Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

最先进的技术:结直肠癌中的外泌体

卷 22, 期 1, 2022

发表于: 27 January, 2022

页: [2 - 17] 页: 16

弟呕挨: 10.2174/1568009621666211110094442

价格: $65

摘要

结直肠癌(CRC)在全球范围内具有很高的患病率和死亡率。 迄今为止,CRC的进展机制仍然难以捉摸。 外泌体(直径约 100 nm)对应于由癌细胞和基质细胞阵列形成的细胞外囊泡子集。 这些特殊的纳米囊泡携带和传输生物活性分子,如蛋白质、脂质和遗传物质,它们介导癌细胞与微环境之间的串扰。 越来越多的证据表明外泌体在结直肠癌的发展、转移和治疗抵抗中具有决定性作用。 此外,最近的一些研究还揭示了外泌体作为 CRC 的生物标志物或治疗靶点的能力。 本综述重点关注外泌体调节结直肠癌进展的具体机制,并总结外泌体在结直肠癌诊断和治疗中的潜在临床应用。

关键词: 结直肠癌、外泌体、肿瘤发生、转移、治疗抗性、生物标志物

图形摘要

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[3]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[4]
Maida, M.; Macaluso, F.S.; Ianiro, G.; Mangiola, F.; Sinagra, E.; Hold, G.; Maida, C.; Cammarota, G.; Gasbarrini, A.; Scarpulla, G. Screening of colorectal cancer: present and future. Expert Rev. Anticancer Ther., 2017, 17(12), 1131-1146.
[http://dx.doi.org/10.1080/14737140.2017.1392243] [PMID: 29022408]
[5]
Cocucci, E.; Meldolesi, J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol., 2015, 25(6), 364-372.
[http://dx.doi.org/10.1016/j.tcb.2015.01.004] [PMID: 25683921]
[6]
Meldolesi, J. Exosomes and ectosomes in intercellular communication. Curr. Biol., 2018, 28(8), R435-R444.
[http://dx.doi.org/10.1016/j.cub.2018.01.059] [PMID: 29689228]
[7]
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest., 2016, 126(4), 1208-1215.
[http://dx.doi.org/10.1172/JCI81135] [PMID: 27035812]
[8]
Kosaka, N.; Kogure, A.; Yamamoto, T.; Urabe, F.; Usuba, W.; Prieto-Vila, M.; Ochiya, T. Exploiting the message from cancer: The diagnostic value of extracellular vesicles for clinical applications. Exp. Mol. Med., 2019, 51(3), 1-9.
[http://dx.doi.org/10.1038/s12276-019-0219-1] [PMID: 30872565]
[9]
Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol., 2019, 21(1), 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[10]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[11]
Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem., 2019, 88, 487-514.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111902] [PMID: 31220978]
[12]
Mulvey, H.E.; Chang, A.; Adler, J.; Del Tatto, M.; Perez, K.; Quesenberry, P.J.; Chatterjee, D. Extracellular vesicle-mediated phenotype switching in malignant and non-malignant colon cells. BMC Cancer, 2015, 15, 571.
[http://dx.doi.org/10.1186/s12885-015-1568-3] [PMID: 26231887]
[13]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[14]
Abdouh, M.; Floris, M.; Gao, Z-H.; Arena, V.; Arena, M.; Arena, G.O. Colorectal cancer-derived extracellular vesicles induce transformation of fibroblasts into colon carcinoma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 257.
[http://dx.doi.org/10.1186/s13046-019-1248-2] [PMID: 31200749]
[15]
Elewaily, M.I.; Elsergany, A.R. Emerging role of exosomes and exosomal microRNA in cancer: Pathophysiology and clinical potential. J. Cancer Res. Clin. Oncol., 2021, 147(3), 637-648.
[http://dx.doi.org/10.1007/s00432-021-03534-5] [PMID: 33511427]
[16]
Minciacchi, V.R.; Freeman, M.R.; Di Vizio, D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol., 2015, 40, 41-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.010] [PMID: 25721812]
[17]
Möller, A.; Lobb, R.J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer, 2020, 20(12), 697-709.
