Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Recycling the Spent Lithium-ion Battery into Nanocubes Cobalt Oxide Supercapacitor Electrode

Author(s): Zinab Hassanien Bakr, Eslam Atef Abdelaziz Aboelazm, Cheng Seong Khe, Gomaa Abdelgawad Mohammed Ali* and Kwok Feng Chong*

Volume 20, Issue 6, 2024

Published on: 03 November, 2023

Page: [820 - 829] Pages: 10

DOI: 10.2174/0115734137265230231020181833

open access plus

Abstract

Background: Cobalt oxide nanocubes have garnered significant attention as potential supercapacitor electrodes due to their unique structural and electrochemical properties. The spent lithium-ion batteries (LiBs) are considered as zero-cost source for cobalt oxide production.

Objectives: The aim of this work is to recover cobalt oxide from spent LiBs and study its electrochemical performance as a supercapacitor electrode material.

Methods: This study uses an electrodeposition method to obtain cobalt oxide honeycomb-like anodes coated on Ni foam substrates from spent Li-ion batteries for supercapacitors applications. The effect of annealing temperature on the cobalt oxide anode has been carefully investigated; 450ºC annealing temperature results in nanocubes on the surface of the cobalt oxide electrode. X-ray diffraction confirmed the formation of the Co-3O-4-NiO electrode.

Results: The Co3O4-NiO nanocubes electrode has shown a high specific capacitance of 1400 F g-1 at 1 A g-1 and high capacitance retention of ~96 % after 2250 cycles at a constant current density of 10 A g-1 compared to 900 F g-1 at 1 A g-1 as for prepared Co3O4 honeycomb.

Conclusion: This strategy proves that the paramount importance of Co3O4-NiO nanocubes, meticulously synthesized at elevated temperatures, as a supremely effective active material upon deposition onto transition metal foam current collectors, establishing their indispensability for supercapacitor applications.

