Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Carbon Nanotubes: A Targeted Drug Delivery against Cancer Cell

Author(s): Prashant Kumar, Surya Nath Pandey, Farman Ahmad, Anurag Verma, Himanshu Sharma, Sumel Ashique*, Subhra Prakash Bhattacharyya, Indrani Bhattacharyya, Shubneesh Kumar, Neeraj Mishra and Ashish Garg

Volume 20, Issue 6, 2024

Published on: 29 November, 2023

Page: [769 - 800] Pages: 32

DOI: 10.2174/0115734137271865231105070727

open access plus

Abstract

Drug delivery in human subjects has been the most difficult task since the ancient time of the medical sector. An ideal drug delivery system is, one that minimizes the adverse effects and maximizes the desired effects of the drug candidate. Various drug delivery systems have been developed that may have some kind of advantages and disadvantages, among them targeted drug delivery system is more preferable and convenient which may employ various nanoparticles or other materials for the drug delivery at the specified site of action. In this, the authors elaborately and comprehensively explained the role of recent carbon nanotubes (CNTs) in targeted drug delivery systems (specifically for targeting cancerous cells). The authors also described the methods of preparation of CNTs, characterization techniques for CNTs, cellular penetration of, CNTs, and the associated toxicities with CNTs. Carbon nanotubes are preferable to other nanoparticles because they are more electrically, mechanically, and organically stable than others, they can carry more amount of drug in comparison to other nanoparticles and their functionalization property makes them more attractive as a carrier molecule for targeting any root cause of the disease.

Graphical Abstract

[1]
Ashique, S.; Sandhu, N.K.; Chawla, V.; Chawla, P.A. Targeted drug delivery: Trends and perspectives. Curr. Drug Deliv., 2021, 18(10), 1435-1455.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[2]
Tsukahara, T.; Haniu, H. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells. Mol. Cell. Biochem., 2011, 352(1-2), 57-63.
[http://dx.doi.org/10.1007/s11010-011-0739-z] [PMID: 21298324]
[3]
Maruyama, K.; Haniu, H.; Saito, N.; Matsuda, Y.; Tsukahara, T.; Kobayashi, S.; Tanaka, M.; Aoki, K.; Takanashi, S.; Okamoto, M.; Kato, H. Endocytosis of multiwalled carbon nanotubes in bronchial epithelial and mesothelial cells. BioMed Res. Int., 2015, 2015, 793186.
[http://dx.doi.org/10.1155/2015/793186]
[4]
Li, J.; Yap, S.Q.; Yoong, S.L.; Nayak, T.R.; Chandra, G.W.; Ang, W.H.; Panczyk, T.; Ramaprabhu, S.; Vashist, S.K.; Sheu, F.S.; Tan, A.; Pastorin, G. Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon, 2012, 50(4), 1625-1634.
[http://dx.doi.org/10.1016/j.carbon.2011.11.043] [PMID: 31105316]
[5]
Martincic, M.; Tobias, G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin. Drug Deliv., 2015, 12(4), 563-581.
[http://dx.doi.org/10.1517/17425247.2015.971751] [PMID: 25430876]
[6]
Lu, J.P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett., 1997, 79(7), 1297-1300.
[http://dx.doi.org/10.1103/PhysRevLett.79.1297]
[7]
Treacy, MJ.; Ebbesen, TW. Gibson, JM Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584), 678-680.
[8]
Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277(5334), 1971-1975.
[9]
Balas, M.; Constanda, S.; Duma-Voiculet, A.; Prodana, M.; Hermenean, A.; Pop, S.; Demetrescu, I.; Dinischiotu, A. Fabrication and toxicity characterization of a hybrid material based on oxidized and aminated MWCNT loaded with carboplatin. Toxicol. In vitro, 2016, 37, 189-200.
[http://dx.doi.org/10.1016/j.tiv.2016.09.011] [PMID: 27638054]
[10]
Sanginario, A.; Miccoli, B.; Demarchi, D. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors, 2017, 7(4), 9.
[http://dx.doi.org/10.3390/bios7010009] [PMID: 28212271]
[11]
He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: Applications in pharmacy and medicine. BioMed Res. Int., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/578290] [PMID: 24195076]
[12]
Saleemi, M.A.; Hosseini Fouladi, M.; Yong, P.V.C.; Chinna, K.; Palanisamy, N.K.; Wong, E.H. Toxicity of carbon nanotubes: Molecular mechanisms, signaling cascades, and remedies in biomedical applications. Chem. Res. Toxicol., 2021, 34(1), 24-46.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00172] [PMID: 33319996]
[13]
Saito, N.; Haniu, H.; Aoki, K.; Nishimura, N.; Uemura, T. Future prospects for clinical applications of nanocarbons focusing on carbon nanotubes. Adv. Sci., 2022, 9(24), 2201214.
[http://dx.doi.org/10.1002/advs.202201214] [PMID: 35754236]
[14]
Heller, D.A.; Jena, P.V.; Pasquali, M.; Kostarelos, K.; Delogu, L.G.; Meidl, R.E.; Rotkin, S.V.; Scheinberg, D.A.; Schwartz, R.E.; Terrones, M.; Wang, Y.; Bianco, A.; Boghossian, A.A.; Cambré, S.; Cognet, L.; Corrie, S.R.; Demokritou, P.; Giordani, S.; Hertel, T.; Ignatova, T.; Islam, M.F.; Iverson, N.M.; Jagota, A.; Janas, D.; Kono, J.; Kruss, S.; Landry, M.P.; Li, Y.; Martel, R.; Maruyama, S.; Naumov, A.V.; Prato, M.; Quinn, S.J.; Roxbury, D.; Strano, M.S.; Tour, J.M.; Weisman, R.B.; Wenseleers, W.; Yudasaka, M. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol., 2020, 15(3), 164-166.
[http://dx.doi.org/10.1038/s41565-020-0656-y] [PMID: 32157238]
[15]
Lacerda, L.; Raffa, S.; Prato, M.; Bianco, A.; Kostarelos, K. Cell-penetrating CNTs for delivery of therapeutics. Nano Today, 2007, 2(6), 38-43.
[http://dx.doi.org/10.1016/S1748-0132(07)70172-X]
[16]
Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A.A.; Abdel-Daiem, A. Different technical applications of carbon nanotubes. Nanoscale Res. Lett., 2015, 10(1), 358.
[http://dx.doi.org/10.1186/s11671-015-1056-3] [PMID: 26377211]
[17]
Smart, S.K.; Cassady, A.I.; Lu, G.Q.; Martin, D.J. The biocompatibility of carbon nanotubes. Carbon, 2006, 44(6), 1034-1047.
[http://dx.doi.org/10.1016/j.carbon.2005.10.011]
[18]
Yu, B.; Tai, H.C.; Xue, W.; Lee, L.J.; Lee, R.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol. Membr. Biol., 2010, 27(7), 286-298.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[19]
Patil, M; Hussain, A; Altamimi, MA; Ashique, S; Haider, N; Faruk, A; Khuroo, T; Sherikar, A; Siddique, MU; Ansari, A; Barbhuiya, TK An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer. In: Advances in Cancer Biology-Metastasis; Elsevier, 2023; p. 100103.
[http://dx.doi.org/10.1016/j.adcanc.2023.100103]
[20]
Ashique, S.; Faiyazuddin, M.; Afzal, O.; Gowri, S.; Hussain, A.; Mishra, N.; Garg, A.; Maqsood, S.; Akhtar, M.S.; Altamimi, A.S.A. Advanced nanoparticles, the hallmark of targeted drug delivery for osteosarcoma-an updated review. J. Drug Deliv. Sci. Technol., 2023, 87, 104753.
[http://dx.doi.org/10.1016/j.jddst.2023.104753]
[21]
Ashique, S.; Upadhyay, A.; Kumar, N.; Chauhan, S.; Mishra, N. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review. Adv. Cancer Biol. -. Metast., 2022, 4, 100041.
[http://dx.doi.org/10.1016/j.adcanc.2022.100041]
[22]
Ashique, S.; Upadhyay, A.; Gulati, M.; Singh, D. One-dimensional polymeric nanocomposites in drug delivery systems. Curr. Nanosci., 2023, 19.
[23]
Ashique, S.; Garg, A.; Mishra, N.; Raina, N.; Ming, L.C.; Tulli, H.S.; Behl, T.; Rani, R.; Gupta, M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn Schmiedebergs Arch. Pharmacol., 2023, 1-24.
[http://dx.doi.org/10.1007/s00210-023-02522-5] [PMID: 37219615]
[24]
Singhai, M.; Gupta, G.D.; Khurana, B.; Arora, D.; Ashique, S.; Mishra, N. Nanotechnology-based drug delivery systems for the treatment of cervical cancer: A comprehensive review. Curr. Nanosci., 2024, 20(2), 224-247.
[25]
Priya; Ashique, S.; Afzal, O.; Khalid, M.; Faruque Ahmad, M.; Upadhyay, A.; Kumar, S.; Garg, A.; Ramzan, M.; Hussain, A.; Altamimi, M.A.; Altamimi, A.S.A.; Webster, T.J.; Khanam, A. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. Int. J. Pharm., 2023, 643, 123223.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123223] [PMID: 37442399]
[26]
Ashique, S.; Afzal, O.; Hussain, A.; Zeyaullah, M.; Altamimi, M.A.; Mishra, N.; Ahmad, M.F.; Dua, K.; Altamimi, A.S.A.; Anand, K. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer. J. Drug Deliv. Sci. Technol., 2023, 84, 104495.
