23), 8972-8982.
[http://dx.doi.org/10.1039/c3cp51383a] [PMID: 23652780]
[32]
Ray, B.; Alam, M.A. Achieving fill factor above 80% in organic solar cells by charged interface. IEEE J. Photovolt., 2013, 3(1), 310-317.
[http://dx.doi.org/10.1109/JPHOTOV.2012.2216508]
[33]
Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J.V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat. Mater., 2009, 8(11), 904-909.
[http://dx.doi.org/10.1038/nmat2548] [PMID: 19820700]
[34]
Zhou, H.; Yang, L.; You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 2012, 45(2), 607-632.
[http://dx.doi.org/10.1021/ma201648t]
[35]
Bernède, J.C.; Cattin, L.; Djobo, S.O.; Morsli, M.; Kanth, S.R.B.; Patil, S.; Leriche, P.; Roncali, J.; Godoy, A.; Diaz, F.R.; del Valle, M.A. Influence of the highest occupied molecular orbital energy level of the donor material on the effectiveness of the anode buffer layer in organic solar cells. Phys. Status Solidi., A Appl. Mater. Sci., 2011, 208(8), 1989-1994.
[http://dx.doi.org/10.1002/pssa.201127047]
[36]
Maake, P.J.; Bolokang, A.S.; Arendse, C.J.; Vohra, V.; Iwuoha, E.I.; Motaung, D.E. Metal oxides and noble metals application in organic solar cells. Sol. Energy, 2020, 207, 347-366.
[http://dx.doi.org/10.1016/j.solener.2020.06.084]
[37]
Bernède, J.C.; Cattin, L.; Morsli, M.; Berredjem, Y. Ultra-thin metal layer passivation of the transparent conductive anode in organic solar cells. Sol. Energy Mater. Sol. Cells, 2008, 92(11), 1508-1515.
[http://dx.doi.org/10.1016/j.solmat.2008.06.016]
[38]
Banerjee, S.; Gupta, S.K.; Singh, A.; Garg, A. Buffer layers in inverted organic solar cells and their impact on the interface and device characteristics: An experimental and modeling analysis. Org. Electron., 2016, 37, 228-238.
[http://dx.doi.org/10.1016/j.orgel.2016.06.031]
[39]
He, Z.; Wu, H.; Cao, Y. Recent advances in polymer solar cells: Realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer. Adv. Mater., 2014, 26(7), 1006-1024.
[http://dx.doi.org/10.1002/adma.201303391] [PMID: 24338677]
[40]
Jafari, F.; Patil, B.R.; Mohtaram, F.; Cauduro, A.L.F.; Rubahn, H.G.; Behjat, A.; Madsen, M. Inverted organic solar cells with non-clustering bathocuproine (BCP) cathode interlayers obtained by fullerene doping. Sci. Rep., 2019, 9(1), 10422.
[http://dx.doi.org/10.1038/s41598-019-46854-w] [PMID: 31320718]
[41]
Tran, M.D.; Lam, N.D. Modelling and calculation of characteristic parameters of the active and buffer layers in organic solar cell. Curr. Nanosci., 2021, 16(6), 976-981.
[http://dx.doi.org/10.2174/1573413716666200217103420]
[42]
Oseni, S.O.; Mola, G.T. Properties of functional layers in inverted thin film organic solar cells. Sol. Energy Mater. Sol. Cells, 2017, 160, 241-256.
[http://dx.doi.org/10.1016/j.solmat.2016.10.036]
[43]
Dahou, F.Z.; Cattin, L.; Garnier, J.; Ouerfelli, J.; Morsli, M.; Louarn, G.; Bouteville, A.; Khellil, A.; Bernède, J.C. Influence of anode roughness and buffer layer nature on organic solar cells performance. Thin Solid Films, 2010, 518(21), 6117-6122.
[http://dx.doi.org/10.1016/j.tsf.2010.06.009]
[44]
Guo, J.; Ren, G.; Han, W.; Sun, Y.; Wang, M.; Zhou, Y.; Shen, L.; Guo, W. Facilitating electron extraction of inverted polymer solar cells by using organic/inorganic/organic composite buffer layer. Org. Electron., 2019, 68, 187-192.
[http://dx.doi.org/10.1016/j.orgel.2019.02.018]
[45]
Kim, K.H.; Gong, S.C.; Chang, H.J. Effects of anode buffer layers on the properties of organic solar cells. Thin Solid Films, 2012, 521, 69-72.
[http://dx.doi.org/10.1016/j.tsf.2012.03.069]
[46]
Ko, C-J.; Lin, Y.K.; Chen, F-C.; Chu, C-W. Modified buffer layers for polymer photovoltaic devices. Appl. Phys. Lett., 2007, 90(6), 063509.
[http://dx.doi.org/10.1063/1.2437703]
[47]
Lastra, G.; Balderrama, V.S.; Resendiz, L.; Pallares, J.; Garduno, S.I.; Cabrera, V.; Marsal, L.F.; Estrada, M. High-performance inverted polymer solar cells: Study and analysis of different cathode buffer layers. IEEE J. Photovolt., 2018, 8(2), 505-511.
[http://dx.doi.org/10.1109/JPHOTOV.2017.2782568]
[48]
Qi, B.; Zhang, Z.G.; Wang, J. Uncovering the role of cathode buffer layer in organic solar cells. Sci. Rep., 2015, 5(1), 7803.
[http://dx.doi.org/10.1038/srep07803] [PMID: 25588623]
[49]
Po, R.; Carbonera, C.; Bernardi, A.; Camaioni, N. The role of buffer layers in polymer solar cells. Energy Environ. Sci., 2011, 4(2), 285-310.
[http://dx.doi.org/10.1039/C0EE00273A]
[50]
Zhang, Y.; Lang, Y.; Li, G. Recent advances of non-fullerene organic solar cells: From materials and morphology to devices and applications. EcoMat, 2023, 5(1), e12281.
[http://dx.doi.org/10.1002/eom2.12281]
[51]
Jain, V.; Rajbongshi, B.K.; Tej Mallajosyula, A.; Bhattacharjya, G.; Kumar Iyer, S.S.; Ramanathan, G. Photovoltaic effect in single-layer organic solar cell devices fabricated with two new imidazolin-5-one molecules. Sol. Energy Mater. Sol. Cells, 2008, 92(9), 1043-1046.
[http://dx.doi.org/10.1016/j.solmat.2008.02.039]
[52]
Baek, W-H.; Yang, H.; Yoon, T-S.; Kang, C.J.; Lee, H.H.; Kim, Y-S. Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells. Sol. Energy Mater. Sol. Cells, 2009, 93(8), 1263-1267.
[http://dx.doi.org/10.1016/j.solmat.2009.01.019]
[53]
Boopathi, K.M.; Raman, S.; Mohanraman, R.; Chou, F.C.; Chen, Y-Y.; Lee, C-H.; Chang, F-C.; Chu, C-W. Solution-processable bismuth iodide nanosheets as hole transport layers for organic solar cells. Sol. Energy Mater. Sol. Cells, 2014, 121, 35-41.
[http://dx.doi.org/10.1016/j.solmat.2013.10.031]
[54]
Godoy, A.; Cattin, L.; Toumi, L.; Díaz, F.R.; del Valle, M.A.; Soto, G.M.; Kouskoussa, B.; Morsli, M.; Benchouk, K.; Khelil, A.; Bernede, J.C. Effects of the buffer layer inserted between the transparent conductive oxide anode and the organic electron donor. Sol. Energy Mater. Sol. Cells, 2010, 94(4), 648-654.