[http://dx.doi.org/10.1038/s41568-020-00299-w] [PMID: 32958932]
[18]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[http://dx.doi.org/10.1016/S0021-9258(18)48095-7] [PMID: 3597417]
[19]
Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, 75(2), 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[20]
Doyle, L.M.; Wang, M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), E727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[21]
Colombo, M.; Moita, C.; van Niel, G.; Kowal, J.; Vigneron, J.; Benaroch, P.; Manel, N.; Moita, L.F.; Théry, C.; Raposo, G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci., 2013, 126(Pt 24), 5553-5565.
[http://dx.doi.org/10.1242/jcs.128868] [PMID: 24105262]
[22]
Juan, T.; Fürthauer, M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin. Cell Dev. Biol., 2018, 74, 66-77.
[http://dx.doi.org/10.1016/j.semcdb.2017.08.022] [PMID: 28807885]
[23]
Jan, A.T.; Rahman, S.; Khan, S.; Tasduq, S.A.; Choi, I. Biology, pathophysiological role, and clinical implications of exosomes: A critical appraisal. Cells, 2019, 8(2), E99.
[http://dx.doi.org/10.3390/cells8020099] [PMID: 30699987]
[24]
Baietti, M.F.; Zhang, Z.; Mortier, E.; Melchior, A.; Degeest, G.; Geeraerts, A.; Ivarsson, Y.; Depoortere, F.; Coomans, C.; Vermeiren, E.; Zimmermann, P.; David, G. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol., 2012, 14(7), 677-685.
[http://dx.doi.org/10.1038/ncb2502] [PMID: 22660413]
[25]
Villarroya-Beltri, C.; Baixauli, F.; Mittelbrunn, M.; Fernández-Delgado, I.; Torralba, D.; Moreno-Gonzalo, O.; Baldanta, S.; Enrich, C.; Guerra, S.; Sánchez-Madrid, F. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun., 2016, 7, 13588.
[http://dx.doi.org/10.1038/ncomms13588] [PMID: 27882925]
[26]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[27]
Ostrowski, M.; Carmo, N.B.; Krumeich, S.; Fanget, I.; Raposo, G.; Savina, A.; Moita, C.F.; Schauer, K.; Hume, A.N.; Freitas, R.P.; Goud, B.; Benaroch, P.; Hacohen, N.; Fukuda, M.; Desnos, C.; Seabra, M.C.; Darchen, F.; Amigorena, S.; Moita, L.F.; Thery, C. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol, 2010, 12(1), 19-30.
[http://dx.doi.org/10.1038/ncb2000]
[28]
Granger, E.; McNee, G.; Allan, V.; Woodman, P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin. Cell Dev. Biol., 2014, 31, 20-29.
[http://dx.doi.org/10.1016/j.semcdb.2014.04.011] [PMID: 24727350]
[29]
Abels, E.R.; Breakefield, X.O. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell. Mol. Neurobiol., 2016, 36(3), 301-312.
[http://dx.doi.org/10.1007/s10571-016-0366-z] [PMID: 27053351]
[30]
Mulcahy, L.A.; Pink, R.C.; Carter, D.R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 2014, 3, 3.
[http://dx.doi.org/10.3402/jev.v3.24641] [PMID: 25143819]
[31]
Hui, L.; Chen, Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett., 2015, 368(1), 7-13.
[http://dx.doi.org/10.1016/j.canlet.2015.07.039] [PMID: 26276713]
[32]
Hida, K.; Maishi, N.; Annan, D.A.; Hida, Y. Contribution of tumor endothelial cells in cancer progression. Int. J. Mol. Sci., 2018, 19(5), E1272.
[http://dx.doi.org/10.3390/ijms19051272] [PMID: 29695087]
[33]
Cirri, P.; Chiarugi, P. Cancer associated fibroblasts: The dark side of the coin. Am. J. Cancer Res., 2011, 1(4), 482-497.