[http://dx.doi.org/10.1016/j.jddst.2023.104495]
[27]
Zeng, L.; Gowda, B.H.J.; Ahmed, M.G.; Abourehab, M.A.S.; Chen, Z.S.; Zhang, C.; Li, J.; Kesharwani, P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer, 2023, 22(1), 10.
[http://dx.doi.org/10.1186/s12943-022-01708-4] [PMID: 36635761]
[28]
Gowda, B.H.J.; Ahmed, M.G.; Chinnam, S.; Paul, K.; Ashrafuzzaman, M.; Chavali, M.; Gahtori, R.; Pandit, S.; Kesari, K.K.; Gupta, P.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J. Drug Deliv. Sci. Technol., 2022, 71, 103305.
[http://dx.doi.org/10.1016/j.jddst.2022.103305]
[29]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[30]
Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol., 2003, 12(2), 205-216.
[http://dx.doi.org/10.1088/0963-0252/12/2/312]
[31]
Hendler-Neumark, A.; Bisker, G. Fluorescent single-walled carbon nanotubes for protein detection. Sensors, 2019, 19(24), 5403.
[http://dx.doi.org/10.3390/s19245403] [PMID: 31817932]
[32]
Fujisawa, K.; Kim, H.; Go, S.; Muramatsu, H.; Hayashi, T.; Endo, M.; Hirschmann, T.; Dresselhaus, M.; Kim, Y.; Araujo, P. A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl. Sci., 2016, 6(4), 109.
[http://dx.doi.org/10.3390/app6040109]
[33]
Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 2015, 115(11), 4744-4822.
[http://dx.doi.org/10.1021/cr500304f] [PMID: 26012488]
[34]
Aqel, A.; El-Nour, K.M.M.A.; Ammar, R.A.A.; Al-Warthan, A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem., 2012, 5(1), 1-23.
[http://dx.doi.org/10.1016/j.arabjc.2010.08.022]
[35]
Chik, M.W.; Hussain, Z.; Zulkefeli, M.; Tripathy, M.; Kumar, S.; Majeed, A.B.A.; Byrappa, K. Polymer-wrapped single-walled carbon nanotubes: A transformation toward better applications in healthcare. Drug Deliv. Transl. Res., 2019, 9(2), 578-594.
[http://dx.doi.org/10.1007/s13346-018-0505-9] [PMID: 29594914]
[36]
Guo, Q.; Shen, X.; Li, Y.; Xu, S. Carbon nanotubes-based drug delivery to cancer and brain. Curr. Med. Sci., 2017, 37(5), 635-641.
[http://dx.doi.org/10.1007/s11596-017-1783-z] [PMID: 29058274]
[37]
Yang, H.; Xu, W.; Liang, X.; Yang, Y.; Zhou, Y. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: A review. Mikrochim. Acta, 2020, 187(4), 206.
[http://dx.doi.org/10.1007/s00604-020-4172-4] [PMID: 32152753]
[38]
Thauer, E.; Ottmann, A.; Schneider, P.; Möller, L.; Deeg, L.; Zeus, R.; Wilhelmi, F.; Schlestein, L.; Neef, C.; Ghunaim, R.; Gellesch, M.; Nowka, C.; Scholz, M.; Haft, M.; Wurmehl, S.; Wenelska, K.; Mijowska, E.; Kapoor, A.; Bajpai, A.; Hampel, S.; Klingeler, R. Filled carbon nanotubes as anode materials for lithium-ion batteries. Molecules, 2020, 25(5), 1064.
[http://dx.doi.org/10.3390/molecules25051064] [PMID: 32120977]
[39]
Özmen, E.N.; Kartal, E.; Turan, M.B.; Yazıcıoğlu, A.; Niazi, J.H.; Qureshi, A. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: A review. Mater. Sci. Eng. C, 2021, 129, 112356.
[http://dx.doi.org/10.1016/j.msec.2021.112356] [PMID: 34579878]
[40]
Facciolà, A.; Visalli, G.; La Maestra, S.; Ceccarelli, M.; D’Aleo, F.; Nunnari, G.; Pellicanò, G.F.; Di Pietro, A. Carbon nanotubes and central nervous system: Environmental risks, toxicological aspects and future perspectives. Environ. Toxicol. Pharmacol., 2019, 65, 23-30.
[http://dx.doi.org/10.1016/j.etap.2018.11.006] [PMID: 30500734]
[41]
Helland, A.; Wick, P.; Koehler, A.; Schmid, K.; Som, C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect., 2007, 115(8), 1125-1131.
[http://dx.doi.org/10.1289/ehp.9652] [PMID: 17687437]
[42]
Lisik, K.; Krokosz, A. Application of carbon nanoparticles in oncology and regenerative medicine. Int. J. Mol. Sci., 2021, 22(15), 8341.
[http://dx.doi.org/10.3390/ijms22158341] [PMID: 34361101]
[43]
Yan, H.; Xue, Z.; Xie, J.; Dong, Y.; Ma, Z.; Sun, X.; Kebebe Borga, D.; Liu, Z.; Li, J. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int. J. Nanomedicine, 2019, 14, 10179-10194.
[http://dx.doi.org/10.2147/IJN.S220087] [PMID: 32021160]
[44]
Yadav, N.; Tyagi, M.; Wadhwa, S.; Mathur, A.; Narang, J. Few biomedical applications of carbon nanotubes In: Methods in Enzymology; Academic Press; , 2020.
[http://dx.doi.org/10.1016/bs.mie.2019.11.005]
[45]
Aragon, M.J.; Topper, L.; Tyler, C.R.; Sanchez, B.; Zychowski, K.; Young, T.; Herbert, G.; Hall, P.; Erdely, A.; Eye, T.; Bishop, L.; Saunders, S.A.; Muldoon, P.P.; Ottens, A.K.; Campen, M.J. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc. Natl. Acad. Sci., 2017, 114(10), E1968-E1976.
[http://dx.doi.org/10.1073/pnas.1616070114] [PMID: 28223486]
[46]
Gholamine, B.; Karimi, I.; Salimi, A.; Mazdarani, P.; Becker, L.A. Neurobehavioral toxicity of carbon nanotubes in mice. Toxicol. Ind. Health, 2017, 33(4), 340-350.
[http://dx.doi.org/10.1177/0748233716644381] [PMID: 27230352]
[47]
Chen, H.; Zheng, X.; Nicholas, J.; Humes, S.T.; Loeb, J.C.; Robinson, S.E.; Bisesi, J.H., Jr; Das, D.; Saleh, N.B.; Castleman, W.L.; Lednicky, J.A.; Sabo-Attwood, T. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virol. J., 2017, 14(1), 242.
[http://dx.doi.org/10.1186/s12985-017-0909-z] [PMID: 29273069]
[48]
Park, E.J.; Choi, J.; Kim, J.H.; Lee, B.S.; Yoon, C.; Jeong, U.; Kim, Y. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: Purity-based comparison. Nanotoxicology, 2016, 10(8), 1188-1202.
[http://dx.doi.org/10.1080/17435390.2016.1202348] [PMID: 27310831]
[49]
Lee, S.; Khang, D.; Kim, S.H. High dispersity of carbon nanotubes diminishes immunotoxicity in spleen. Int. J. Nanomedicine, 2015, 10, 2697-2710.
[PMID: 25878502]
[50]
Bottini, M.; Bruckner, S.; Nika, K.; Bottini, N.; Bellucci, S.; Magrini, A.; Bergamaschi, A.; Mustelin, T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett., 2006, 160(2), 121-126.
[http://dx.doi.org/10.1016/j.toxlet.2005.06.020] [PMID: 16125885]
[51]
Swogger, K.W.; Bosnyak, C.P.; Henderson, N.; Finlayson, M.; Sturtevant, B.; Hoenig, S. Discrete carbon nanotubes with targeted oxidation levels and stable gel formulations thereof. U.S. Patent 10589997 2020.
[52]
Smith, B.R.; Ghosn, E. Carbon nanotubes for imaging and drug delivery. U.S. Patent 020794 2013.
[53]
Khang, D.W.; Kang, S.S.; Choi, J.; Nam, T.H. Carbon nanotubebased anti-cancer agent capable of suppressing drug resistance. U.S. Patent 9981042 2018.
[54]
Kolanowska, A.; Janas, D.; Herman, A.P.; Jędrysiak, R.G.; Giżewski, T.; Boncel, S. From blackness to invisibility – Carbon nanotubes role in the attenuation of and shielding from radio waves for stealth technology. Carbon, 2018, 126, 31-52.
[http://dx.doi.org/10.1016/j.carbon.2017.09.078]
[55]
Gharib, M.; Aria, AM.; Beizai, M. Drug delivery by carbon nanotube arrays. US20120058170A1, 2012.
[56]
Chen, J.; Wong, S.S.; Ojima, I. Carbon nanotube-based drug delivery systems and methods of making same. U.S. Patent 12179887 2010.
[57]
Prakash, S.; Chen, H.; Raja, P.; Nalamasu, O.; Ajayan, P.M. Microcapsule nanotube devices for targeted delivery of therapeutic molecules. U.S. Patent 12085017, 2010.
[58]
Chary, P.S.; Bhawale, R.; Vasave, R.; Rajana, N.; Singh, P.K.; Madan, J.; Singh, S.B.; Mehra, N.K. A review on emerging role of multifunctional carbon nanotubes as an armament in cancer therapy, imaging and biosensing. J. Drug Deliv. Sci. Technol., 2023, 85, 104588.