[http://dx.doi.org/10.1016/j.solmat.2009.11.003]
[55]
Lee, J.; Yoshikawa, S.; Sagawa, T. Fabrication of efficient organic and hybrid solar cells by fine channel mist spray coating. Sol. Energy Mater. Sol. Cells, 2014, 127, 111-121.
[http://dx.doi.org/10.1016/j.solmat.2014.04.010]
[56]
Yamanari, T.; Taima, T.; Sakai, J.; Tsukamoto, J.; Yoshida, Y. Effect of buffer layers on stability of polymer-based organic solar cells. Jpn. J. Appl. Phys., 2010, 49(1), 01AC02.
[http://dx.doi.org/10.1143/JJAP.49.01AC02]
[57]
Tran, V-H.; Khan, R.; Lee, I-H.; Lee, S-H. Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2018, 179, 260-269.
[http://dx.doi.org/10.1016/j.solmat.2017.12.013]
[58]
Xi, X.; Meng, Q.; Li, F.; Ding, Y.; Ji, J.; Shi, Z.; Li, G. The characteristics of the small molecule organic solar cells with PEDOT:PSS/LiF double anode buffer layer system. Sol. Energy Mater. Sol. Cells, 2010, 94(3), 623-628.
[http://dx.doi.org/10.1016/j.solmat.2009.12.014]
[59]
Huang, C-J.; Ke, J-C.; Chen, W-R.; Meen, T-H.; Yang, C-F. Improved the efficiency of small molecule organic solar cell by double anode buffer layers. Sol. Energy Mater. Sol. Cells, 2011, 95(12), 3460-3464.
[http://dx.doi.org/10.1016/j.solmat.2011.08.006]
[60]
Peng, B.; Guo, X.; Cui, C.; Zou, Y.; Pan, C.; Li, Y. Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) buffer layer. Appl. Phys. Lett., 2011, 98(24), 243308.
[http://dx.doi.org/10.1063/1.3600665]
[61]
Liu, L.; Li, G. Investigation of recombination loss in organic solar cells by simulating intensity-dependent current-voltage measurements. Sol. Energy Mater. Sol. Cells, 2011, 95(9), 2557-2563.
[http://dx.doi.org/10.1016/j.solmat.2011.02.034]
[62]
Sharma, A.; Watkins, S.E.; Lewis, D.A.; Andersson, G. Effect of indium and tin contamination on the efficiency and electronic properties of organic bulk hetero-junction solar cells. Sol. Energy Mater. Sol. Cells, 2011, 95(12), 3251-3255.
[http://dx.doi.org/10.1016/j.solmat.2011.07.012]
[63]
Colsmann, A.; Reinhard, M.; Kwon, T-H.; Kayser, C.; Nickel, F.; Czolk, J.; Lemmer, U.; Clark, N.; Jasieniak, J.; Holmes, A.B.; Jones, D. Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes. Sol. Energy Mater. Sol. Cells, 2012, 98, 118-123.
[http://dx.doi.org/10.1016/j.solmat.2011.10.016]
[64]
Kalfagiannis, N.; Karagiannidis, P.G.; Pitsalidis, C.; Panagiotopoulos, N.T.; Gravalidis, C.; Kassavetis, S.; Patsalas, P.; Logothetidis, S. Plasmonic silver nanoparticles for improved organic solar cells. Sol. Energy Mater. Sol. Cells, 2012, 104, 165-174.
[http://dx.doi.org/10.1016/j.solmat.2012.05.018]
[65]
Kang, J-W.; Kang, Y-J.; Jung, S.; Song, M.; Kim, D-G.; Su Kim, C.; Kim, S.H. Fully spray-coated inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2012, 103, 76-79.
[http://dx.doi.org/10.1016/j.solmat.2012.04.027]
[66]
Hu, Z.; Zhang, J.; Zhu, Y. Inverted polymer solar cells with a boron-doped zinc oxide layer deposited by metal organic chemical vapor deposition. Sol. Energy Mater. Sol. Cells, 2013, 117, 610-616.
[http://dx.doi.org/10.1016/j.solmat.2013.07.015]
[67]
Spencer, S.D.; Bougher, C.; Heaphy, P.J.; Murcia, V.M.; Gallivan, C.P.; Monfette, A.; Andersen, J.D.; Cody, J.A.; Conrad, B.R.; Collison, C.J. The effect of controllable thin film crystal growth on the aggregation of a novel high panchromaticity squaraine viable for organic solar cells. Sol. Energy Mater. Sol. Cells, 2013, 112, 202-208.
[http://dx.doi.org/10.1016/j.solmat.2013.01.008]
[68]
Lau, X.C.; Wang, Z.; Mitra, S. Effect of low concentrations of carbon black in organic solar cells. Sol. Energy Mater. Sol. Cells, 2014, 128, 69-76.
[http://dx.doi.org/10.1016/j.solmat.2014.05.030]
[69]
Amollo, T.A.; Mola, G.T.; Nyamori, V.O. High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers. Sol. Energy, 2018, 171, 83-91.
[http://dx.doi.org/10.1016/j.solener.2018.06.068]
[70]
Che, X.; Li, Y.; Qu, Y.; Forrest, S.R. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat. Energy, 2018, 3(5), 422-427.
[http://dx.doi.org/10.1038/s41560-018-0134-z]
[71]
Notarianni, M.; Vernon, K.; Chou, A.; Aljada, M.; Liu, J.; Motta, N. Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy, 2014, 106, 23-37.
[http://dx.doi.org/10.1016/j.solener.2013.09.026]
[72]
Ismail, Y.A.M.; Kishi, N.; Soga, T. Improvement of organic solar cells using aluminium microstructures prepared in PEDOT:PSS buffer layer by using ultrasonic ablation technique. Thin Solid Films, 2016, 616, 73-79.
[http://dx.doi.org/10.1016/j.tsf.2016.08.001]
[73]
Saleh, A.S.; Ajeian, R.; Nakhaee, B.M.; Tavakkoli, M. Improvement in stability of bilayer organic solar cells using an ultra-thin Au layer. Sol. Energy Mater. Sol. Cells, 2013, 111, 107-111.
[http://dx.doi.org/10.1016/j.solmat.2012.12.039]
[74]
Galagan, Y.; Shanmugam, S.; Teunissen, J.P.; Eggenhuisen, T.M.; Biezemans, A.F.K.V.; Van Gijseghem, T.; Groen, W.A.; Andriessen, R. Solution processing of back electrodes for organic solar cells with inverted architecture. Sol. Energy Mater. Sol. Cells, 2014, 130, 163-169.
[http://dx.doi.org/10.1016/j.solmat.2014.07.007]
[75]
Otieno, F.; Shumbula, N.P.; Airo, M.; Mbuso, M.; Moloto, N.; Erasmus, R.M.; Quandt, A.; Wamwangi, D. Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer. AIP Adv., 2017, 7(8), 085302.
[http://dx.doi.org/10.1063/1.4995803]
[76]
Yang, F.; Kang, D-W.; Kim, Y-S. An efficient and thermally stable interconnecting layer for tandem organic solar cells. Sol. Energy, 2017, 155, 552-560.
[http://dx.doi.org/10.1016/j.solener.2017.06.054]
[77]
Sun, K.; Xia, Y.; Ouyang, J. Improvement in the photovoltaic efficiency of polymer solar cells by treating the poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) buffer layer with co-solvents of hydrophilic organic solvents and hydrophobic 1,2-dichlorobenzene. Sol. Energy Mater. Sol. Cells, 2012, 97, 89-96.