[PMID: 21984967]
[34]
Bhome, R.; Goh, R.W.; Bullock, M.D.; Pillar, N.; Thirdborough, S.M.; Mellone, M.; Mirnezami, R.; Galea, D.; Veselkov, K.; Gu, Q.; Underwood, T.J.; Primrose, J.N.; De Wever, O.; Shomron, N.; Sayan, A.E.; Mirnezami, A.H. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: Role in driving cancer progression. Aging (Albany NY), 2017, 9(12), 2666-2694.
[http://dx.doi.org/10.18632/aging.101355] [PMID: 29283887]
[35]
Huang, Z.; Yang, M.; Li, Y.; Yang, F.; Feng, Y. Exosomes Derived from hypoxic colorectal cancer cells transfer Wnt4 to normoxic cells to elicit a prometastatic phenotype. Int. J. Biol. Sci., 2018, 14(14), 2094-2102.
[http://dx.doi.org/10.7150/ijbs.28288] [PMID: 30585272]
[36]
Wang, Y.; Yin, K.; Tian, J.; Xia, X.; Ma, J.; Tang, X.; Xu, H.; Wang, S. Granulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9. Adv. Sci. (Weinh.), 2019, 6(18), 1901278.
[http://dx.doi.org/10.1002/advs.201901278] [PMID: 31559140]
[37]
de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[38]
Logozzi, M.; Spugnini, E.; Mizzoni, D.; Di Raimo, R.; Fais, S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev., 2019, 38(1-2), 93-101.
[http://dx.doi.org/10.1007/s10555-019-09783-8] [PMID: 30715644]
[39]
Tian, X.P.; Wang, C.Y.; Jin, X.H.; Li, M.; Wang, F.W.; Huang, W.J.; Yun, J.P.; Xu, R.H.; Cai, Q.Q.; Xie, D. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics, 2019, 9(7), 1965-1979.
[http://dx.doi.org/10.7150/thno.30958] [PMID: 31037150]
[40]
Zhang, Z.; Xing, T.; Chen, Y.; Xiao, J. Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-β1 exposure. Biomed. Pharmacother., 2018, 106, 1135-1143.
[41]
Hu, X.; Mu, Y.; Liu, J.; Mu, X.; Gao, F.; Chen, L.; Wu, H.; Wu, H.; Liu, W.; Zhao, Y. Exosomes derived from hypoxic colorectal cancer cells transfer miR-410-3p to regulate tumor progression. J. Cancer, 2020, 11(16), 4724-4735.
[http://dx.doi.org/10.7150/jca.33232] [PMID: 32626519]
[42]
Luan, Y.; Li, X.; Luan, Y.; Zhao, R.; Li, Y.; Liu, L.; Hao, Y.; Oleg Vladimir, B.; Jia, L. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis. Mol. Ther. Nucleic Acids, 2020, 19, 790-803.
[http://dx.doi.org/10.1016/j.omtn.2019.12.009] [PMID: 31955010]
[43]
Shang, A.; Gu, C.; Wang, W.; Wang, X.; Sun, J.; Zeng, B.; Chen, C.; Chang, W.; Ping, Y.; Ji, P.; Wu, J.; Quan, W.; Yao, Y.; Zhou, Y.; Sun, Z.; Li, D. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol. Cancer, 2020, 19(1), 117.
[http://dx.doi.org/10.1186/s12943-020-01235-0] [PMID: 32713345]
[44]
Wang, B.; Wang, Y.; Yan, Z.; Sun, Y.; Su, C. Colorectal cancer cell-derived exosomes promote proliferation and decrease apoptosis by activating the ERK pathway. Int. J. Clin. Exp. Pathol., 2019, 12(7), 2485-2495.
[PMID: 31934075]
[45]
Xu, Y.; Shen, L.; Li, F.; Yang, J.; Wan, X.; Ouyang, M. microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J. Cell. Physiol., 2019, 234(11), 21380-21394.