Graphical Abstract

[1]
Wei, H.; Cui, D.; Ma, J.; Chu, L.; Zhao, X.; Song, H.; Liu, H.; Liu, T.; Wang, N.; Guo, Z. Energy conversion technologies towards self-powered electrochemical energy storage systems: The state of the art and perspectives. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(5), 1873-1894.
[http://dx.doi.org/10.1039/C6TA09726J]
[2]
Gao, Y.; Pandey, G.P.; Turner, J.; Westgate, C.; Sammakia, B. Effects of the catalyst and substrate thickness on the carbon nanotubes/nanofibers as supercapacitor electrodes. Phys. Scr., 2012, 86(6), 065603.
[http://dx.doi.org/10.1088/0031-8949/86/06/065603]
[3]
Albarqouni, Y.; Ali, G.A.M.; Lee, S.P.; Mohd-Hairul, A.R.; Algarni, H.; Chong, K.F. Dual-functional single stranded deoxyribonucleic acid for graphene oxide reduction and charge storage enhancement. Electrochim. Acta, 2021, 399, 139366.
[http://dx.doi.org/10.1016/j.electacta.2021.139366]
[4]
Huang, Y.; Li, Y.; Gong, Q.; Zhao, G.; Zheng, P.; Bai, J.; Gan, J.; Zhao, M.; Shao, Y.; Wang, D.; Liu, L.; Zou, G.; Zhuang, D.; Liang, J.; Zhu, H.; Nan, C. Hierarchically mesostructured aluminum current collector for enhancing the performance of supercapacitors. ACS Appl. Mater. Interfaces, 2018, 10(19), 16572-16580.
[http://dx.doi.org/10.1021/acsami.8b03647] [PMID: 29701451]
[5]
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater., 2008, 7(11), 845-554.
[6]
Miller, J.R.; Simon, P. Materials science. Electrochemical capacitors for energy management. Science, 2008, 321(5889), 651-652.
[http://dx.doi.org/10.1126/science.1158736] [PMID: 18669852]
[7]
Anandhi, P.; Kumar, V.J.S.; Harikrishnan, S. Preparation and improved capacitive behavior of NiO/TiO2 nanocomposites as electrode material for supercapacitor. Curr. Nanosci., 2020, 16(1), 79-85.
[http://dx.doi.org/10.2174/1573413715666190219114524]
[8]
Abdel Maksoud, M.I.A.; Fahim, R.A.; Shalan, A.E.; Abd Elkodous, M.; Olojede, S.O.; Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.H.; Awed, A.S.; Ashour, A.H.; Rooney, D.W. Advanced materials and technologies for supercapacitors used in energy conversion and storage: A review. Environ. Chem. Lett., 2021, 19(1), 375-439.
[http://dx.doi.org/10.1007/s10311-020-01075-w]
[9]
Liu, Y.; Yu, F.; Wang, X.; Wen, Z.; Zhu, Y.; Wu, Y. Nanostructured oxides as cathode materials for supercapacitors. In: Nanomaterials in Advanced Batteries and Supercapacitors; Springer: Cham, 2016;; pp. 205-269.
[http://dx.doi.org/10.1007/978-3-319-26082-2_7]
[10]
Gatea, H.A.; Alkhafaji, M.A.; Abbas, H. Fabricate and Characterization of SrTiO3-based MIM capacitors. Int. J. Thin Films Sci. Technol., 2023, 12(3), 163-169.
[http://dx.doi.org/10.18576/ijtfst/120302]
[11]
Verma, K.D.; Sinha, P.; Banerjee, S.; Kar, K.K. Characteristics of current collector materials for supercapacitors. In: Handbook of Nanocomposite Supercapacitor Materials I; Springer, 2020;; pp. 327-340.
[http://dx.doi.org/10.1007/978-3-030-43009-2_12]
[12]
Aboelazm, E.A.A.; Ali, G.A.M.; Algarni, H.; Chong, K.F. Flakes size-dependent optical and electrochemical properties of MoS2. Curr. Nanosci., 2018, 14(5), 416-420.
[http://dx.doi.org/10.2174/1573413714666180228152602]
[13]
Ordoñez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev., 2016, 60, 195-205.
[http://dx.doi.org/10.1016/j.rser.2015.12.363]
[14]
Freitas, M.B.J.G.; Garcia, E.M. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J. Power Sources, 2007, 171(2), 953-959.
[http://dx.doi.org/10.1016/j.jpowsour.2007.07.002]
[15]
Huang, H.; Wei, X.; Wei, G.; Yan, F.; Yan, L.; Han, Y.; Xu, S.; Liang, X.; Zhou, W.; Guo, J. Construction of vertically aligned Ni-Co-Mo hybrid oxides nanosheet array for high-performance hybrid supercapacitors. J. Alloys Compd., 2022, 899, 163267.
[http://dx.doi.org/10.1016/j.jallcom.2021.163267]