[http://dx.doi.org/10.1016/j.solmat.2011.09.039]
[78]
Woo, S.; Jeong, J.H.; Lyu, H.K.; Han, Y.S.; Kim, Y. In situ-prepared composite materials of PEDOT: PSS buffer layer-metal nanoparticles and their application to organic solar cells. Nanoscale Res. Lett., 2012, 7(1), 641.
[http://dx.doi.org/10.1186/1556-276X-7-641] [PMID: 23173992]
[79]
Oh, S.H.; Heo, S.J.; Yang, J.S.; Kim, H.J. Effects of ZnO nanoparticles on P3HT:PCBM organic solar cells with DMF-modulated PEDOT:PSS buffer layers. ACS Appl. Mater. Interfaces, 2013, 5(22), 11530-11534.
[http://dx.doi.org/10.1021/am4046475] [PMID: 24175740]
[80]
Jeong, J-A.; Jeon, Y-J.; Kim, S-S.; Kyoung Kim, B.; Chung, K-B.; Kim, H-K. Simple brush-painting of Ti-doped In2O3 transparent conducting electrodes from nano-particle solution for organic solar cells. Sol. Energy Mater. Sol. Cells, 2014, 122, 241-250.
[http://dx.doi.org/10.1016/j.solmat.2013.12.008]
[81]
Noh, Y-J.; Kim, S-S.; Kim, T-W.; Na, S-I. Cost-effective ITO-free organic solar cells with silver nanowire-PEDOT:PSS composite electrodes via a one-step spray deposition method. Sol. Energy Mater. Sol. Cells, 2014, 120, 226-230.
[http://dx.doi.org/10.1016/j.solmat.2013.09.007]
[82]
Kadem, B.; Cranton, W.; Hassan, A. Metal salt modified PEDOT:PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Org. Electron., 2015, 24, 73-79.
[http://dx.doi.org/10.1016/j.orgel.2015.05.019]
[83]
Lee, J.J.; Lee, S.H.; Kim, F.S.; Choi, H.H.; Kim, J.H. Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer. Org. Electron., 2015, 26, 191-199.
[http://dx.doi.org/10.1016/j.orgel.2015.07.022]
[84]
Savva, A.; Georgiou, E.; Papazoglou, G.; Chrusou, A.Z.; Kapnisis, K.; Choulis, S.A. Photovoltaic analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2015, 132, 507-514.
[http://dx.doi.org/10.1016/j.solmat.2014.10.004]
[85]
Mohammad, T.; Bharti, V.; Kumar, V.; Mudgal, S.; Dutta, V. Spray coated europium doped PEDOT:PSS anode buffer layer for organic solar cell: The role of electric field during deposition. Org. Electron., 2019, 66, 242-248.
[http://dx.doi.org/10.1016/j.orgel.2018.12.034]
[86]
Nazim, M.; Ameen, S.; Shaheer Akhtar, M.; Shin, H-S. D-π-A-π-D type thiazolo[5,4-d]thiazole-core organic chromophore and graphene modified PEDOT:PSS buffer layer for efficient bulk heterojunction organic solar cells. Sol. Energy, 2018, 171, 366-373.
[http://dx.doi.org/10.1016/j.solener.2018.06.087]
[87]
Shrotriya, V.; Li, G.; Yao, Y.; Chu, C.W.; Yang, Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett., 2006, 88(7), 073508.
[http://dx.doi.org/10.1063/1.2174093]
[88]
Kinoshita, Y.; Takenaka, R.; Murata, H. Independent control of open-circuit voltage of organic solar cells by changing film thickness of MoO3 buffer layer. Appl. Phys. Lett., 2008, 92(24), 243309.
[http://dx.doi.org/10.1063/1.2949321]
[89]
Gacitua, M.; Boutaleb, Y.; Cattin, L.; Abe, S.Y.; Lare, Y.; Soto, G.; Louarn, G.; Morsli, M.; Rehamnia, R.; del Valle, M.A.; Drici, A.; Bernède, J.C. Electrochemical preparation of MoO3 buffer layer deposited onto the anode in organic solar cells. Phys. Status Solidi., A Appl. Mater. Sci., 2010, 207(8), 1905-1911.
[http://dx.doi.org/10.1002/pssa.200925602]
[90]
Hori, T.; Fukuoka, N.; Masuda, T.; Miyake, Y.; Yoshida, H.; Fujii, A.; Shimizu, Y.; Ozaki, M. Bulk heterojunction organic solar cells utilizing 1,4,8,11,15,18,22,25-octahexylphthalocyanine. Sol. Energy Mater. Sol. Cells, 2011, 95(11), 3087-3092.
[http://dx.doi.org/10.1016/j.solmat.2011.06.039]
[91]
Liu, J.; Shao, S.; Fang, G.; Meng, B.; Xie, Z.; Wang, L. High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO(3)-Al composite film as cathode buffer layer. Adv. Mater., 2012, 24(20), 2774-2779.
[http://dx.doi.org/10.1002/adma.201200238] [PMID: 22511394]
[92]
Zhang, F.J.; Zhao, D.W.; Zhuo, Z.L.; Wang, H.; Xu, Z.; Wang, Y.S. Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified Ag as anode. Sol. Energy Mater. Sol. Cells, 2010, 94(12), 2416-2421.
[http://dx.doi.org/10.1016/j.solmat.2010.08.031]
[93]
Sowjanya Pali, L.; Ganesan, P.; Garg, A. Inverted P3HT:PCBM organic solar cells on low carbon steel substrates. Sol. Energy, 2016, 133, 339-348.
[http://dx.doi.org/10.1016/j.solener.2016.03.061]
[94]
Hori, T.; Shibata, T.; Kittichungchit, V.; Moritou, H.; Sakai, J.; Kubo, H.; Fujii, A.; Ozaki, M. MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells. Thin Solid Films, 2009, 518(2), 522-525.
[http://dx.doi.org/10.1016/j.tsf.2009.07.044]
[95]
Kanai, Y.; Matsushima, T.; Murata, H. Improvement of stability for organic solar cells by using molybdenum trioxide buffer layer. Thin Solid Films, 2009, 518(2), 537-540.
[http://dx.doi.org/10.1016/j.tsf.2009.07.015]
[96]
Liu, F.; Shao, S.; Guo, X.; Zhao, Y.; Xie, Z. Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer. Sol. Energy Mater. Sol. Cells, 2010, 94(5), 842-845.
[http://dx.doi.org/10.1016/j.solmat.2010.01.004]
[97]
Cheng, F.; Fang, G.; Fan, X.; Liu, N.; Sun, N.; Qin, P.; Zheng, Q.; Wan, J.; Zhao, X. Enhancing the short-circuit current and efficiency of organic solar cells using MoO3 and CuPc as buffer layers. Sol. Energy Mater. Sol. Cells, 2011, 95(10), 2914-2919.
[http://dx.doi.org/10.1016/j.solmat.2011.06.027]
[98]
Cao, G.; Li, L.; Guan, M.; Zhao, J.; Li, Y.; Zeng, Y. Stable organic solar cells employing MoO3-doped copper phthalocyanine as buffer layer. Appl. Surf. Sci., 2011, 257(22), 9382-9385.
[http://dx.doi.org/10.1016/j.apsusc.2011.05.120]
[99]
Bovill, E.S.R.; Griffin, J.; Wang, T.; Kingsley, J.W.; Yi, H.; Iraqi, A.; Buckley, A.R.; Lidzey, D.G. Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer. Appl. Phys. Lett., 2013, 102(18), 183303.