[http://dx.doi.org/10.1016/j.jddst.2023.104588]
[59]
Zhang, W.; Zhang, Z.; Zhang, Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett., 2011, 6(1), 555.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[60]
Prajapati, S.K.; Malaiya, A.; Kesharwani, P.; Soni, D.; Jain, A. Biomedical applications and toxicities of carbon nanotubes. Drug Chem. Toxicol., 2022, 45(1), 435-450.
[http://dx.doi.org/10.1080/01480545.2019.1709492] [PMID: 31908176]
[61]
Sharma, R.; Sharma, A.K.; Sharma, V. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng., 2015, 2(1), 1094017.
[http://dx.doi.org/10.1080/23311916.2015.1094017]
[62]
Abousalman-Rezvani, Z.; Eskandari, P.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Functionalization of carbon nanotubes by combination of controlled radical polymerization and “grafting to” method. Adv. Colloid Interface Sci., 2020, 278, 102126.
[http://dx.doi.org/10.1016/j.cis.2020.102126] [PMID: 32114292]
[63]
Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations. Adv. Colloid Interface Sci., 2021, 294, 102471.
[http://dx.doi.org/10.1016/j.cis.2021.102471] [PMID: 34214841]
[64]
Raphey, V.R.; Henna, T.K.; Nivitha, K.P.; Mufeedha, P.; Sabu, C.; Pramod, K. Advanced biomedical applications of carbon nanotube. Mater. Sci. Eng. C, 2019, 100, 616-630.
[http://dx.doi.org/10.1016/j.msec.2019.03.043] [PMID: 30948098]
[65]
Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458.
[http://dx.doi.org/10.1016/S1359-6446(05)03575-0] [PMID: 16243265]
[66]
Taghavi, S.; Nia, A.H.; Abnous, K.; Ramezani, M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int. J. Pharm., 2017, 516(1-2), 301-312.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.027] [PMID: 27840158]
[67]
Huang, Y.P.; Lin, I.J.; Chen, C.C.; Hsu, Y.C.; Chang, C.C.; Lee, M.J. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes. Nanoscale Res. Lett., 2013, 8(1), 267.
[http://dx.doi.org/10.1186/1556-276X-8-267] [PMID: 23742156]
[68]
Tabatabaei Mirakabad, F.S.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; Joo, S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev., 2014, 15(2), 517-535.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[69]
Buss, N.A.P.S.; Henderson, S.J.; McFarlane, M.; Shenton, J.M.; de Haan, L. Monoclonal antibody therapeutics: History and future. Curr. Opin. Pharmacol., 2012, 12(5), 615-622.
[http://dx.doi.org/10.1016/j.coph.2012.08.001] [PMID: 22920732]
[70]
Sliwkowski, M.X.; Mellman, I. Antibody therapeutics in cancer. Science, 2013, 341(6151), 1192-1198.
[http://dx.doi.org/10.1126/science.1241145] [PMID: 24031011]
[71]
Fan, K.; Cao, C.; Pan, Y.; Lu, D.; Yang, D.; Feng, J.; Song, L.; Liang, M.; Yan, X. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol., 2012, 7(7), 459-464.
[http://dx.doi.org/10.1038/nnano.2012.90] [PMID: 22706697]
[72]
Barkal, A.A.; Brewer, R.E.; Markovic, M.; Kowarsky, M.; Barkal, S.A.; Zaro, B.W.; Krishnan, V.; Hatakeyama, J.; Dorigo, O.; Barkal, L.J.; Weissman, I.L. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature, 2019, 572(7769), 392-396.
[http://dx.doi.org/10.1038/s41586-019-1456-0] [PMID: 31367043]
[73]
Dirkse, A.; Golebiewska, A.; Buder, T.; Nazarov, P.V.; Muller, A.; Poovathingal, S.; Brons, N.H.C.; Leite, S.; Sauvageot, N.; Sarkisjan, D.; Seyfrid, M.; Fritah, S.; Stieber, D.; Michelucci, A.; Hertel, F.; Herold-Mende, C.; Azuaje, F.; Skupin, A.; Bjerkvig, R.; Deutsch, A.; Voss-Böhme, A.; Niclou, S.P. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat. Commun., 2019, 10(1), 1787.
[http://dx.doi.org/10.1038/s41467-019-09853-z] [PMID: 30992437]
[74]
Shao, N.; Lu, S.; Wickstrom, E.; Panchapakesan, B. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology, 2007, 18(31), 315101.
[http://dx.doi.org/10.1088/0957-4484/18/31/315101]
[75]
Polo, E.; Nitka, T.T.; Neubert, E.; Erpenbeck, L.; Vuković, L.; Kruss, S. Control of integrin affinity by confining RGD peptides on fluorescent carbon nanotubes. ACS Appl. Mater. Interfaces, 2018, 10(21), 17693-17703.
[http://dx.doi.org/10.1021/acsami.8b04373] [PMID: 29708725]
[76]
Li, M.; Su, Y.; Zhang, F.; Chen, K.; Xu, X.; Xu, L.; Zhou, J.; Wang, W. A dual-targeting reconstituted high density lipoprotein leveraging the synergy of sorafenib and antimiRNA21 for enhanced hepatocellular carcinoma therapy. Acta Biomater., 2018, 75, 413-426.
[http://dx.doi.org/10.1016/j.actbio.2018.05.049] [PMID: 29859368]
[77]
Koh, B.; Park, S.B.; Yoon, E.; Yoo, H.M.; Lee, D.; Heo, J.N.; Ahn, S. αVβ3-targeted delivery of camptothecin-encapsulated carbon nanotube-cyclic RGD in 2D and 3D cancer cell culture. J. Pharm. Sci., 2019, 108(11), 3704-3712.
[http://dx.doi.org/10.1016/j.xphs.2019.07.011] [PMID: 31348936]
[78]
Le, U.M.; Hartman, A.; Pillai, G. Enhanced selective cellular uptake and cytotoxicity of epidermal growth factor-conjugated liposomes containing curcumin on EGFR-overexpressed pancreatic cancer cells. J. Drug Target., 2018, 26(8), 676-683.
[http://dx.doi.org/10.1080/1061186X.2017.1408114] [PMID: 29157028]
[79]
Patel, T.H.; Norman, L.; Chang, S.; Abedi, S.; Liu, C.; Chwa, M.; Atilano, S.R.; Thaker, K.; Lu, S.; Jazwinski, S.M.; Miceli, M.V.; Udar, N.; Bota, D.; Kenney, M.C. European mtDNA variants are associated with differential responses to cisplatin, an anticancer drug: Implications for drug resistance and side effects. Front. Oncol., 2019, 9, 640.
[http://dx.doi.org/10.3389/fonc.2019.00640] [PMID: 31380278]
[80]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and In vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3(2), 307-316.
[http://dx.doi.org/10.1021/nn800551s] [PMID: 19236065]
[81]
Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon nanotubes: Smart drug/gene delivery carriers. Int. J. Nanomedicine, 2021, 16, 1681-1706.
[http://dx.doi.org/10.2147/IJN.S299448] [PMID: 33688185]
[82]
Debnath, S.K.; Srivastava, R. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: Progress and prospects. Front. Nanotechnol., 2021, 3, 644564.
[http://dx.doi.org/10.3389/fnano.2021.644564]
[83]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[84]
Samadishadlou, M.; Farshbaf, M.; Annabi, N.; Kavetskyy, T.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A.; Mousavi, S. Magnetic carbon nanotubes: Preparation, physical properties, and applications in biomedicine. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1314-1330.
[http://dx.doi.org/10.1080/21691401.2017.1389746] [PMID: 29043857]
[85]
Sheikhpour, M.; Golbabaie, A.; Kasaeian, A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. Mater. Sci. Eng. C, 2017, 76, 1289-1304.
[http://dx.doi.org/10.1016/j.msec.2017.02.132] [PMID: 28482496]
[86]
Pasinszki, T.; Krebsz, M.; Tung, T.T.; Losic, D. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors, 2017, 17(8), 1919.
[http://dx.doi.org/10.3390/s17081919] [PMID: 28825646]
[87]
Ou, Z.; Wu, B.; Xing, D.; Zhou, F.; Wang, H.; Tang, Y. Functional single-walled carbon nanotubes based on an integrin αv β 3 monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology, 2009, 20(10), 105102.
[http://dx.doi.org/10.1088/0957-4484/20/10/105102] [PMID: 19417509]
[88]
Khosravi, F.; Trainor, P.; Rai, S.N.; Kloecker, G.; Wickstrom, E.; Panchapakesan, B. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays. Nanotechnology, 2016, 27(13), 13LT02.
[http://dx.doi.org/10.1088/0957-4484/27/13/13LT02] [PMID: 26901310]
[89]
Nima, Z.A.; Mahmood, M.W.; Karmakar, A.; Mustafa, T.; Bourdo, S.; Xu, Y.; Biris, A.S. Single-walled carbon nanotubes as specific targeting and Raman spectroscopic agents for detection and discrimination of single human breast cancer cells. J. Biomed. Opt., 2013, 18(5), 055003.
[http://dx.doi.org/10.1117/1.JBO.18.5.055003] [PMID: 23694992]
[90]
Mashal, A.; Sitharaman, B.; Booske, J.H.; Hagness, S.C. Dielectric characterization of carbon nanotube contrast agents for microwave breast cancer detection. IEEE Antennas and Propagation Society International Symposium, North Charleston, SC, USA01-05 June2009, pp. 1-4.