[16]
Thalji, M.R.; Ali, G.A.M.; Liu, P.; Zhong, Y.L.; Chong, K.F. W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chem. Eng. J., 2021, 409, 128216.
[http://dx.doi.org/10.1016/j.cej.2020.128216]
[17]
Thalji, M.R.; Ali, G.A.M.; Algarni, H.; Chong, K.F. Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J. Power Sources, 2019, 438, 227028.
[http://dx.doi.org/10.1016/j.jpowsour.2019.227028]
[18]
Immanuel, P.; Senguttuvan, G.; Mohanraj, K. Enhanced activity of chemically synthesized nanorod Mn3O4 thin films for high performance supercapacitors. Int. J. Thin Films Sci. Technol., 2020, 9(1), 57-67.
[http://dx.doi.org/10.18576/ijtfst/090109]
[19]
Javed, M.S.; Aslam, M.K.; Asim, S.; Batool, S.; Idrees, M.; Hussain, S.; Shah, S.S.A.; Saleem, M.; Mai, W.; Hu, C. High-performance flexible hybrid-supercapacitor enabled by pairing binder-free ultrathin Ni-Co-O nanosheets and metal-organic framework derived N-doped carbon nanosheets. Electrochim. Acta, 2020, 349, 136384.
[http://dx.doi.org/10.1016/j.electacta.2020.136384]
[20]
Ali, G.A.M.; Wahba, O.A.G.; Hassan, A.M.; Fouad, O.A.; Feng Chong, K. Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram. Int., 2015, 41(6), 8230-8234.
[http://dx.doi.org/10.1016/j.ceramint.2015.02.100]
[21]
Zhao, Y.; He, X.; Chen, R.; Liu, Q.; Liu, J.; Yu, J.; Li, J.; Zhang, H.; Dong, H.; Zhang, M.; Wang, J. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@ CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chem. Eng. J., 2018, 352, 29-38.
[http://dx.doi.org/10.1016/j.cej.2018.06.181]
[22]
Wei, G.; Yan, L.; Huang, H.; Yan, F.; Liang, X.; Xu, S.; Lan, Z.; Zhou, W.; Guo, J. The hetero-structured nanoarray construction of Co3O4 nanowires anchored on nanoflakes as a high-performance electrode for supercapacitors. Appl. Surf. Sci., 2021, 538, 147932.
[http://dx.doi.org/10.1016/j.apsusc.2020.147932]
[23]
Aboelazm, E.A.A.; Mohamed, N.; Ali, G.A.M.; Makhlouf, A.S.H.; Chong, K.F. Recycling of cobalt oxides electrodes from spent lithium-ion batteries by electrochemical method. In: Waste Recycling Technologies for Nanomaterials Manufacturing; Makhlouf, A.S.H.; Ali, G.A.M., Eds.; Springer: Cham, 2021; pp. 91-123.
[http://dx.doi.org/10.1007/978-3-030-68031-2_4]
[24]
Lee, M.; Kim, G.P.; Don Song, H.; Park, S.; Yi, J. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology, 2014, 25(34), 345601.
[http://dx.doi.org/10.1088/0957-4484/25/34/345601] [PMID: 25092115]
[25]
Ali, G.A.M.; Yusoff, M.M.; Shaaban, E.R.; Chong, K.F. High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram. Int., 2017, 43(11), 8440-8448.
[http://dx.doi.org/10.1016/j.ceramint.2017.03.195]
[26]
Dhiman, S.; Gupta, B. Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. J. Clean. Prod., 2019, 225, 820-832.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.004]
[27]
Schiavi, P.G.; Altimari, P.; Zanoni, R.; Pagnanelli, F. Full recycling of spent lithium ion batteries with production of core-shell nanowires//exfoliated graphite asymmetric supercapacitor. J. Energy Chem., 2021, 58, 336-344.
[http://dx.doi.org/10.1016/j.jechem.2020.10.025]
[28]
Aboelazm, E.A.A.; Ali, G.A.M.; Chong, K.F. Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem. Adv. Mater., 2018, 3(4), 67-74.
[29]
Barbieri, E.M.S.; Lima, E.P.C.; Lelis, M.F.F.; Freitas, M.B.J.G. Recycling of cobalt from spent Li-ion batteries as β-Co(OH) 2 and the application of Co3O4 as a pseudocapacitor. J. Power Sources, 2014, 270, 158-165.
[http://dx.doi.org/10.1016/j.jpowsour.2014.07.108]
[30]
Chen, X.; Ma, H.; Luo, C.; Zhou, T. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J. Hazard. Mater., 2017, 326, 77-86.
[http://dx.doi.org/10.1016/j.jhazmat.2016.12.021] [PMID: 27987453]
[31]
Santana, I.L.; Moreira, T.F.M.; Lelis, M.F.F.; Freitas, M.B.J.G. Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent. Mater. Chem. Phys., 2017, 190, 38-44.