[http://dx.doi.org/10.1063/1.4804294]
[100]
Dasgupta, B.; Goh, W.P.; Ooi, Z.E.; Wong, L.M.; Jiang, C.Y.; Ren, Y.; Tok, E.S.; Pan, J.; Zhang, J.; Chiam, S.Y. Enhanced extraction rates through gap states of molybdenum oxide anode buffer. J. Phys. Chem. C, 2013, 117(18), 9206-9211.
[http://dx.doi.org/10.1021/jp3114013]
[101]
Kao, P.C.; Hsieh, C-J.; Chen, Z-H.; Chen, S-H. Improvement of MoO3/Ag/MoO3 multilayer transparent electrodes for organic solar cells by using UV-ozone treated MoO3 layer. Sol. Energy Mater. Sol. Cells, 2018, 186, 131-141.
[http://dx.doi.org/10.1016/j.solmat.2018.06.031]
[102]
Yoosuf Ameen, M.; Pradhan, S.; Remyth Suresh, M.; Reddy, V.S. MoO3 anode buffer layer for efficient and stable small molecular organic solar cells. Opt. Mater., 2015, 39, 134-139.
[http://dx.doi.org/10.1016/j.optmat.2014.11.012]
[103]
El Jouad, Z.; Morsli, M.; Louarn, G.; Cattin, L.; Addou, M.; Bernède, J.C. Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/CuI double anode buffer layer. Sol. Energy Mater. Sol. Cells, 2015, 141, 429-435.
[http://dx.doi.org/10.1016/j.solmat.2015.06.017]
[104]
Tao, C.; Ruan, S.; Zhang, X.; Xie, G.; Shen, L.; Kong, X.; Dong, W.; Liu, C.; Chen, W. Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Appl. Phys. Lett., 2008, 93(19), 193307.
[http://dx.doi.org/10.1063/1.3026741]
[105]
Zhao, D.W.; Ke, L.; Li, Y.; Tan, S.T.; Kyaw, A.K.K.; Demir, H.V.; Sun, X.W.; Carroll, D.L.; Lo, G.Q.; Kwong, D.L. Optimization of inverted tandem organic solar cells. Sol. Energy Mater. Sol. Cells, 2011, 95(3), 921-926.
[http://dx.doi.org/10.1016/j.solmat.2010.11.023]
[106]
Fan, X.; Cui, C.; Fang, G.; Wang, J.; Li, S.; Cheng, F.; Long, H.; Li, Y. Efficient polymer solar cells based on poly(3-hexylthiophene):Indene-C70 bisadduct with a MoO3 buffer layer. Adv. Funct. Mater., 2012, 22(3), 585-590.
[http://dx.doi.org/10.1002/adfm.201102054]
[107]
Wang, H.Q.; Stubhan, T.; Osvet, A.; Litzov, I.; Brabec, C.J. Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells. Sol. Energy Mater. Sol. Cells, 2012, 105, 196-201.
[http://dx.doi.org/10.1016/j.solmat.2012.06.005]
[108]
Bernède, J.C.; Cattin, L.; Makha, M.; Jeux, V.; Leriche, P.; Roncali, J.; Froger, V.; Morsli, M.; Addou, M. MoO3/CuI hybrid buffer layer for the optimization of organic solar cells based on a donor–acceptor triphenylamine. Sol. Energy Mater. Sol. Cells, 2013, 110, 107-114.
[http://dx.doi.org/10.1016/j.solmat.2012.12.003]
[109]
Cattin, L.; Bernède, J.C.; Lare, Y.; Dabos-Seignon, S.; Stephant, N.; Morsli, M.; Zamora, P.P.; Diaz, F.R.; del Valle, M.A. Improved performance of organic solar cells by growth optimization of MoO 3/CuI double-anode buffer. Phys. Status Solidi., A Appl. Mater. Sci., 2013, 210(4), 802-808.
[http://dx.doi.org/10.1002/pssa.201228665]
[110]
Zuo, L.; Yao, J.; Li, H.; Chen, H. Assessing the origin of the S-shaped I-V curve in organic solar cells: An improved equivalent circuit model. Sol. Energy Mater. Sol. Cells, 2014, 122, 88-93.
[http://dx.doi.org/10.1016/j.solmat.2013.11.018]
[111]
Ke, J-C.; Wang, Y-H.; Chen, K-L.; Huang, C-J. Effect of open-circuit voltage in organic solar cells based on various electron donor materials by inserting molybdenum trioxide anode buffer layer. Sol. Energy Mater. Sol. Cells, 2015, 133, 248-254.
[http://dx.doi.org/10.1016/j.solmat.2014.10.033]
[112]
Kim, H-J.; Seo, K-W.; Noh, Y-J.; Na, S-I.; Sohn, A.; Kim, D-W.; Kim, H-K. Work function and interface control of amorphous IZO electrodes by MoO3 layer grading for organic solar cells. Sol. Energy Mater. Sol. Cells, 2015, 141, 194-202.
[http://dx.doi.org/10.1016/j.solmat.2015.05.036]
[113]
Bajpai, M.; Yadav, N.; Kumar, S.; Srivastava, R.; Dhar, R. Incorporation of liquid crystalline triphenylene derivative in bulk heterojunction solar cell with molybdenum oxide as buffer layer for improved efficiency. Liq. Cryst., 2016, 43(7), 928-936.
[http://dx.doi.org/10.1080/02678292.2016.1149239]
[114]
Xu, C.; Cai, P.; Zhang, X.; Zhang, Z.; Xue, X.; Xiong, J.; Zhang, J. A wide temperature tolerance, solution-processed MoOx interface layer for efficient and stable organic solar cells. Sol. Energy Mater. Sol. Cells, 2017, 159, 136-142.
[http://dx.doi.org/10.1016/j.solmat.2016.09.009]
[115]
Sachdeva, S.; Kaur, J.; Sharma, K.; Tripathi, S.K. Performance improvements of organic solar cell using dual cathode buffer layers. Curr. Appl. Phys., 2018, 18(12), 1592-1599.
[http://dx.doi.org/10.1016/j.cap.2018.10.009]
[116]
Wicht, G.; Bücheler, S.; Dietrich, M.; Jäger, T.; Nüesch, F.; Offermans, T.; Tisserant, J-N.; Wang, L.; Zhang, H.; Hany, R. Stability of bilayer trimethine cyanine dye/fullerene organic solar cells. Sol. Energy Mater. Sol. Cells, 2013, 117, 585-591.
[http://dx.doi.org/10.1016/j.solmat.2013.07.008]
[117]
Choi, H.W.; Theodore, N.D.; Alford, T.L. ZnO-Ag-MoO3 transparent composite electrode for ITO-free, PEDOT: PSS-free bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells, 2013, 117, 446-450.
[http://dx.doi.org/10.1016/j.solmat.2013.07.009]
[118]
Hu, Z.; Zhang, J.; Liu, Y.; Hao, Z.; Zhang, X.; Zhao, Y. Influence of ZnO interlayer on the performance of inverted organic photovoltaic device. Sol. Energy Mater. Sol. Cells, 2011, 95(8), 2126-2130.
[http://dx.doi.org/10.1016/j.solmat.2011.03.011]
[119]
Musselman, K.P.; Marin, A.; Wisnet, A.; Scheu, C.; MacManus-Driscoll, J.L.; Schmidt-Mende, L. A novel buffering technique for aqueous processing of zinc oxide nanostructures and interfaces, and corresponding improvement of electrodeposited ZnO‐Cu2O photovoltaics. Adv. Funct. Mater., 2011, 21(3), 573-582.