[http://dx.doi.org/10.1109/APS.2009.5171908]
[91]
Gidcumb, E.; Gao, B.; Shan, J.; Inscoe, C.; Lu, J.; Zhou, O. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer. Nanotechnology, 2014, 25(24), 245704.
[http://dx.doi.org/10.1088/0957-4484/25/24/245704] [PMID: 24869902]
[92]
Al Faraj, A.; Shaik, A.S.; Al Sayed, B.; Halwani, R.; Al Jammaz, I. Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine, 2016, 11(1), 31-46.
[http://dx.doi.org/10.2217/nnm.15.182] [PMID: 26673059]
[93]
Weng, X.; Wang, M.; Ge, J.; Yu, S.; Liu, B.; Zhong, J.; Kong, J. Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol. Biosyst., 2009, 5(10), 1224-1231.
[http://dx.doi.org/10.1039/b906948h] [PMID: 19756312]
[94]
Mehra, N.K.; Jain, N.K. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J. Drug Target., 2013, 21(8), 745-758.
[http://dx.doi.org/10.3109/1061186X.2013.813028] [PMID: 23822734]
[95]
Shao, W.; Paul, A.; Zhao, B.; Lee, C.; Rodes, L.; Prakash, S. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials, 2013, 34(38), 10109-10119.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.007] [PMID: 24060420]
[96]
Singh, R.; Torti, S.V. Carbon nanotubes in hyperthermia therapy. Adv. Drug Deliv. Rev., 2013, 65(15), 2045-2060.
[http://dx.doi.org/10.1016/j.addr.2013.08.001] [PMID: 23933617]
[97]
Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R.D.; Cavicchi, R.E.; Avedisian, C.T.; Mitra, S.; Savla, R.; Wagner, P.D.; Srivastava, S.; He, H. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9(1), 351.
[http://dx.doi.org/10.1186/1471-2407-9-351] [PMID: 19799784]
[98]
Marches, R.; Mikoryak, C.; Wang, R.H.; Pantano, P.; Draper, R.K.; Vitetta, E.S. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology, 2011, 22(9), 095101.
[http://dx.doi.org/10.1088/0957-4484/22/9/095101] [PMID: 21258147]
[99]
Kohshour, M.; Mirzaie, S.; Zeinali, M.; Amin, M.; Said Hakhamaneshi, M.; Jalaili, A.; Mosaveri, N.; Jamalan, M. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate. Chem. Biol. Drug Des., 2014, 83(3), 259-265.
[http://dx.doi.org/10.1111/cbdd.12244] [PMID: 24118702]
[100]
Tlili, C.; Cella, L.N.; Myung, N.V.; Shetty, V.; Mulchandani, A. Single-walled carbon nanotube chemoresistive label-free immunosensor for salivary stress biomarkers. Analyst, 2010, 135(10), 2637-2642.
[http://dx.doi.org/10.1039/c0an00332h] [PMID: 20694207]
[101]
Yun, Y.; Dong, Z.; Shanov, V.N.; Schulz, M.J. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel. Nanotechnology, 2007, 18(46), 465505.
[http://dx.doi.org/10.1088/0957-4484/18/46/465505] [PMID: 21730479]
[102]
Chikkaveeraiah, B.V.; Bhirde, A.; Malhotra, R.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal. Chem., 2009, 81(21), 9129-9134.
[http://dx.doi.org/10.1021/ac9018022] [PMID: 19775154]
[103]
Wan, Y.; Deng, W.; Su, Y.; Zhu, X.; Peng, C.; Hu, H.; Peng, H.; Song, S.; Fan, C. Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens. Bioelectron., 2011, 30(1), 93-99.
[http://dx.doi.org/10.1016/j.bios.2011.08.033] [PMID: 21944923]
[104]
Salimi, A.; Kavosi, B.; Fathi, F.; Hallaj, R. Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes modified electrode: Application as cancer biomarker for prostatebiopsies. Biosens. Bioelectron., 2013, 42, 439-446.
[http://dx.doi.org/10.1016/j.bios.2012.10.053] [PMID: 23235113]
[105]
Fisher, J.W.; Sarkar, S.; Buchanan, C.F.; Szot, C.S.; Whitney, J.; Hatcher, H.C.; Torti, S.V.; Rylander, C.G.; Rylander, M.N. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res., 2010, 70(23), 9855-9864.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0250] [PMID: 21098701]
[106]
Yamashita, T.; Yamashita, K.; Nabeshi, H.; Yoshikawa, T.; Yoshioka, Y.; Tsunoda, S.; Tsutsumi, Y. Carbon nanomaterials: Efficacy and safety for nanomedicine. Materials, 2012, 5(12), 350-363.
[http://dx.doi.org/10.3390/ma5020350] [PMID: 28817050]
[107]
Ringel, J.; Erdmann, K.; Hampel, S.; Kraemer, K.; Maier, D.; Arlt, M.; Kunze, D.; Wirth, M.P.; Fuessel, S. Carbon nanofibers and carbon nanotubes sensitize prostate and bladder cancer cells to platinum-based chemotherapeutics. J. Biomed. Nanotechnol., 2014, 10(3), 463-477.
[http://dx.doi.org/10.1166/jbn.2014.1758] [PMID: 24730242]
[108]
Tang, X.; Liu, W.; Chen, J.; Jia, J.; Ma, Z.; Shi, Q.; Gao, Y.; Wang, X.; Xu, S.; Wang, K.; Guo, P.; He, D. Preparation and evaluation of polydopamine imprinting layer coated multi-walled carbon nanotubes for the determination of testosterone in prostate cancer LNcap cells. Anal. Methods, 2015, 7(19), 8326-8334.
[http://dx.doi.org/10.1039/C5AY01690H]
[109]
Liu, F.L.; Xiao, P.; Fang, H.L.; Dai, H.F.; Qiao, L.; Zhang, Y.H. Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Physica E, 2011, 44(2), 367-372.
[http://dx.doi.org/10.1016/j.physe.2011.08.033]
[110]
Singh, R.P.; Sharma, G.; Sonali; Singh, S.; Bharti, S.; Pandey, B.L.; Koch, B.; Muthu, M.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng. C, 2017, 77, 446-458.
[http://dx.doi.org/10.1016/j.msec.2017.03.225] [PMID: 28532051]
[111]
Wan, Q.; Xu, Y.; Xiao, H. Exhaled gas detection by Ir-doped CNT for primary diagnosis of lung cancer. AIP Adv., 2018, 8(10), 105128.
[http://dx.doi.org/10.1063/1.5050435]
[112]
Gulati, P.; Kaur, P.; Rajam, M.V.; Srivastava, T.; Mishra, P.; Islam, S.S. Vertically aligned multi-walled carbon nanotubes based flexible immunosensor for extreme low level detection of multidrug resistant leukemia cells. Sens. Actuators B Chem., 2019, 301, 127047.
[http://dx.doi.org/10.1016/j.snb.2019.127047]
[113]
Srivastava, R.K.; Pant, A.B.; Kashyap, M.P.; Kumar, V.; Lohani, M.; Jonas, L.; Rahman, Q. Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549. Nanotoxicology, 2011, 5(2), 195-207.
[http://dx.doi.org/10.3109/17435390.2010.503944] [PMID: 20804439]
[114]
Arya, N.; Arora, A.; Vasu, K.S.; Sood, A.K.; Katti, D.S. Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: A reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale, 2013, 5(7), 2818-2829.
[http://dx.doi.org/10.1039/c3nr33190c] [PMID: 23443459]
[115]
Guo, C.; Al-Jamal, W.T.; Toma, F.M.; Bianco, A.; Prato, M.; Al-Jamal, K.T.; Kostarelos, K. Design of cationic multiwalled carbon nanotubes as efficient siRNA vectors for lung cancer xenograft eradication. Bioconjug. Chem., 2015, 26(7), 1370-1379.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00249] [PMID: 26036843]
[116]
Singh, R.P.; Sharma, G.; Sonali; Singh, S.; Patne, S.C.U.; Pandey, B.L.; Koch, B.; Muthu, M.S. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater. Sci. Eng. C, 2016, 67, 313-325.
[http://dx.doi.org/10.1016/j.msec.2016.05.013] [PMID: 27287127]
[117]
Singh, R.P.; Sharma, G.; Sonali; Singh, S.; Kumar, M.; Pandey, B.L.; Koch, B.; Muthu, M.S. Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment. Colloids Surf. B Biointerfaces, 2016, 141, 429-442.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.011] [PMID: 26895505]
[118]
Singh, R.; Kumar, S. Cancer targeting and diagnosis: Recent trends with carbon nanotubes. Nanomaterials, 2022, 12(13), 2283.
[http://dx.doi.org/10.3390/nano12132283] [PMID: 35808119]
[119]
Oh, Y.; Jin, J.O.; Oh, J. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology, 2017, 28(12), 125101.
[http://dx.doi.org/10.1088/1361-6528/aa5d7d] [PMID: 28145889]
[120]
Lee, P.C.; Chiou, Y.C.; Wong, J.M.; Peng, C.L.; Shieh, M.J. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials, 2013, 34(34), 8756-8765.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.067] [PMID: 23937913]
[121]
Karmakar, A.; Bratton, S.M.; Dervishi, E.; Ghosh, A.; Mahmood, M.; Xu, Y.; Saeed, L.M.; Mustafa, T.; Casciano, D.; Radominska-Pandya, A.; Biris, A.S. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted In vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int. J. Nanomedicine, 2011, 6, 1045-1055.