[http://dx.doi.org/10.1016/j.matchemphys.2017.01.003]
[32]
Liu, J.; Jin, R.; YinaQiao; Wu, Y.; Wang, X.; Wang, Y. Determination of Lead(II) using glassy carbon electrode modified with hexagonal Co3O4 microparticles. Int. J. Electrochem. Sci., 2018, 13(11), 10415-10426.
[http://dx.doi.org/10.20964/2018.11.45]
[33]
Makhlouf, S.A.; Bakr, Z.H.; Aly, K.I.; Moustafa, M.S. Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattices Microstruct., 2013, 64, 107-117.
[http://dx.doi.org/10.1016/j.spmi.2013.09.023]
[34]
Yan, H.; Zhang, D.; Xu, J.; Lu, Y.; Liu, Y.; Qiu, K.; Zhang, Y.; Luo, Y. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res. Lett., 2014, 9(1), 424.
[http://dx.doi.org/10.1186/1556-276X-9-424] [PMID: 25276099]
[35]
Jadhav, V.V.; Kore, R.M.; Thorat, N.D.; Yun, J.; Kim, K.H.; Mane, R.S.; O’Dwyer, C. Annealing environment effects on the electrochemical behavior of supercapacitors using Ni foam current collectors. Mater. Res. Express, 2018, 5(12), 125004.
[http://dx.doi.org/10.1088/2053-1591/aadedb]
[36]
Geaney, H.; McNulty, D.; O’Connell, J.; Holmes, J.D.; O’Dwyer, C. Assessing charge contribution from thermally treated Ni foam as current collectors for Li-Ion batteries. J. Electrochem. Soc., 2016, 163(8), A1805-A1811.
[http://dx.doi.org/10.1149/2.0071609jes]
[37]
Qing, X.; Liu, S.; Huang, K.; Lv, K.; Yang, Y.; Lu, Z.; Fang, D.; Liang, X. Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim. Acta, 2011, 56(14), 4985-4991.
[http://dx.doi.org/10.1016/j.electacta.2011.03.118]
[38]
Singh, J.; Goutam, U.K.; Kumar, A. Hydrothermal synthesis and electrochemical performance of nanostructured cobalt free La2CuMnO6. Solid State Sci., 2019, 95, 105927.
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.06.016]
[39]
Zhou, X.; Shen, X.; Xia, Z.; Zhang, Z.; Li, J.; Ma, Y.; Qu, Y. Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl. Mater. Interfaces, 2015, 7(36), 20322-20331.
[http://dx.doi.org/10.1021/acsami.5b05989] [PMID: 26315725]
[40]
Li, Y.Q.; Li, J.C.; Han, L.P.; Shi, H.; Wen, Z.; Liu, G.; Lang, X.Y.; Jiang, Q. 3D Hierarchical Ni/NiCo2O4 core-shell nanotube arrays with high capacitance and stable cycling performance for supercapacitor. Curr. Nanosci., 2017, 14(1), 26-32.
[http://dx.doi.org/10.2174/1573413713666170822163918]
[41]
Windisch, C.F., Jr; Exarhos, G.J.; Ferris, K.F.; Engelhard, M.H.; Stewart, D.C. Infrared transparent spinel films with p-type conductivity. Thin Solid Films, 2001, 398-399, 45-52.
[http://dx.doi.org/10.1016/S0040-6090(01)01302-5]
[42]
Wang, K.; Wang, X.; Zhang, D.; Wang, H.; Wang, Z.; Zhao, M.; Xi, R.; Wu, H.; Zheng, M. Interpenetrated nano-MOFs for ultrahigh-performance supercapacitors and excellent dye adsorption performance. CrystEngComm, 2018, 20(43), 6940-6949.
[http://dx.doi.org/10.1039/C8CE01067F]
[43]
Hou, L.; Yuan, C.; Yang, L.; Shen, L.; Zhang, F.; Zhang, X. Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Advances, 2011, 1(8), 1521-1526.
[http://dx.doi.org/10.1039/c1ra00312g]
[44]
Mesbah, Y.I.; Ahmed, N.; Ali, B.A.; Allam, N.K. Recycling of Li-Ni-Mn-Co hydroxide from spent batteries to produce high performance supercapacitors with exceptional stability. ChemElectroChem, 2020, 7(4), 975-982.
[http://dx.doi.org/10.1002/celc.202000081]
[45]
Mao, Y.; Shen, X.; Wu, Z.; Zhu, L.; Liao, G. Preparation of Co3O4 hollow microspheres by recycling spent lithium-ion batteries and their application in electrochemical supercapacitors. J. Alloys Compd., 2020, 816, 152604.
[http://dx.doi.org/10.1016/j.jallcom.2019.152604]
[46]
Garcia, E.M.; Tarôco, H.A.; Matencio, T.; Domingues, R.Z.; dos Santos, J.A.F.; Ferreira, R.V.; Lorençon, E.; Lima, D.Q.; de Freitas, M.B.J.G. Electrochemical recycling of cobalt from spent cathodes of lithium-ion batteries: Its application as supercapacitor. J. Appl. Electrochem., 2012, 42(6), 361-366.