[http://dx.doi.org/10.1002/adfm.201001956]
[120]
Yip, H-L.; Jen, A.K-Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci., 2012, 5(3), 5994-6011.
[http://dx.doi.org/10.1039/c2ee02806a]
[121]
Ibrahem, M.A.; Wei, H-Y.; Tsai, M-H.; Ho, K-C.; Shyue, J-J.; Chu, C.W. Solution-processed zinc oxide nanoparticles as interlayer materials for inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2013, 108, 156-163.
[http://dx.doi.org/10.1016/j.solmat.2012.09.007]
[122]
Lare, Y.; Godoy, A.; Cattin, L.; Jondo, K.; Abachi, T.; Diaz, F.R.; Morsli, M.; Napo, K.; del Valle, M.A.; Bernède, J.C. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells. Appl. Surf. Sci., 2009, 255(13-14), 6615-6619.
[http://dx.doi.org/10.1016/j.apsusc.2009.02.054]
[123]
Park, S.; Tark, S.J.; Lee, J.S.; Lim, H.; Kim, D. Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode. Sol. Energy Mater. Sol. Cells, 2009, 93(6-7), 1020-1023.
[http://dx.doi.org/10.1016/j.solmat.2008.11.033]
[124]
Kyaw, A.K.K.; Sun, X.; Zhao, D.W.; Tan, S.T.; Divayana, Y.; Demir, H.V. Improved inverted organic solar cells with a sol-gel derived indium-doped zinc oxide buffer layer. IEEE J. Sel. Top. Quantum Electron., 2010, 16(6), 1700-1706.
[http://dx.doi.org/10.1109/JSTQE.2009.2039200]
[125]
Cho, S-W.; Kim, Y.T.; Shim, W.H.; Park, S-Y.; Kim, K-D.; Seo, H.O.; Dey, N.K.; Lim, J-H.; Jeong, Y.; Lee, K.H.; Kim, Y.D.; Lim, D.C. Influence of surface roughness of aluminum-doped zinc oxide buffer layers on the performance of inverted organic solar cells. Appl. Phys. Lett., 2011, 98(2), 023102.
[http://dx.doi.org/10.1063/1.3537961]
[126]
Liang, Z.; Zhang, Q.; Wiranwetchayan, O.; Xi, J.; Yang, Z.; Park, K.; Li, C.; Cao, G. Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells. Adv. Funct. Mater., 2012, 22(10), 2194-2201.
[http://dx.doi.org/10.1002/adfm.201101915]
[127]
Sharma, A.; Ionescu, M.; Andersson, G.G.; Lewis, D.A. Role of zinc oxide thickness on the photovoltaic performance of laminated organic bulk-heterojunction solar cells. Sol. Energy Mater. Sol. Cells, 2013, 115, 64-70.
[http://dx.doi.org/10.1016/j.solmat.2013.03.012]
[128]
Chaturvedi, N.; Kumar Swami, S.; Kumar, A.; Dutta, V. Role of ZnO nanostructured layer spray deposited under an electric field in stability of inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2014, 126, 74-82.
[http://dx.doi.org/10.1016/j.solmat.2014.03.035]
[129]
Kang, S-B.; Noh, Y-J.; Na, S-I.; Kim, H-K. Brush-painted flexible organic solar cells using highly transparent and flexible Ag nanowire network electrodes. Sol. Energy Mater. Sol. Cells, 2014, 122, 152-157.
[http://dx.doi.org/10.1016/j.solmat.2013.11.036]
[130]
Zafar, M.; Yun, J-Y.; Kim, D-H. Improved inverted-organic-solar-cell performance via sulfur doping of ZnO films as electron buffer layer. Mater. Sci. Semicond. Process., 2019, 96, 66-72.
[http://dx.doi.org/10.1016/j.mssp.2019.01.046]
[131]
Zafar, M.; Kim, B.S.; Kim, D-H. Improvement in performance of inverted organic solar cell by rare earth element lanthanum doped ZnO electron buffer layer. Mater. Chem. Phys., 2020, 240, 122076.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122076]
[132]
Yurtdaş, S.; Karaman, M.; Tozlu, C. Effect of Au nanoparticle doped ZnO buffer layer on efficiency in organic solar cells. Opt. Mater., 2023, 139, 113742.
[http://dx.doi.org/10.1016/j.optmat.2023.113742]
[133]
Yang, T.; Cai, W.; Qin, D.; Wang, E.; Lan, L.; Gong, X.; Peng, J.; Cao, Y. Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J. Phys. Chem. C, 2010, 114(14), 6849-6853.
[http://dx.doi.org/10.1021/jp1003984]
[134]
Zhao, Z.; Teki, R.; Koratkar, N.; Efstathiadis, H.; Haldar, P. Metal oxide buffer layer for improving performance of polymer solar cells. Appl. Surf. Sci., 2010, 256(20), 6053-6056.
[http://dx.doi.org/10.1016/j.apsusc.2010.03.118]
[135]
Puetz, A.; Stubhan, T.; Reinhard, M.; Loesch, O.; Hammarberg, E.; Wolf, S.; Feldmann, C.; Kalt, H.; Colsmann, A.; Lemmer, U. Organic solar cells incorporating buffer layers from indium doped zinc oxide nanoparticles. Sol. Energy Mater. Sol. Cells, 2011, 95(2), 579-585.
[http://dx.doi.org/10.1016/j.solmat.2010.09.020]
[136]
Stubhan, T.; Oh, H.; Pinna, L.; Krantz, J.; Litzov, I.; Brabec, C.J. Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer. Org. Electron., 2011, 12(9), 1539-1543.
[http://dx.doi.org/10.1016/j.orgel.2011.05.027]
[137]
Ajuria, J.; Ugarte, I.; Cambarau, W.; Etxebarria, I.; Tena-Zaera, R.; Pacios, R. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol. Energy Mater. Sol. Cells, 2012, 102, 148-152.
[http://dx.doi.org/10.1016/j.solmat.2012.03.009]
[138]
Gershon, T.; Musselman, K.P.; Marin, A.; Friend, R.H.; MacManus-Driscoll, J.L. Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer. Sol. Energy Mater. Sol. Cells, 2012, 96, 148-154.
[http://dx.doi.org/10.1016/j.solmat.2011.09.043]
[139]
Puetz, A.; Steiner, F.; Mescher, J.; Reinhard, M.; Christ, N.; Kutsarov, D.; Kalt, H.; Lemmer, U.; Colsmann, A. Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells. Org. Electron., 2012, 13(11), 2696-2701.
[http://dx.doi.org/10.1016/j.orgel.2012.07.043]
[140]
Gupta, S.K.; Sharma, A.; Banerjee, S.; Gahlot, R.; Aggarwal, N.; Deepak, A.; Garg, A. Understanding the role of thickness and morphology of the constituent layers on the performance of inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2013, 116, 135-143.
[http://dx.doi.org/10.1016/j.solmat.2013.03.027]
[141]
Lee, J-H.; Hong, B.; Park, Y.S. Characteristics of sputtered ZnO films for buffer layer in inverted organic solar cells. Thin Solid Films, 2013, 547, 3-8.
[http://dx.doi.org/10.1016/j.tsf.2013.06.045]
[142]
Mbule, P.S.; Kim, T.H.; Kim, B.S.; Swart, H.C.; Ntwaeaborwa, O.M. Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices. Sol. Energy Mater. Sol. Cells, 2013, 112, 6-12.