[PMID: 21720516]
[122]
Chen, W.; Yang, S.; Wei, X.; Yang, Z.; Liu, D.; Pu, X.; He, S.; Zhang, Y. Construction of aptamer-siRNA Chimera/PEI/5FU/carbon nanotube/collagen membranes for the treatment of peritoneal dissemination of drug-resistant gastric cancer. Adv. Healthc. Mater., 2020, 9(21), 2001153.
[http://dx.doi.org/10.1002/adhm.202001153] [PMID: 32935949]
[123]
Harisa, G.I.; Faris, T.M. Direct drug targeting into intracellular compartments: Issues, limitations, and future outlook. J. Membr. Biol., 2019, 252(6), 527-539.
[http://dx.doi.org/10.1007/s00232-019-00082-5] [PMID: 31375855]
[124]
Afanzar, O.; Buss, G.K.; Stearns, T.; Ferrell, J.E., Jr The nucleus serves as the pacemaker for the cell cycle. eLife, 2020, 9, e59989.
[http://dx.doi.org/10.7554/eLife.59989] [PMID: 33284106]
[125]
Bradshaw, P. Cytoplasmic and mitochondrial NADPH-coupled redox systems in the regulation of aging. Nutrients, 2019, 11(3), 504.
[http://dx.doi.org/10.3390/nu11030504] [PMID: 30818813]
[126]
Teo, P.Y.; Cheng, W.; Hedrick, J.L.; Yang, Y.Y. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv. Drug Deliv. Rev., 2016, 98, 41-63.
[http://dx.doi.org/10.1016/j.addr.2015.10.014] [PMID: 26529199]
[127]
Favvas, E.P.; Nitodas, S.F.; Stefopoulos, A.A.; Papageorgiou, S.K.; Stefanopoulos, K.L.; Mitropoulos, A.C. High purity multi-walled carbon nanotubes: Preparation, characterization and performance as filler materials in co-polyimide hollow fiber membranes. Separ. Purif. Tech., 2014, 122, 262-269.
[http://dx.doi.org/10.1016/j.seppur.2013.11.015]
[128]
Kern, S.E.; Kinzler, K.W.; Bruskin, A.; Jarosz, D.; Friedman, P.; Prives, C.; Vogelstein, B. Identification of p53 as a sequence-specific DNA-binding protein. Science, 1991, 252(5013), 1708-1711.
[http://dx.doi.org/10.1126/science.2047879] [PMID: 2047879]
[129]
Etienne-Manneville, S. Cytoplasmic intermediate filaments in cell biology. Annu. Rev. Cell Dev. Biol., 2018, 34(1), 1-28.
[http://dx.doi.org/10.1146/annurev-cellbio-100617-062534] [PMID: 30059630]
[130]
Dong, Y.; Siegwart, D.J.; Anderson, D.G. Strategies, design, and chemistry in siRNA delivery systems. Adv. Drug Deliv. Rev., 2019, 144, 133-147.
[http://dx.doi.org/10.1016/j.addr.2019.05.004] [PMID: 31102606]
[131]
Huang, A.; Yang, X.R.; Chung, W.Y.; Dennison, A.R.; Zhou, J. Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target. Ther., 2020, 5(1), 146.
[http://dx.doi.org/10.1038/s41392-020-00264-x] [PMID: 32782275]
[132]
Wang, B.; Zhao, Q.; Zhang, Y.; Liu, Z.; Zheng, Z.; Liu, S.; Meng, L.; Xin, Y.; Jiang, X. Targeting hypoxia in the tumor microenvironment: A potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res., 2021, 40(1), 24.
[http://dx.doi.org/10.1186/s13046-020-01820-7] [PMID: 33422072]
[133]
Liang, Z.; Currais, A.; Soriano-Castell, D.; Schubert, D.; Maher, P. Natural products targeting mitochondria: Emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther., 2021, 221, 107749.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107749] [PMID: 33227325]
[134]
Suomalainen, A.; Battersby, B.J. Mitochondrial diseases: The contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 77-92.
[http://dx.doi.org/10.1038/nrm.2017.66] [PMID: 28792006]
[135]
Mani, S.; Swargiary, G.; Singh, K.K. Natural agents targeting mitochondria in cancer. Int. J. Mol. Sci., 2020, 21(19), 6992.
[http://dx.doi.org/10.3390/ijms21196992] [PMID: 32977472]
[136]
Lisetski, L.; Bulavin, L.; Lebovka, N. Effects of dispersed carbon nanotubes and emerging supramolecular structures on phase transitions in liquid crystals: Physico-chemical aspects. Liquids, 2023, 3(2), 246-277.
[http://dx.doi.org/10.3390/liquids3020017]
[137]
Maheswaran, R.; Shanmugavel, B.P. A critical review of the role of carbon nanotubes in the progress of next-generation electronic applications. J. Electron. Mater., 2022, 51(6), 2786-2800.
[http://dx.doi.org/10.1007/s11664-022-09516-8] [PMID: 35431411]
[138]
Kagan, V.E.; Wipf, P.; Stoyanovsky, D.; Greenberger, J.S.; Borisenko, G.; Belikova, N.A.; Yanamala, N.; Samhan Arias, A.K.; Tungekar, M.A.; Jiang, J.; Tyurina, Y.Y.; Ji, J.; Klein-Seetharaman, J.; Pitt, B.R.; Shvedova, A.A.; Bayir, H. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions. Adv. Drug Deliv. Rev., 2009, 61(14), 1375-1385.
[http://dx.doi.org/10.1016/j.addr.2009.06.008] [PMID: 19716396]
[139]
Li, M.; Zhang, F.; Su, Y.; Zhou, J.; Wang, W. Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci., 2018, 201, 37-44.
[http://dx.doi.org/10.1016/j.lfs.2018.03.044] [PMID: 29577880]
[140]
Saleem, J.; Wang, L.; Chen, C. Carbon based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Healthc. Mater., 2018, 7(20), 1800525.
[http://dx.doi.org/10.1002/adhm.201800525] [PMID: 30073803]
[141]
Domsch, K.; Papagiannouli, F.; Lohmann, I. The HOX-Apoptosis regulatory interplay in development and disease. Curr. Top. Dev. Biol., 2015, 114, 121-158.
[http://dx.doi.org/10.1016/bs.ctdb.2015.07.014] [PMID: 26431566]
[142]
López de Andrés, J.; Griñán-Lisón, C.; Jiménez, G.; Marchal, J.A. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment. J. Hematol. Oncol., 2020, 13(1), 136.
[http://dx.doi.org/10.1186/s13045-020-00966-3] [PMID: 33059744]
[143]
Qin, W.; Huang, G.; Chen, Z.; Zhang, Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front. Pharmacol., 2017, 8, 1.
[http://dx.doi.org/10.3389/fphar.2017.00001] [PMID: 28149278]
[144]
Orza, A.; Soriţău, O.; Florea, A.; Pana, O.; Bratu, I.; Pal, E.; Florian, S.; Casciano, D.; Tomuleasa, C.; Olenic, L.; Biris, A.S. Reversing chemoresistance of malignant glioma stem cells using gold nanoparticles. Int. J. Nanomedicine, 2013, 8, 689-702.
[http://dx.doi.org/10.2147/IJN.S37481] [PMID: 23467447]
[145]
Burke, A.R.; Singh, R.N.; Carroll, D.L.; Wood, J.C.S.; D’Agostino, R.B., Jr; Ajayan, P.M.; Torti, F.M.; Torti, S.V. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials, 2012, 33(10), 2961-2970.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.052] [PMID: 22245557]
[146]
Yao, H.; Zhang, Y.; Sun, L.; Liu, Y. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials, 2014, 35(33), 9208-9223.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.033] [PMID: 25115788]
[147]
Al Faraj, A.; Shaik, A.S.; Ratemi, E.; Halwani, R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J. Control. Release, 2016, 225, 240-251.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.053] [PMID: 26827662]
[148]
Miao, Y.; Zhang, H.; Pan, Y.; Ren, J.; Ye, M.; Xia, F.; Huang, R.; Lin, Z.; Jiang, S.; Zhang, Y.; Songyang, Z.; Zhang, Y. Single-walled carbon nanotube: One specific inhibitor of cancer stem cells in osteosarcoma upon downregulation of the TGFβ1 signaling. Biomaterials, 2017, 149, 29-40.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.032] [PMID: 28988062]
[149]
Abarrategi, A.; Gutiérrez, M.C.; Moreno-Vicente, C.; Hortigüela, M.J.; Ramos, V.; López-Lacomba, J.L.; Ferrer, M.L.; del Monte, F. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials, 2008, 29(1), 94-102.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.021] [PMID: 17928048]
[150]
Fabbro, C.; Ali-Boucetta, H.; Ros, T.D.; Kostarelos, K.; Bianco, A.; Prato, M. Targeting carbon nanotubes against cancer. Chem. Commun., 2012, 48(33), 3911-3926.
[http://dx.doi.org/10.1039/c2cc17995d] [PMID: 22428156]
[151]
Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280.
[http://dx.doi.org/10.3389/fimmu.2020.01280] [PMID: 32849491]
[152]
Wierzbicki, M.; Sawosz, E.; Grodzik, M.; Prasek, M.; Jaworski, S.; Chwalibog, A. Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Res. Lett., 2013, 8(1), 195.