[http://dx.doi.org/10.1002/jcp.28747] [PMID: 31102273]
[46]
Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol., 2002, 29(6)(Suppl. 16), 15-18.
[http://dx.doi.org/10.1016/S0093-7754(02)70065-1] [PMID: 12516034]
[47]
Hu, H.Y.; Yu, C.H.; Zhang, H.H.; Zhang, S.Z.; Yu, W.Y.; Yang, Y.; Chen, Q. Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2. Int. J. Biol. Macromol., 2019, 132, 470-477.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.221] [PMID: 30936013]
[48]
Shang, A.; Wang, X.; Gu, C.; Liu, W.; Sun, J.; Zeng, B.; Chen, C.; Ji, P.; Wu, J.; Quan, W.; Yao, Y.; Wang, W.; Sun, Z.; Li, D. Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1. Aging (Albany NY), 2020, 12(9), 8352-8371.
[http://dx.doi.org/10.18632/aging.103145] [PMID: 32364530]
[49]
Yoon, Y.J.; Kim, D.K.; Yoon, C.M.; Park, J.; Kim, Y.K.; Roh, T.Y.; Gho, Y.S. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One, 2014, 9(12), e115170.
[http://dx.doi.org/10.1371/journal.pone.0115170] [PMID: 25502753]
[50]
Han, L.; Lam, E.W.; Sun, Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol. Cancer, 2019, 18(1), 59.
[http://dx.doi.org/10.1186/s12943-019-0980-8] [PMID: 30925927]
[51]
Hong, B.S.; Cho, J.H.; Kim, H.; Choi, E.J.; Rho, S.; Kim, J.; Kim, J.H.; Choi, D.S.; Kim, Y.K.; Hwang, D.; Gho, Y.S. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics, 2009, 10, 556.
[http://dx.doi.org/10.1186/1471-2164-10-556] [PMID: 19930720]
[52]
Huang, Z.; Feng, Y. Exosomes derived from hypoxic colorectal cancer cells promote angiogenesis through Wnt4-induced β- catenin signaling in endothelial cells. Oncol. Res., 2017, 25(5), 651-661.
[http://dx.doi.org/10.3727/096504016X14752792816791] [PMID: 27712599]
[53]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[54]
Liu, H.; Liu, Y.; Sun, P.; Leng, K.; Xu, Y.; Mei, L.; Han, P.; Zhang, B.; Yao, K.; Li, C.; Bai, J.; Cui, B. Colorectal cancer-derived exosomal miR-106b-3p promotes metastasis by down-regulating DLC-1 expression. Clin Sci. (London, England: 1979), 2020, 134(4), 419-434.
[55]
Zhang, X.; Bai, J.; Yin, H.; Long, L.; Zheng, Z.; Wang, Q.; Chen, F.; Yu, X.; Zhou, Y. Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition. Mol. Oncol., 2020, 14(10), 2589-2608.
[http://dx.doi.org/10.1002/1878-0261.12765] [PMID: 32679610]
[56]
Hu, J.L.; Wang, W.; Lan, X.L.; Zeng, Z.C.; Liang, Y.S.; Yan, Y.R.; Song, F.Y.; Wang, F.F.; Zhu, X.H.; Liao, W.J.; Liao, W.T.; Ding, Y.Q.; Liang, L. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol. Cancer, 2019, 18(1), 91.
[http://dx.doi.org/10.1186/s12943-019-1019-x] [PMID: 31064356]
[57]
Zhou, L.; Li, J.; Tang, Y.; Yang, M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J. Transl. Med., 2021, 19(1), 8.
[http://dx.doi.org/10.1186/s12967-020-02648-7] [PMID: 33407563]
[58]
Li, T.; Wan, Y.; Su, Z.; Li, J.; Han, M.; Zhou, C. Mesenchymal stem cell-derived exosomal microrna-3940-5p inhibits colorectal cancer metastasis by targeting integrin α6. Dig. Dis. Sci., 2021, 66(6), 1916-1927.