[http://dx.doi.org/10.1016/j.solmat.2013.01.010]
[143]
Lin, R.; Miwa, M.; Wright, M.; Uddin, A. Optimisation of the sol-gel derived ZnO buffer layer for inverted structure bulk heterojunction organic solar cells using a low band gap polymer. Thin Solid Films, 2014, 566, 99-107.
[http://dx.doi.org/10.1016/j.tsf.2014.07.026]
[144]
Nam, S.; Seo, J.; Woo, S.; Kim, W.H.; Kim, H.; Bradley, D.D.C.; Kim, Y. Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat. Commun., 2015, 6(1), 8929.
[http://dx.doi.org/10.1038/ncomms9929] [PMID: 26656447]
[145]
Venkatesan, S.; Ngo, E.; Khatiwada, D.; Zhang, C.; Qiao, Q. Enhanced lifetime of polymer solar cells by surface passivation of metal oxide buffer layers. ACS Appl. Mater. Interfaces, 2015, 7(29), 16093-16100.
[http://dx.doi.org/10.1021/acsami.5b04687] [PMID: 26148302]
[146]
Sahdan, M.Z.; Malek, M.F.; Alias, M.S.; Kamaruddin, S.A.; Norhidayah, C.A.; Sarip, N.; Nafarizal, N.; Rusop, M. Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT:PCBM using various thicknesses of ZnO buffer layer. Optik, 2015, 126(6), 645-648.
[http://dx.doi.org/10.1016/j.ijleo.2015.01.017]
[147]
Wu, N.; Luo, Q.; Bao, Z.; Lin, J.; Li, Y.Q.; Ma, C.Q. Zinc oxide: Conjugated polymer nanocomposite as cathode buffer layer for solution processed inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2015, 141, 248-259.
[http://dx.doi.org/10.1016/j.solmat.2015.05.039]
[148]
Yu, X.; Yu, X.; Zhang, J.; Pan, H. Gradient Al-doped ZnO multi-buffer layers: Effect on the photovoltaic properties of organic solar cells. Mater. Lett., 2015, 161, 624-627.
[http://dx.doi.org/10.1016/j.matlet.2015.09.017]
[149]
Jia, X.; Wu, N.; Wei, J.; Zhang, L.; Luo, Q.; Bao, Z.; Li, Y.Q.; Yang, Y.; Liu, X.; Ma, C.Q. A low-cost and low-temperature processable zinc oxide-polyethylenimine (ZnO:PEI) nano-composite as cathode buffer layer for organic and perovskite solar cells. Org. Electron., 2016, 38, 150-157.
[http://dx.doi.org/10.1016/j.orgel.2016.08.012]
[150]
Wang, J.; Yan, C.; Zhang, X.; Zhao, X.; Fu, Y.; Zhang, B.; Xie, Z. High-efficiency polymer solar cells employing solution-processible and thickness-independent gallium-doped zinc oxide nanoparticles as cathode buffer layers. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(46), 10820-10826.
[http://dx.doi.org/10.1039/C6TC04366F]
[151]
Lin, C.C.; Tsai, S-K.; Chang, M-Y. Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells. Org. Electron., 2017, 46, 218-225.
[http://dx.doi.org/10.1016/j.orgel.2017.04.006]
[152]
Kim, H-K.; Chung, K-B.; Kal, J. Comparison of ZnO buffer layers prepared by spin coating or RF magnetron sputtering for application in inverted organic solar cells. J. Alloys Compd., 2019, 778, 487-495.
[http://dx.doi.org/10.1016/j.jallcom.2018.11.240]
[153]
Wei, J.; Zhang, C.; Ji, G.; Han, Y.; Ismail, I.; Li, H.; Luo, Q.; Yang, J.; Ma, C.Q. Roll-to-roll printed stable and thickness-independent ZnO:PEI composite electron transport layer for inverted organic solar cells. Sol. Energy, 2019, 193, 102-110.
[http://dx.doi.org/10.1016/j.solener.2019.09.037]
[154]
Nguyen, D.T.; Ferrec, A.; Keraudy, J.; Bernède, J.C.; Stephant, N.; Cattin, L.; Jouan, P.Y. Effect of the deposition conditions of NiO anode buffer layers in organic solar cells, on the properties of these cells. Appl. Surf. Sci., 2014, 311, 110-116.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.020]
[155]
Park, S-Y.; Kim, H-R.; Kang, Y-J.; Kim, D-H.; Kang, J-W. Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer. Sol. Energy Mater. Sol. Cells, 2010, 94(12), 2332-2336.
[http://dx.doi.org/10.1016/j.solmat.2010.08.004]
[156]
Do, K.; Kim, C.; Song, K.; Yun, S.J.; Lee, J.K.; Ko, J. Efficient planar organic semiconductors containing fused triphenylamine for solution processed small molecule organic solar cells. Sol. Energy Mater. Sol. Cells, 2013, 115, 52-57.
[http://dx.doi.org/10.1016/j.solmat.2013.03.020]
[157]
Mohd Yusoff, A.R.; Kim, H.P.; Jang, J. Inverted organic solar cells with TiOx cathode and graphene oxide anode buffer layers. Sol. Energy Mater. Sol. Cells, 2013, 109, 63-69.
[http://dx.doi.org/10.1016/j.solmat.2012.09.032]
[158]
Nickel, F.; Sprau, C.; Klein, M.F.G.; Kapetana, P.; Christ, N.; Liu, X.; Klinkhammer, S.; Lemmer, U.; Colsmann, A. Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening. Sol. Energy Mater. Sol. Cells, 2012, 104, 18-22.
[http://dx.doi.org/10.1016/j.solmat.2012.04.026]
[159]
Sun, L.; Shen, W.; Chen, W.; Bao, X.; Wang, N.; Dou, X.; Han, L.; Wen, S. Simple solution-processed titanium oxide electron transport layer for efficient inverted polymer solar cells. Thin Solid Films, 2014, 573, 134-139.
[http://dx.doi.org/10.1016/j.tsf.2014.11.011]
[160]
Voroshazi, E.; Cardinaletti, I.; Uytterhoeven, G.; Li, S.; Empl, M.; Aernouts, T.; Rand, B.P. Role of electron- and hole-collecting buffer layers on the stability of inverted polymer: Fullerene photovoltaic devices. IEEE J. Photovolt., 2014, 4(1), 265-270.
[http://dx.doi.org/10.1109/JPHOTOV.2013.2287913]
[161]
Han, S.; Shin, W.S.; Seo, M.; Gupta, D.; Moon, S-J.; Yoo, S. Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes. Org. Electron., 2009, 10(5), 791-797.
[http://dx.doi.org/10.1016/j.orgel.2009.03.016]
[162]
Yu, W.; Shen, L.; Ruan, S.; Meng, F.; Wang, J.; Zhang, E.; Chen, W. Performance improvement of inverted polymer solar cells thermally evaporating nickel oxide as an anode buffer layer. Sol. Energy Mater. Sol. Cells, 2012, 98, 212-215.
[http://dx.doi.org/10.1016/j.solmat.2011.11.011]
[163]
Ranjitha, A.; Thambidurai, M.; Shini, F.; Muthukumarasamy, N.; Velauthapillai, D. Effect of doped TiO2 film as electron transport layer for inverted organic solar cell. Mater. Sci. Energy Technol., 2019, 2(3), 385-388.
[http://dx.doi.org/10.1016/j.mset.2019.02.006]
[164]
Jili, N.; Dlamini, N.; Mola, G.T. Computational investigation of the effect ZnS buffer layer on the hole transport of polymer solar cell. Physica B, 2023, 666, 415122.