[http://dx.doi.org/10.1186/1556-276X-8-195] [PMID: 23618362]
[153]
Das, M.; Nariya, P.; Joshi, A.; Vohra, A.; Devkar, R.; Seshadri, S.; Thakore, S. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydr. Polym., 2020, 247, 116751.
[http://dx.doi.org/10.1016/j.carbpol.2020.116751] [PMID: 32829867]
[154]
Cheng, J.; Gu, Y.J.; Wang, Y.; Cheng, S.H.; Wong, W.T. Nanotherapeutics in angiogenesis: Synthesis and in vivo assessment of drug efficacy and biocompatibility in zebrafish embryos. Int. J. Nanomedicine, 2011, 6, 2007-2021.
[http://dx.doi.org/10.2147/IJN.S20145] [PMID: 21976976]
[155]
Fu, S.; Zhao, Y.; Sun, J.; Yang, T.; Zhi, D.; Zhang, E.; Zhong, F.; Zhen, Y.; Zhang, S.; Zhang, S. Integrin α vβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids Surf. B Biointerfaces, 2021, 201, 111623.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111623] [PMID: 33636597]
[156]
Sajjadi, M.; Nasrollahzadeh, M.; Jaleh, B.; Soufi, G.J.; Iravani, S. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. J. Drug Target., 2021, 29(7), 716-741.
[http://dx.doi.org/10.1080/1061186X.2021.1886301] [PMID: 33566719]
[157]
Martin, J.D.; Seano, G.; Jain, R.K. Normalizing function of tumor vessels: Progress, opportunities, and challenges. Annu. Rev. Physiol., 2019, 81(1), 505-534.
[http://dx.doi.org/10.1146/annurev-physiol-020518-114700] [PMID: 30742782]
[158]
Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Avan, A.; Gholami, M.; Ghayour Mobarhan, M.; Karimi, E.; Alias, Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J. Nanobiotechnology, 2020, 18(1), 11.
[http://dx.doi.org/10.1186/s12951-020-0577-9] [PMID: 31931815]
[159]
Chen, Y.C.; Young, R.J.; Macpherson, J.V.; Wilson, N.R. Silver-decorated carbon nanotube networks as SERS substrates. J. Raman Spectrosc., 2011, 42(6), 1255-1262.
[http://dx.doi.org/10.1002/jrs.2862]
[160]
Ghaghada, K.B.; Starosolski, Z.A.; Bhayana, S.; Stupin, I.; Patel, C.V.; Bhavane, R.C.; Gao, H.; Bednov, A.; Yallampalli, C.; Belfort, M.; George, V.; Annapragada, A.V. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta. Placenta, 2017, 57, 60-70.
[http://dx.doi.org/10.1016/j.placenta.2017.06.008] [PMID: 28864020]
[161]
Zhang, M.; Wang, W.; Cui, Y.; Zhou, N.; Shen, J. Magnetofluorescent carbon quantum dot decorated multiwalled carbon nanotubes for dual-modal targeted imaging in chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng., 2018, 4(1), 151-162.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00531] [PMID: 33418685]
[162]
Delogu, L.G.; Vidili, G.; Venturelli, E.; Ménard-Moyon, C.; Zoroddu, M.A.; Pilo, G.; Nicolussi, P.; Ligios, C.; Bedognetti, D.; Sgarrella, F.; Manetti, R.; Bianco, A. Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc. Natl. Acad. Sci., 2012, 109(41), 16612-16617.
[http://dx.doi.org/10.1073/pnas.1208312109] [PMID: 23012426]
[163]
Wang, C.; Bao, C.; Liang, S.; Fu, H.; Wang, K.; Deng, M.; Liao, Q.; Cui, D. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res. Lett., 2014, 9(1), 264.
[http://dx.doi.org/10.1186/1556-276X-9-264] [PMID: 24948888]
[164]
Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Deliv. Rev., 2013, 65(15), 1951-1963.
[http://dx.doi.org/10.1016/j.addr.2013.10.002] [PMID: 24184130]
[165]
Zhao, H.; Chao, Y.; Liu, J.; Huang, J.; Pan, J.; Guo, W.; Wu, J.; Sheng, M.; Yang, K.; Wang, J.; Liu, Z. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics, 2016, 6(11), 1833-1843.
[http://dx.doi.org/10.7150/thno.16047] [PMID: 27570554]
[166]
Silindir-Gunay, M.; Sarcan, E.T.; Ozer, A.Y. Near infrared imaging of diseases: A nanocarrier approach. Drug Dev. Res., 2019, 80(5), 521-534.
[http://dx.doi.org/10.1002/ddr.21532] [PMID: 30893508]
[167]
Clark, L.C., Jr; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 1962, 102(1), 29-45.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[168]
Wisniewski, T.; Winiecki, J.; Makarewicz, R.; Zekanowska, E. The effect of radiotherapy and hormone therapy on osteopontin concentrations in prostate cancer patients. J. BUON, 2020, 25(1), 527-530.
[PMID: 32277679]
[169]
Sharma, A.; Hong, S.; Singh, R.; Jang, J. Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin. Anal. Chim. Acta, 2015, 869, 68-73.
[http://dx.doi.org/10.1016/j.aca.2015.02.010] [PMID: 25818141]
[170]
Hiraoka, D.; Hosoda, E.; Chiba, K.; Kishimoto, T. SGK phosphorylates Cdc25 and Myt1 to trigger cyclin B–Cdk1 activation at the meiotic G2/M transition. J. Cell Biol., 2019, 218(11), 3597-3611.
[http://dx.doi.org/10.1083/jcb.201812122] [PMID: 31537708]
[171]
Ma, H.; Gao, X.; Fu, J.; Xue, H.; Song, Y.; Zhu, K. Development and evaluation of NanoPCR for the detection of goose parvovirus. Vet. Sci., 2022, 9(9), 460.
[http://dx.doi.org/10.3390/vetsci9090460] [PMID: 36136676]
[172]
Zhu, Z. An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett., 2017, 9(3), 25.
[http://dx.doi.org/10.1007/s40820-017-0128-6] [PMID: 30393720]
[173]
Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett., 2010, 10(3), 751-758.
[http://dx.doi.org/10.1021/nl904286r] [PMID: 20085345]
[174]
Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys., 2021, 129(2), 021102.
[http://dx.doi.org/10.1063/5.0030809]
[175]
Henrard, L.; Popov, V.N.; Rubio, A. Influence of packing on the vibrational properties of infinite and finite bundles of carbon nanotubes. Phys. Rev. B Condens. Matter, 2001, 64(20), 205403.
[http://dx.doi.org/10.1103/PhysRevB.64.205403]
[176]
Henrard, L.; Hernández, E.; Bernier, P.; Rubio, A. van der Waals interaction in nanotube bundles: Consequences on vibrational modes. Phys. Rev. B Condens. Matter, 1999, 60(12), R8521-R8524.
[http://dx.doi.org/10.1103/PhysRevB.60.R8521]
[177]
Wepasnick, K.A.; Smith, B.A.; Bitter, J.L.; Howard Fairbrother, D. Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem., 2010, 396(3), 1003-1014.
[http://dx.doi.org/10.1007/s00216-009-3332-5] [PMID: 20052581]
[178]
Calle, D.; Negri, V.; Munuera, C.; Mateos, L.; Touriño, I.L.; Viñegla, P.R.; Ramírez, M.O.; García-Hernández, M.; Cerdán, S.; Ballesteros, P. Magnetic anisotropy of functionalized multi-walled carbon nanotube suspensions. Carbon, 2018, 131, 229-237.
[http://dx.doi.org/10.1016/j.carbon.2018.01.104]
[179]
Hwang, Y.; Park, S.H.; Lee, J. Applications of functionalized carbon nanotubes for the therapy and diagnosis of cancer. Polymers, 2017, 9(12), 13.
[http://dx.doi.org/10.3390/polym9010013] [PMID: 30970690]
[180]
Singh, P.; Campidelli, S.; Giordani, S.; Bonifazi, D.; Bianco, A.; Prato, M. Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev., 2009, 38(8), 2214-2230.
[http://dx.doi.org/10.1039/b518111a] [PMID: 19623345]
[181]
Umemura, K.; Izumi, K.; Oura, S. Probe microscopic studies of DNA molecules on carbon nanotubes. Nanomaterials, 2016, 6(10), 180.
[http://dx.doi.org/10.3390/nano6100180] [PMID: 28335308]
[182]
Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol., 2001, 61(13), 1899-1912.
[http://dx.doi.org/10.1016/S0266-3538(01)00094-X]
[183]
Meunier, V; Lambin, P Scanning tunnelling microscopy of carbon nanotubes. Philosophical Transactions of the Royal Society of London. Series A: Math., Phys. Eng. Sci. , 1823, 362(1823), 2187-203.
[184]
Bychko, I.; Strizhak, P. Carbon nanotubes catalytic activity in the ethylene hydrogenation. Fuller. Nanotub. Carbon Nanostruct., 2018, 26(12), 804-809.
[http://dx.doi.org/10.1080/1536383X.2018.1502176]
[185]
Smith, B.; Wepasnick, K.; Schrote, K.E.; Bertele, A.R.; Ball, W.P.; O’Melia, C.; Fairbrother, D.H. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environ. Sci. Technol., 2009, 43(3), 819-825.
[http://dx.doi.org/10.1021/es802011e] [PMID: 19245021]
[186]
Okpalugo, T.I.T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N.M.D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon, 2005, 43(1), 153-161.