[http://dx.doi.org/10.1007/s10620-020-06458-1]
[59]
Liu, Y.; Cao, X. Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell, 2016, 30(5), 668-681.
[http://dx.doi.org/10.1016/j.ccell.2016.09.011] [PMID: 27846389]
[60]
Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; Zhou, K.; Liu, X.; Ren, X.; Wang, F.; Hu, J.; Zhu, X.; Yang, W.; Liao, W.; Li, G.; Ding, Y.; Liang, L. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun., 2018, 9(1), 5395.
[http://dx.doi.org/10.1038/s41467-018-07810-w] [PMID: 30568162]
[61]
Shao, Y.; Chen, T.; Zheng, X.; Yang, S.; Xu, K.; Chen, X.; Xu, F.; Wang, L.; Shen, Y.; Wang, T.; Zhang, M.; Hu, W.; Ye, C.; Yu, X.; Shao, J.; Zheng, S. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis, 2018, 39(11), 1368-1379.
[http://dx.doi.org/10.1093/carcin/bgy115] [PMID: 30184100]
[62]
Wang, X.; Ding, X.; Nan, L.; Wang, Y.; Wang, J.; Yan, Z.; Zhang, W.; Sun, J.; Zhu, W.; Ni, B.; Dong, S.; Yu, L. Investigation of the roles of exosomes in colorectal cancer liver metastasis. Oncol. Rep., 2015, 33(5), 2445-2453.
[http://dx.doi.org/10.3892/or.2015.3843] [PMID: 25760247]
[63]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[64]
Ji, Q.; Zhou, L.; Sui, H.; Yang, L.; Wu, X.; Song, Q.; Jia, R.; Li, R.; Sun, J.; Wang, Z.; Liu, N.; Feng, Y.; Sun, X.; Cai, G.; Feng, Y.; Cai, J.; Cao, Y.; Cai, G.; Wang, Y.; Li, Q. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat. Commun., 2020, 11(1), 1211.
[http://dx.doi.org/10.1038/s41467-020-14869-x] [PMID: 32139701]
[65]
Jiang, K.; Chen, H.; Fang, Y.; Chen, L.; Zhong, C.; Bu, T.; Dai, S.; Pan, X.; Fu, D.; Qian, Y.; Wei, J.; Ding, K. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness. J. Exp. Clin. Cancer Res., 2021, 40(1), 21.
[http://dx.doi.org/10.1186/s13046-020-01816-3] [PMID: 33413536]
[66]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[67]
Friedrich, M.; Jasinski-Bergner, S.; Lazaridou, M.F.; Subbarayan, K.; Massa, C.; Tretbar, S.; Mueller, A.; Handke, D.; Biehl, K.; Bukur, J.; Donia, M.; Mandelboim, O.; Seliger, B. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunol. Immunother., 2019, 68(10), 1689-1700.
[http://dx.doi.org/10.1007/s00262-019-02373-1] [PMID: 31375885]
[68]
Huber, V.; Fais, S.; Iero, M.; Lugini, L.; Canese, P.; Squarcina, P.; Zaccheddu, A.; Colone, M.; Arancia, G.; Gentile, M.; Seregni, E.; Valenti, R.; Ballabio, G.; Belli, F.; Leo, E.; Parmiani, G.; Rivoltini, L. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: Role in immune escape. Gastroenterology, 2005, 128(7), 1796-1804.
[http://dx.doi.org/10.1053/j.gastro.2005.03.045] [PMID: 15940614]
[69]
Yamada, N.; Kuranaga, Y.; Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Akao, Y. Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor- growth supporting cells with transforming growth factor-β1-mediated suppression. Oncotarget, 2016, 7(19), 27033-27043.
[http://dx.doi.org/10.18632/oncotarget.7041] [PMID: 27081032]
[70]
Valenti, R.; Huber, V.; Filipazzi, P.; Pilla, L.; Sovena, G.; Villa, A.; Corbelli, A.; Fais, S.; Parmiani, G.; Rivoltini, L. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res., 2006, 66(18), 9290-9298.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1819] [PMID: 16982774]
[71]
Yahaya, M.A.F.; Lila, M.A.M.; Ismail, S.; Zainol, M.; Afizan, N.A.R.N.M. Tumour-Associated Macrophages (TAMs) in colon cancer and how to reeducate them. J. Immunol. Res., 2019, 2019, 2368249.