[http://dx.doi.org/10.1016/j.physb.2023.415122]
[165]
Jung, J.; Kim, D.L.; Oh, S.H.; Kim, H.J. Stability enhancement of organic solar cells with solution-processed nickel oxide thin films as hole transport layers. Sol. Energy Mater. Sol. Cells, 2012, 102, 103-108.
[http://dx.doi.org/10.1016/j.solmat.2012.03.018]
[166]
Yang, H.; Gong, C.; Hong Guai, G.; Ming Li, C. Organic solar cells employing electrodeposited nickel oxide nanostructures as the anode buffer layer. Sol. Energy Mater. Sol. Cells, 2012, 101, 256-261.
[http://dx.doi.org/10.1016/j.solmat.2012.01.041]
[167]
Saïdi, S.; Mannaï, A.; Derouiche, H.; Belhadj Mohamed, A. Effect of drying temperature on structural and electrical properties of PANI:PVDF composite thin films and their application as buffer layer for organic solar cells. Mater. Sci. Semicond. Process., 2014, 19, 130-135.
[http://dx.doi.org/10.1016/j.mssp.2013.12.002]
[168]
Kösemen, A.; Tore, N.; Parlak, E.A.; Alpaslan Kösemen, Z.; Ulbricht, C.; Usluer, O.; Egbe, D.A.M.; Yerli, Y.; San, S.E. An efficient organic inverted solar cell with AnE-PVstat:PCBM active layer and V2O5/Al anode layer. Sol. Energy, 2014, 99, 88-94.
[http://dx.doi.org/10.1016/j.solener.2013.10.039]
[169]
Brütsch, L.; Czolk, J.; Popescu, R.; Gerthsen, D.; Colsmann, A.; Feldmann, C. Surfactant-free synthesis of sub-stoichiometry tungsten oxide nanoparticles and their use as anode buffer layers in organic solar cells. Solid State Sci., 2017, 69, 50-55.
[http://dx.doi.org/10.1016/j.solidstatesciences.2017.05.010]
[170]
Ghosekar, I.C.; Patil, G.C. Performance analysis and thermal reliability study of multilayer organic solar cells. IEEE Trans. Device Mater. Reliab., 2019, 19(3), 572-580.
[171]
AL-Amar, M.M.; Hamam, K.J.; Mezei, G.; Guda, R.; Hamdan, N.M.; Burns, C.A. A new method to improve the lifetime stability of small molecule bilayer heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells, 2013, 109, 270-274.
[http://dx.doi.org/10.1016/j.solmat.2012.11.006]
[172]
Aslan, F.; Adam, G.; Stadler, P.; Goktas, A.; Mutlu, I.H.; Sariciftci, N.S. Sol-gel derived In2S3 buffer layers for inverted organic photovoltaic cells. Sol. Energy, 2014, 108, 230-237.
[http://dx.doi.org/10.1016/j.solener.2014.07.011]
[173]
Bechara, R.; Petersen, J.; Gernigon, V.; Lévêque, P.; Heiser, T.; Toniazzo, V.; Ruch, D.; Michel, M. PEDOT:PSS-free organic solar cells using tetrasulfonic copper phthalocyanine as buffer layer. Sol. Energy Mater. Sol. Cells, 2012, 98, 482-485.
[http://dx.doi.org/10.1016/j.solmat.2011.11.005]
[174]
Bereznev, S.; Koeppe, R.; Konovalov, I.; Kois, J.; Günes, S.; Öpik, A.; Mellikov, E.; Sariciftci, N.S. Hybrid solar cells based on CuInS2 and organic buffer-sensitizer layers. Thin Solid Films, 2007, 515(15), 5759-5762.
[http://dx.doi.org/10.1016/j.tsf.2006.12.074]
[175]
Biglova, Y.N.; Susarova, D.K.; Akbulatov, A.F.; Mumyatov, A.V.; Troshin, P.A. Polymerizable methanofullerene bearing a pendant acrylic group as a buffer layer material for inverted organic solar cells. Mendeleev Commun., 2015, 25(6), 473-475.
[http://dx.doi.org/10.1016/j.mencom.2015.11.026]
[176]
Burlingame, Q.; Huang, X.; Liu, X.; Jeong, C.; Coburn, C.; Forrest, S.R. Intrinsically stable organic solar cells under high-intensity illumination. Nature, 2019, 573(7774), 394-397.
[http://dx.doi.org/10.1038/s41586-019-1544-1] [PMID: 31501570]
[177]
Cheng, C.H.; Wang, J.; Du, G.T.; Shi, S.H.; Du, Z.J.; Fan, Z.Q.; Bian, J.M.; Wang, M.S. Organic solar cells with remarkable enhanced efficiency by using a CuI buffer to control the molecular orientation and modify the anode. Appl. Phys. Lett., 2010, 97(8), 083305.
[http://dx.doi.org/10.1063/1.3483159]
[178]
Chou, D.W.; Chen, K.L.; Huang, C-J.; Tsao, Y-J.; Chen, W-R.; Meen, T-H. Efficient small-molecule organic solar cells incorporating a doped buffer layer. Thin Solid Films, 2013, 536, 235-239.
[http://dx.doi.org/10.1016/j.tsf.2013.04.008]
[179]
Chu, A.K.; Tien, W.C.; Lai, S.W.; Tsai, H.L.; Bai, R.Y.; Lin, X.Z.; Chen, L.Y. High-resistivity sol-gel ITO thin film as an interfacial buffer layer for bulk heterojunction organic solar cells. Org. Electron., 2017, 46, 99-104.
[http://dx.doi.org/10.1016/j.orgel.2017.03.035]
[180]
El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J.C. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction. J. Phys. Chem. Solids, 2016, 98, 128-135.
[http://dx.doi.org/10.1016/j.jpcs.2016.06.014]
[181]
Hao, X.; Wang, S.; Fu, W.; Sakurai, T.; Masuda, S.; Akimoto, K. Novel cathode buffer layer of Ag-doped bathocuproine for small molecule organic solar cell with inverted structure. Org. Electron., 2014, 15(8), 1773-1779.
[http://dx.doi.org/10.1016/j.orgel.2014.04.030]
[182]
Jung, J.W.; Jo, J.W.; Jo, W.H. Enhanced performance and air stability of polymer solar cells by formation of a self-assembled buffer layer from fullerene-end-capped poly(ethylene glycol). Adv. Mater., 2011, 23(15), 1782-1787.
[http://dx.doi.org/10.1002/adma.201003996] [PMID: 21360777]
[183]
Kang, B.; Tan, L.W.; Silva, S.R.P. Fluoropolymer indium-tin-oxide buffer layers for improved power conversion in organic photovoltaics. Appl. Phys. Lett., 2008, 93(13), 133302.
[http://dx.doi.org/10.1063/1.2983742]
[184]
Kim, H.P.; Mohd Yusoff, A.R.; Jang, J. Organic solar cells using a reduced graphene oxide anode buffer layer. Sol. Energy Mater. Sol. Cells, 2013, 110, 87-93.
[http://dx.doi.org/10.1016/j.solmat.2012.12.001]
[185]
Lee, C-H.; Lee, S.; Yeo, J-S.; Kang, G-S.; Noh, Y-J.; Park, S-M.; Lee, D.C.; Na, S-I.; Joh, H-I. Hybrid materials of upcycled Mn3O4 and reduced graphene oxide for a buffer layer in organic solar cells. J. Ind. Eng. Chem., 2018, 61, 106-111.
[http://dx.doi.org/10.1016/j.jiec.2017.12.006]
[186]
Li, X.; Zhang, W.; Wu, Y.; Min, C.; Fang, J. High performance polymer solar cells with a polar fullerene derivative as the cathode buffer layer. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(40), 12413-12416.