[http://dx.doi.org/10.1016/j.carbon.2004.08.033]
[187]
Yadav, P.; Rastogi, V.; Kumar Mishra, A.; Verma, A. Carbon nanotube: A versatile carrier for various biomedical applications. Drug Deliv. Lett., 2014, 4(2), 156-169.
[http://dx.doi.org/10.2174/2210303103666131220234222]
[188]
Liu, Z.; Tabakman, S.; Sherlock, S.; Li, X.; Chen, Z.; Jiang, K.; Fan, S.; Dai, H. Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared. Nano Res., 2010, 3(3), 222-233.
[http://dx.doi.org/10.1007/s12274-010-1025-1] [PMID: 21442006]
[189]
Duffin, R.; Mills, N.L.; Donaldson, K. Nanoparticles-a thoracic toxicology perspective. Yonsei Med. J., 2007, 48(4), 561-572.
[http://dx.doi.org/10.3349/ymj.2007.48.4.561] [PMID: 17722227]
[190]
Mohanta, D.; Patnaik, S.; Sood, S.; Das, N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J. Pharm. Anal., 2019, 9(5), 293-300.
[http://dx.doi.org/10.1016/j.jpha.2019.04.003] [PMID: 31929938]
[191]
Song, B.; Xu, P.; Zeng, G.; Gong, J.; Zhang, P.; Feng, H.; Liu, Y.; Ren, X. Carbon nanotube-based environmental technologies: The adopted properties, primary mechanisms, and challenges. Rev. Environ. Sci. Biotechnol., 2018, 17(3), 571-590.
[http://dx.doi.org/10.1007/s11157-018-9468-z]
[192]
Ashique, S.; Upadhyay, A.; Hussain, A.; Bag, S.; Chaterjee, D.; Rihan, M.; Mishra, N.; Bhatt, S.; Puri, V.; Sharma, A.; Prasher, P.; Singh, S.K.; Chellappan, D.K.; Gupta, G.; Dua, K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J. Drug Deliv. Sci. Technol., 2022, 77, 103876.
[http://dx.doi.org/10.1016/j.jddst.2022.103876]
[193]
Chatterjee, N.; Yang, J.; Kim, H.M.; Jo, E.; Kim, P.J.; Choi, K.; Choi, J. Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. J. Toxicol. Environ. Health A, 2014, 77(22-24), 1399-1408.
[http://dx.doi.org/10.1080/15287394.2014.951756] [PMID: 25343289]
[194]
Fujita, K.; Fukuda, M.; Endoh, S.; Maru, J.; Kato, H.; Nakamura, A.; Shinohara, N.; Uchino, K.; Honda, K. Size effects of single-walled carbon nanotubes on in vivo and In vitro pulmonary toxicity. Inhal. Toxicol., 2015, 27(4), 207-223.
[http://dx.doi.org/10.3109/08958378.2015.1026620] [PMID: 25865113]
[195]
Davern, T.J. Drug-induced liver disease. Clin. Liver Dis., 2012, 16(2), 231-245.
[http://dx.doi.org/10.1016/j.cld.2012.03.002] [PMID: 22541696]
[196]
Yu, S.; Su, X.; Du, J.; Wang, J.; Gao, Y.; Zhang, L.; Chen, L.; Yang, Y.; Liu, X. The cytotoxicity of water-soluble carbon nanotubes on human embryonic kidney and liver cancer cells. N. Carbon Mater., 2018, 33(1), 36-45.
[http://dx.doi.org/10.1016/S1872-5805(18)60325-7]
[197]
Hossein Pour, M.; Azimirad, V.; Alimohammadi, M.; Shahabi, P.; Sadighi, M.; Ghamkhari Nejad, G. The cardiac effects of carbon nanotubes in rat. Bioimpacts, 2016, 6(2), 79-84.
[http://dx.doi.org/10.15171/bi.2016.11] [PMID: 27525224]
[198]
Li, B.; Zhang, X.X.; Huang, H.Y.; Chen, L.Q.; Cui, J.H.; Liu, Y.; Jin, H.; Lee, B.J.; Cao, Q.R. Effective deactivation of A549 tumor cells In vitro and in vivo by RGD-decorated chitosan-functionalized single-walled carbon nanotube loading docetaxel. Int. J. Pharm., 2018, 543(1-2), 8-20.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.017] [PMID: 29535039]
[199]
Kim, S.W.; Kyung Lee, Y.; Yeon Lee, J.; Hee Hong, J.; Khang, D. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. Nanotechnology, 2017, 28(46), 465102.
[http://dx.doi.org/10.1088/1361-6528/aa8c31] [PMID: 29053471]
[200]
Liu, X.; Xu, D.; Liao, C.; Fang, Y.; Guo, B. Development of a promising drug delivery for formononetin: Cyclodextrin-modified single-walled carbon nanotubes. J. Drug Deliv. Sci. Technol., 2018, 43, 461-468.
[http://dx.doi.org/10.1016/j.jddst.2017.11.018]
[201]
Wauthoz, N.; Balde, A.; Balde, E.S.; Van Damme, M.; Duez, P. Ethnopharmacology of Mangifera indica L. bark and pharmacological studies of its main C-glucosylxanthone, mangiferin. Int. J. Biomed. Pharmaceut Sci., 2007, 1(2), 112-119.
[202]
Harsha, P.J.; Thotakura, N.; Kumar, M.; Sharma, S.; Mittal, A.; Khurana, R.K.; Singh, B.; Negi, P.; Raza, K. A novel PEGylated carbon nanotube conjugated mangiferin: An explorative nanomedicine for brain cancer cells. J. Drug Deliv. Sci. Technol., 2019, 53, 101186.
[http://dx.doi.org/10.1016/j.jddst.2019.101186]
[203]
Razzazan, A.; Atyabi, F.; Kazemi, B.; Dinarvand, R. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater. Sci. Eng. C, 2016, 62, 614-625.
[http://dx.doi.org/10.1016/j.msec.2016.01.076] [PMID: 26952465]
[204]
Masotti, A.; Miller, M.R.; Celluzzi, A.; Rose, L.; Micciulla, F.; Hadoke, P.W.F.; Bellucci, S.; Caporali, A. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine, 2016, 12(6), 1511-1522.
[http://dx.doi.org/10.1016/j.nano.2016.02.017] [PMID: 27013131]
[205]
Meng, J.; Meng, J.; Duan, J.; Kong, H.; Li, L.; Wang, C.; Xie, S.; Chen, S.; Gu, N.; Xu, H.; Yang, X.D. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small, 2008, 4(9), 1364-1370.
[206]
Villa, C.H.; Dao, T.; Ahearn, I.; Fehrenbacher, N.; Casey, E.; Rey, D.A.; Korontsvit, T.; Zakhaleva, V.; Batt, C.A.; Philips, M.R.; Scheinberg, D.A. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano, 2011, 5(7), 5300-5311.
[http://dx.doi.org/10.1021/nn200182x] [PMID: 21682329]
[207]
Golshadi, M.; Wright, L.K.; Dickerson, I.M.; Schrlau, M.G. High-efficiency gene transfection of cells through carbon nanotube arrays. Small, 2016, 12(22), 3014-3020.
[http://dx.doi.org/10.1002/smll.201503878] [PMID: 27059518]
[208]
Cao, Y.; Huang, H.Y.; Chen, L.Q.; Du, H.H.; Cui, J.H.; Zhang, L.W.; Lee, B.J.; Cao, Q.R. Enhanced lysosomal escape of pH-responsive polyethylenimine–betaine functionalized carbon nanotube for the codelivery of survivin small interfering RNA and doxorubicin. ACS Appl. Mater. Interfaces, 2019, 11(10), 9763-9776.
[http://dx.doi.org/10.1021/acsami.8b20810] [PMID: 30776886]
[209]
Cunningham, FJ.; Demirer, GS.; Goh, NS.; Zhang, H.; Landry, MP. Nanobiolistics: An emerging genetic transformation approach. Methods Mol. Biol., 2020, 2124, 141-159.
[http://dx.doi.org/10.1007/978-1-0716-0356-7_7]
[210]
Hu, F.; Li, Y.; Wang, Q.; Wang, G.; Zhu, B.; Wang, Y.; Zeng, W.; Yin, J.; Liu, C.; Bergmann, S.M.; Shi, C. Carbon nanotube-based DNA vaccine against koi herpesvirus given by intramuscular injection. Fish Shellfish Immunol., 2020, 98, 810-818.
[http://dx.doi.org/10.1016/j.fsi.2019.11.035] [PMID: 31743761]
[211]
Ren, X.; Lin, J.; Wang, X.; Liu, X.; Meng, E.; Zhang, R.; Sang, Y.; Zhang, Z. Photoactivatable RNAi for cancer gene therapy triggered by near-infrared-irradiated single-walled carbon nanotubes. Int. J. Nanomedicine, 2017, 12, 7885-7896.
[http://dx.doi.org/10.2147/IJN.S141882] [PMID: 29138556]
[212]
Faraji Dizaji, B.; Khoshbakht, S.; Farboudi, A.; Azarbaijan, M.H.; Irani, M. Far-reaching advances in the role of carbon nanotubes in cancer therapy. Life Sci., 2020, 257, 118059.
[http://dx.doi.org/10.1016/j.lfs.2020.118059] [PMID: 32659368]
[213]
Doix, B.; Trempolec, N.; Riant, O.; Feron, O. Low photosensitizer dose and early radiotherapy enhance antitumor immune response of photodynamic therapy-based dendritic cell vaccination. Front. Oncol., 2019, 9, 811.