[http://dx.doi.org/10.1155/2019/2368249] [PMID: 30931335]
[72]
Cooks, T.; Pateras, I.S.; Jenkins, L.M.; Patel, K.M.; Robles, A.I.; Morris, J.; Forshew, T.; Appella, E.; Gorgoulis, V.G.; Harris, C.C. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun., 2018, 9(1), 771.
[http://dx.doi.org/10.1038/s41467-018-03224-w] [PMID: 29472616]
[73]
Takano, Y.; Masuda, T.; Iinuma, H.; Yamaguchi, R.; Sato, K.; Tobo, T.; Hirata, H.; Kuroda, Y.; Nambara, S.; Hayashi, N.; Iguchi, T.; Ito, S.; Eguchi, H.; Ochiya, T.; Yanaga, K.; Miyano, S.; Mimori, K. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget, 2017, 8(45), 78598-78613.
[http://dx.doi.org/10.18632/oncotarget.20009] [PMID: 29108252]
[74]
Liang, Z.X.; Liu, H.S.; Wang, F.W.; Xiong, L.; Zhou, C.; Hu, T.; He, X.W.; Wu, X.J.; Xie, D.; Wu, X.R.; Lan, P. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis., 2019, 10(11), 829.
[http://dx.doi.org/10.1038/s41419-019-2077-0] [PMID: 31685807]
[75]
Wang, D.; Wang, X.; Si, M.; Yang, J.; Sun, S.; Wu, H.; Cui, S.; Qu, X.; Yu, X. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett., 2020, 474, 36-52.
[http://dx.doi.org/10.1016/j.canlet.2020.01.005] [PMID: 31931030]
[76]
Yang, C.; Dou, R.; Wei, C.; Liu, K.; Shi, D.; Zhang, C.; Liu, Q.; Wang, S.; Xiong, B. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Mol. Ther., 2021, 29(6), 2088-2107.
[77]
Daassi, D.; Mahoney, K.M.; Freeman, G.J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol., 2020, 20(4), 209-215.
[http://dx.doi.org/10.1038/s41577-019-0264-y] [PMID: 31965064]
[78]
Marin, J.J.; Sanchez de Medina, F.; Castaño, B.; Bujanda, L.; Romero, M.R.; Martinez-Augustin, O.; Moral-Avila, R.D.; Briz, O. Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab. Rev., 2012, 44(2), 148-172.
[http://dx.doi.org/10.3109/03602532.2011.638303] [PMID: 22497631]
[79]
Hu, Y.B.; Yan, C.; Mu, L.; Mi, Y.L.; Zhao, H.; Hu, H.; Li, X.L.; Tao, D.D.; Wu, Y.Q.; Gong, J.P.; Qin, J.C. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene, 2019, 38(11), 1951-1965.
[http://dx.doi.org/10.1038/s41388-018-0557-9] [PMID: 30390075]
[80]
Ren, J.; Ding, L.; Zhang, D.; Shi, G.; Xu, Q.; Shen, S.; Wang, Y.; Wang, T.; Hou, Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics, 2018, 8(14), 3932-3948.
[http://dx.doi.org/10.7150/thno.25541] [PMID: 30083271]
[81]
Deng, X.; Ruan, H.; Zhang, X.; Xu, X.; Zhu, Y.; Peng, H.; Zhang, X.; Kong, F.; Guan, M. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int. J. Cancer, 2020, 146(6), 1700-1716.
[http://dx.doi.org/10.1002/ijc.32608] [PMID: 31381140]
[82]
Zhang, Q.; Liu, R.X.; Chan, K.W.; Hu, J.; Zhang, J.; Wei, L.; Tan, H.; Yang, X.; Liu, H. Exosomal transfer of p-STAT3 promotes acquired 5-FU resistance in colorectal cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 320.