[http://dx.doi.org/10.1039/c3ta12875j]
[187]
Na, S-I.; Oh, S-H.; Kim, S-S.; Kim, D-Y. Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer. Org. Electron., 2009, 10(3), 496-500.
[http://dx.doi.org/10.1016/j.orgel.2009.02.009]
[188]
Oida, T.; Harafuji, K. Electron transport mechanism through a cathode buffer in organic solar cells. Mol. Cryst. Liq. Cryst., 2012, 567(1), 44-49.
[http://dx.doi.org/10.1080/15421406.2012.702379]
[189]
Oo, T.Z.; Devi Chandra, R.; Yantara, N.; Prabhakar, R.R.; Wong, L.H.; Mathews, N.; Mhaisalkar, S.G. Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell. Org. Electron., 2012, 13(5), 870-874.
[http://dx.doi.org/10.1016/j.orgel.2012.01.011]
[190]
Park, B.M.; Chang, H.J. Properties of bulk heterojunction organic solar cells with lif buffer layer at various concentrations of active layer. Mol. Cryst. Liq. Cryst., 2014, 602(1), 177-184.
[http://dx.doi.org/10.1080/15421406.2014.944760]
[191]
Sabri, N.S.; Yap, C.C.; Yahaya, M.; Mat Salleh, M.; Hj Jumali, M.H. Solution-dispersed CuO nanoparticles as anode buffer layer in inverted type hybrid organic solar cells. Phys. Status Solidi., A Appl. Mater. Sci., 2017, 214(1), 1600418.
[http://dx.doi.org/10.1002/pssa.201600418]
[192]
Sakurai, T.; Ohashi, T.; Kitazume, H.; Kubota, M.; Suemasu, T.; Akimoto, K. Structural control of organic solar cells based on nonplanar metallophthalocyanine/C60 heterojunctions using organic buffer layers. Org. Electron., 2011, 12(6), 966-973.
[http://dx.doi.org/10.1016/j.orgel.2011.03.016]
[193]
Shen, W.; Yang, C.; Bao, X.; Sun, L.; Wang, N.; Tang, J.; Chen, W.; Yang, R. Simple solution-processed CuOX as anode buffer layer for efficient organic solar cells. Mater. Sci. Eng. B, 2015, 200, 1-8.
[http://dx.doi.org/10.1016/j.mseb.2015.05.010]
[194]
Singh, A.; Dey, A.; Iyer, P.K. Influence of molar mass ratio, annealing temperature and cathode buffer layer on power conversion efficiency of P3HT:PC71BM based organic bulk heterojunction solar cell. Org. Electron., 2017, 51, 428-434.
[http://dx.doi.org/10.1016/j.orgel.2017.09.036]
[195]
Stratakis, E.; Stylianakis, M.M.; Koudoumas, E.; Kymakis, E. Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement. Nanoscale, 2013, 5(10), 4144-4150.
[http://dx.doi.org/10.1039/c3nr00656e] [PMID: 23571764]
[196]
Takanezawa, K.; Tajima, K.; Hashimoto, K. Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer. Appl. Phys. Lett., 2008, 93(6), 063308.
[http://dx.doi.org/10.1063/1.2972113]
[197]
Tan, Z.; Li, L.; Cui, C.; Ding, Y.; Xu, Q.; Li, S.; Qian, D.; Li, Y. Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J. Phys. Chem. C, 2012, 116(35), 18626-18632.
[http://dx.doi.org/10.1021/jp304878u]
[198]
Tan, F.; Qu, S.; Zhang, W.; Zhang, X.; Wang, Z. Conjugated molecule doped polyaniline films as buffer layers in organic solar cells. Synth. Met., 2013, 178, 18-21.
[http://dx.doi.org/10.1016/j.synthmet.2013.06.006]
[199]
Tian, J.; Zhao, C.; Wu, M.; Xie, W.; Mai, W.; Liu, P. Thickness-dependence of S-shaped J-V curves of planar heterojunction organic solar cells containing NTCDA interlayer: Impedance-potential measurement and underlying mechanism. Sol. Energy Mater. Sol. Cells, 2016, 148, 39-43.
[http://dx.doi.org/10.1016/j.solmat.2015.09.032]
[200]
Tolkki, A.; Kaunisto, K.; Heiskanen, J.P.; Omar, W.A.E.; Huttunen, K.; Lehtimäki, S.; Hormi, O.E.O.; Lemmetyinen, H. Organometallic tris(8-hydroxyquinoline)aluminum complexes as buffer layers and dopants in inverted organic solar cells. Thin Solid Films, 2012, 520(13), 4475-4481.
[http://dx.doi.org/10.1016/j.tsf.2012.02.084]
[201]
Tsai, M-Y.; Cheng, W-H.; Jeng, J-S.; Chen, J-S. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer. Solid-State Electron., 2016, 120, 56-62.
[http://dx.doi.org/10.1016/j.sse.2016.02.010]
[202]
Wang, X.; Qi, B.; Li, H.; Qi, Z.; Wang, J. Improvement of organic solar cells with ammonium salt, tetrabutylammonium tetraphenylborate, as cathode buffer layer. Synth. Met., 2014, 191, 36-40.
[http://dx.doi.org/10.1016/j.synthmet.2014.02.011]
[203]
Wu, H.R.; Song, Q.L.; Wang, M.L.; Li, F.Y.; Yang, H.; Wu, Y.; Huang, C.H.; Ding, X.M.; Hou, X.Y. Stable small-molecule organic solar cells with 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene as an organic buffer. Thin Solid Films, 2007, 515(20-21), 8050-8053.
[http://dx.doi.org/10.1016/j.tsf.2007.03.187]
[204]
Yu, S.; Yang, W.; Li, L.; Zhang, W. Improved chemical stability of ITO transparent anodes with a SnO2 buffer layer for organic solar cells. Sol. Energy Mater. Sol. Cells, 2016, 144, 652-656.
[http://dx.doi.org/10.1016/j.solmat.2015.10.005]
[205]
Zhang, S.; Chen, Z.; Xiao, L.; Qu, B.; Gong, Q. Organic solar cells with 2-Thenylmercaptan/AU self-assembly film as buffer layer. Sol. Energy Mater. Sol. Cells, 2011, 95(3), 917-920.
[http://dx.doi.org/10.1016/j.solmat.2010.11.021]
[206]
Zhang, Z.G.; Li, H.; Qi, Z.; Jin, Z.; Liu, G.; Hou, J.; Li, Y.; Wang, J. Poly(ethylene glycol) modified [60]fullerene as electron buffer layer for high-performance polymer solar cells. Appl. Phys. Lett., 2013, 102(14), 143902.
[http://dx.doi.org/10.1063/1.4801923]
[207]
Zhao, W.; Ye, L.; Zhang, S.; Yao, H.; Sun, M.; Hou, J. An easily accessible cathode buffer layer for achieving multiple high performance polymer photovoltaic cells. J. Phys. Chem. C, 2015, 119(49), 27322-27329.
[http://dx.doi.org/10.1021/acs.jpcc.5b09575]
[208]
Zhu, Q.; Bao, X.; Yu, J.; Yang, R.; Dong, L. Simple synthesis of solution-processable oxygen-enriched graphene as anode buffer layer for efficient organic solar cells. Org. Electron., 2015, 27, 143-150.
[http://dx.doi.org/10.1016/j.orgel.2015.09.015]

© 2025 Bentham Science Publishers | Privacy Policy