[http://dx.doi.org/10.3389/fonc.2019.00811] [PMID: 31508370]
[214]
Ogbodu, R.O.; Limson, J.L.; Prinsloo, E.; Nyokong, T. Photophysical properties and photodynamic therapy effect of zinc phthalocyanine-spermine-single walled carbon nanotube conjugate on MCF-7 breast cancer cell line. Synth. Met., 2015, 204, 122-132.
[http://dx.doi.org/10.1016/j.synthmet.2015.03.011]
[215]
Chakravarty, P.; Marches, R.; Zimmerman, N.S.; Swafford, A.D.E.; Bajaj, P.; Musselman, I.H.; Pantano, P.; Draper, R.K.; Vitetta, E.S. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci., 2008, 105(25), 8697-8702.
[http://dx.doi.org/10.1073/pnas.0803557105] [PMID: 18559847]
[216]
Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci., 2005, 102(33), 11600-11605.
[http://dx.doi.org/10.1073/pnas.0502680102] [PMID: 16087878]
[217]
Hashida, Y.; Tanaka, H.; Zhou, S.; Kawakami, S.; Yamashita, F.; Murakami, T.; Umeyama, T.; Imahori, H.; Hashida, M. Photothermal ablation of tumor cells using a single-walled carbon nanotube–peptide composite. J. Control. Release, 2014, 173, 59-66.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.039] [PMID: 24211651]
[218]
Torti, S.V.; Byrne, F.; Whelan, O.; Levi, N.; Ucer, B.; Schmid, M.; Torti, F.M.; Akman, S.; Liu, J.; Ajayan, P.M.; Nalamasu, O.; Carroll, D.L. Thermal ablation therapeutics based on CN(x) multi-walled nanotubes. Int J Nanomedicine, 2007, 2(4), 707-714.
[PMID: 18203437]
[219]
Gannon, C.J.; Cherukuri, P.; Yakobson, B.I.; Cognet, L.; Kanzius, J.S.; Kittrell, C.; Weisman, R.B.; Pasquali, M.; Schmidt, H.K.; Smalley, R.E.; Curley, S.A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110(12), 2654-2665.
[http://dx.doi.org/10.1002/cncr.23155] [PMID: 17960610]
[220]
Moon, H.K.; Lee, S.H.; Choi, H.C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano, 2009, 3(11), 3707-3713.
[http://dx.doi.org/10.1021/nn900904h] [PMID: 19877694]
[221]
Zhou, F.; Xing, D.; Ou, Z.; Wu, B.; Resasco, D.E.; Chen, W.R. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt., 2009, 14(2), 021009.
[http://dx.doi.org/10.1117/1.3078803] [PMID: 19405722]
[222]
Wang, C.H.; Huang, Y.J.; Chang, C.W.; Hsu, W.M.; Peng, C.A. In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody. Nanotechnology, 2009, 20(31), 315101.
[http://dx.doi.org/10.1088/0957-4484/20/31/315101] [PMID: 19597244]
[223]
Burke, A.; Ding, X.; Singh, R.; Kraft, R.A.; Levi-Polyachenko, N.; Rylander, M.N.; Szot, C.; Buchanan, C.; Whitney, J.; Fisher, J.; Hatcher, H.C.; D’Agostino, R., Jr; Kock, N.D.; Ajayan, P.M.; Carroll, D.L.; Akman, S.; Torti, F.M.; Torti, S.V. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci., 2009, 106(31), 12897-12902.
[http://dx.doi.org/10.1073/pnas.0905195106] [PMID: 19620717]
[224]
Ghosh, S.; Dutta, S.; Gomes, E.; Carroll, D.; D’Agostino, R., Jr; Olson, J.; Guthold, M.; Gmeiner, W.H. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano, 2009, 3(9), 2667-2673.
[http://dx.doi.org/10.1021/nn900368b] [PMID: 19655728]
[225]
Wang, L.; Zhang, M.; Zhang, N.; Shi, J.; Zhang, H.; Zhang, Z.; Wang, L. Li, Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int. J. Nanomedicine, 2011, 6, 2641-2652.
[http://dx.doi.org/10.2147/IJN.S24167] [PMID: 22114495]
[226]
Ogbodu, R.O.; Nyokong, T. The effect of ascorbic acid on the photophysical properties and photodynamic therapy activities of zinc phthalocyanine-single walled carbon nanotube conjugate on MCF-7 cancer cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 174-183.
[http://dx.doi.org/10.1016/j.saa.2015.06.063] [PMID: 26135538]
[227]
Yang, Z; Ramaswamy, Y; Singh, G. Applications of carbon nanotubes in drug delivery. In: Advanced Porous Biomaterials for Drug Delivery Applications; CRC Press, 2022; pp. 395-440.
[228]
Huang, N.; Wang, H.; Zhao, J.; Lui, H.; Korbelik, M.; Zeng, H. Single-wall carbon nanotubes assisted photothermal cancer therapy: Animal study with a murine model of squamous cell carcinoma. Lasers Surg. Med., 2010, 42(9), 798-808.
[http://dx.doi.org/10.1002/lsm.20968] [PMID: 20949599]
[229]
Hashem Nia, A.; Behnam, B.; Taghavi, S.; Oroojalian, F.; Eshghi, H.; Shier, W.T.; Abnous, K.; Ramezani, M. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate– polyethylenimine conjugates as non-viral gene carriers. MedChemComm, 2017, 8(2), 364-375.
[http://dx.doi.org/10.1039/C6MD00481D] [PMID: 30108752]
[230]
Lewinski, N. Nanotechnology policy and environmental regulatory issues. J Eng Public Pol., 2005, 9, 1-37.
[231]
Beg, S.; Rizwan, M.; Sheikh, A.M.; Hasnain, M.S.; Anwer, K.; Kohli, K. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity. J. Pharm. Pharmacol., 2011, 63(2), 141-163.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01167.x] [PMID: 21235578]
[232]
Odom, T.W.; Huang, J.L.; Lieber, C.M. Single-walled carbon nanotubes: From fundamental studies to new device concepts. Ann. N. Y. Acad. Sci., 2002, 960(1), 203-215.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb03035.x] [PMID: 11971801]
[233]
Ashique, S.; Almohaywi, B.; Haider, N.; Yasmin, S.; Hussain, A.; Mishra, N.; Garg, A. siRNA-based nanocarriers for targeted drug delivery to control breast cancer. Adv. Cancer Biol. -. Metast., 2022, 4, 100047.
[http://dx.doi.org/10.1016/j.adcanc.2022.100047]
[234]
Cai, M.; Thorpe, D.; Adamson, D.H.; Schniepp, H.C. Methods of graphite exfoliation. J. Mater. Chem., 2012, 22(48), 24992-25002.
[http://dx.doi.org/10.1039/c2jm34517j]
[235]
Moosa, A.A.; Abed, M.S. Graphene preparation and graphite exfoliation. Turk. J. Chem., 2021, 45(3), 493-519.
[http://dx.doi.org/10.3906/kim-2101-19] [PMID: 34385847]
[236]
Baker, R.; Barber, M.A.; Harris, P.S.; Feates, F.S.; Waite, R.J. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal., 1972, 26(1), 51-62.
[http://dx.doi.org/10.1016/0021-9517(72)90032-2]
[237]
Baker, R.; Waite, R.J. Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J. Catal., 1975, 37(1), 101-105.
[http://dx.doi.org/10.1016/0021-9517(75)90137-2]
[238]
Shah, K.A.; Tali, B.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process., 2016, 41, 67-82.
[http://dx.doi.org/10.1016/j.mssp.2015.08.013]
[239]
Liu, N.; Tang, Q.; Huang, B.; Wang, Y. Graphene synthesis: Method, exfoliation mechanism and large-scale production. Crystals, 2021, 12(1), 25.
[http://dx.doi.org/10.3390/cryst12010025]
[240]
Kumar, D. High performance polymer nanocomposites for structural applications. 2017, (Feb), 154-194.
[241]
Hakim, Y.Z.; Yulizar, Y.; Nurcahyo, A.; Surya, M. Green synthesis of carbon nanotubes from coconut shell waste for the adsorption of Pb (II) ions. Acta. Chimica Asiana, 2018, 1(1), 6-10.
[http://dx.doi.org/10.29303/aca.v1i1.2]
[242]
Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B. Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem., 2012, 22(18), 8767-8771.
[http://dx.doi.org/10.1039/c2jm00055e]
[243]
Hou, P.X.; Zhang, F.; Zhang, L.; Liu, C.; Cheng, H.M. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Adv. Funct. Mater., 2022, 32(11), 2108541.
[http://dx.doi.org/10.1002/adfm.202108541]
[244]
Li, S.; Chen, Y.; Liu, H.; Wang, Y.; Liu, L.; Lv, F.; Li, Y.; Wang, S. Graphdiyne materials as nanotransducer for in vivo photoacoustic imaging and photothermal therapy of tumor. Chem. Mater., 2017, 29(14), 6087-6094.
[http://dx.doi.org/10.1021/acs.chemmater.7b01965]
[245]
Barenholz, Y.C. Doxil® - The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[246]
Ibrahim, M.; Saleh, N.A.; Hameed, A.J.; Elshemey, W.M.; Elsayed, A.A. Structural and electronic properties of new fullerene derivatives and their possible application as HIV-1 protease inhibitors. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75(2), 702-709.
[http://dx.doi.org/10.1016/j.saa.2009.11.042] [PMID: 20044306]

© 2025 Bentham Science Publishers | Privacy Policy