[http://dx.doi.org/10.1007/s10800-012-0419-z]
[47]
Xu, Y.; Dong, Y.; Han, X.; Wang, X.; Wang, Y.; Jiao, L.; Yuan, H. Application for simply recovered LiCoO2 material as a high-performance candidate for supercapacitor in aqueous system. ACS Sustain. Chem. Eng., 2015, 3(10), 2435-2442.
[http://dx.doi.org/10.1021/acssuschemeng.5b00455]
[48]
Chen, H.; Zhu, X.; Chang, Y.; Cai, J.; Zhao, R. 3D flower-like CoS hierarchitectures recycled from spent LiCoO2 batteries and its application in electrochemical capacitor. Mater. Lett., 2018, 218, 40-43.
[http://dx.doi.org/10.1016/j.matlet.2018.01.144]
[49]
Aboelazm, E.A.A.; Ali, G.A.M.; Algarni, H.; Yin, H.; Zhong, Y.L.; Chong, K.F. Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: Its application as a supercapacitor electrode. J. Phys. Chem. C, 2018, 122(23), 12200-12206.
[http://dx.doi.org/10.1021/acs.jpcc.8b03306]
[50]
Wang, X.; Sumboja, A.; Khoo, E.; Yan, C.; Lee, P.S. Cryogel synthesis of hierarchical interconnected macro-/mesoporous Co3O4 with superb electrochemical energy storage. J. Phys. Chem. C, 2012, 116(7), 4930-4935.
[http://dx.doi.org/10.1021/jp211339t]
[51]
Umeshbabu, E.; Rajeshkhanna, G.; Rao, G.R. Urchin and sheaf-like NiCo2O4 nanostructures: Synthesis and electrochemical energy storage application. Int. J. Hydrogen Energy, 2014, 39(28), 15627-15638.
[http://dx.doi.org/10.1016/j.ijhydene.2014.07.168]
[52]
Ali, G.A.M. Recycled MnO2 nanoflowers and graphene nanosheets for low-cost and high performance asymmetric supercapacitor. J. Electron. Mater., 2020, 49(9), 5411-5421.
[http://dx.doi.org/10.1007/s11664-020-08268-7]
[53]
Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A.; Yusoff, M.M.; Chong, K.F. Co3O4/SiO2 nanocomposites for supercapacitor application. J. Solid State Electrochem., 2014, 18(9), 2505-2512.
[http://dx.doi.org/10.1007/s10008-014-2510-3]
[54]
Ko, T.H.; Hung, K.H.; Tzeng, S.S.; Shen, J.W.; Hung, C.H. Carbon nanofibers grown on activated carbon fiber fabrics as electrode of supercapacitors. Phys. Scr., 2007, 80.
[http://dx.doi.org/10.1088/0031-8949/2007/T129/018]
[55]
Shim, H.W.; Lim, A.H.; Kim, J.C.; Jang, E.; Seo, S.D.; Lee, G.H.; Kim, T.D.; Kim, D.W. Scalable one-pot bacteria-templating synthesis route toward hierarchical, porous-Co3O4 superstructures for supercapacitor electrodes. Sci. Rep., 2013, 3(1), 2325.
[http://dx.doi.org/10.1038/srep02325] [PMID: 23900049]
[56]
Shaheen, I.; Ahmad, K.S.; Zequine, C.; Gupta, R.K.; Thomas, A.G.; Malik, M.A. Modified sol-gel synthesis of Co3O4 nanoparticles using organic template for electrochemical energy storage. Energy, 2021, 218, 119502.
[http://dx.doi.org/10.1016/j.energy.2020.119502]
[57]
Shao, Y.; Li, J.; Li, Y.; Wang, H.; Zhang, Q.; Kaner, R.B. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz., 2017, 4(6), 1145-1150.
[http://dx.doi.org/10.1039/C7MH00441A]
[58]
Sheng, K.; Sun, Y.; Li, C.; Yuan, W.; Shi, G. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci. Rep., 2012, 2(1), 247.
[http://dx.doi.org/10.1038/srep00247] [PMID: 22355759]
[59]
Lima-Tenório, M.K.; Ferreira, C.S.; Rebelo, Q.H.F.; Souza, R.F.B.; Passos, R.R.; Pineda, E.A.G.; Pocrifka, L.A. Pseudocapacitance properties of Co3O4 nanoparticles synthesized using a modified sol-gel method. Mater. Res., 2018, 21(2), 1-7.
[http://dx.doi.org/10.1590/1980-5373-mr-2017-0521]
[60]
Yang, C.; Vanessa Li, C-Y.; Li, F.; Chan, K.Y. Complex impedance with transmission line model and complex capacitance analysis of ion transport and accumulation in hierarchical core-shell porous carbons. J. Electrochem. Soc., 2013, 160(4), H271-H278.
[http://dx.doi.org/10.1149/2.016306jes]

© 2025 Bentham Science Publishers | Privacy Policy