[83]
Xu, Y.; Zhu, M. Novel exosomal miR-46146 transfer oxaliplatin chemoresistance in colorectal cancer. Clin. Transl Oncol., 2020, 22(7), 1105-1116.
[84]
Wang, X.; Zhang, H.; Yang, H.; Bai, M.; Ning, T.; Deng, T.; Liu, R.; Fan, Q.; Zhu, K.; Li, J.; Zhan, Y.; Ying, G.; Ba, Y. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol., 2020, 14(3), 539-555.
[http://dx.doi.org/10.1002/1878-0261.12629] [PMID: 31901148]
[85]
Hon, K.W.; Ab-Mutalib, N.S.; Abdullah, N.M.A.; Jamal, R.; Abu, N. Extracellular Vesicle-derived circular RNAs confers chemoresistance in colorectal cancer. Sci. Rep., 2019, 9(1), 16497.
[http://dx.doi.org/10.1038/s41598-019-53063-y] [PMID: 31712601]
[86]
Misale, S.; Di Nicolantonio, F.; Sartore-Bianchi, A.; Siena, S.; Bardelli, A. Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov., 2014, 4(11), 1269-1280.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0462] [PMID: 25293556]
[87]
Bian, Z.; Jin, L.; Zhang, J.; Yin, Y.; Quan, C.; Hu, Y.; Feng, Y.; Liu, H.; Fei, B.; Mao, Y.; Zhou, L.; Qi, X.; Huang, S.; Hua, D.; Xing, C.; Huang, Z. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci. Rep., 2016, 6, 23892.
[http://dx.doi.org/10.1038/srep23892] [PMID: 27046651]
[88]
Yang, Y.N.; Zhang, R.; Du, J.W.; Yuan, H.H.; Li, Y.J.; Wei, X.L.; Du, X.X.; Jiang, S.L.; Han, Y. Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer. Cancer Cell Int., 2018, 18, 164.
[http://dx.doi.org/10.1186/s12935-018-0660-6] [PMID: 30377411]
[89]
Zhang, S.; Zhang, Y.; Qu, J.; Che, X.; Fan, Y.; Hou, K.; Guo, T.; Deng, G.; Song, N.; Li, C.; Wan, X.; Qu, X.; Liu, Y. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells. Braz. J. Med. Biol. Res., 2017, 51(1), e6472.
[http://dx.doi.org/10.1590/1414-431x20176472] [PMID: 29160412]
[90]
Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Turnbull, B.A.; Ross, M.E. Fecal DNA versus fecal occult blood for colorectal- cancer screening in an average-risk population. N. Engl. J. Med., 2004, 351(26), 2704-2714.
[http://dx.doi.org/10.1056/NEJMoa033403] [PMID: 15616205]
[91]
Issa, I.A.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol., 2017, 23(28), 5086-5096.
[http://dx.doi.org/10.3748/wjg.v23.i28.5086] [PMID: 28811705]
[92]
Lech, G.; Słotwiński, R.; Słodkowski, M.; Krasnodębski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol., 2016, 22(5), 1745-1755.
[http://dx.doi.org/10.3748/wjg.v22.i5.1745] [PMID: 26855534]
[93]
Sun, B.; Li, Y.; Zhou, Y.; Ng, T.K.; Zhao, C.; Gan, Q.; Gu, X.; Xiang, J. Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J. Cell. Physiol., 2019, 234(2), 1416-1425.
[http://dx.doi.org/10.1002/jcp.26936] [PMID: 30078189]
[94]
Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem., 2001, 47(4), 624-630.
[http://dx.doi.org/10.1093/clinchem/47.4.624] [PMID: 11274010]
[95]
Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat shock proteins and cancer. Trends Pharmacol. Sci., 2017, 38(3), 226-256.
[http://dx.doi.org/10.1016/j.tips.2016.11.009] [PMID: 28012700]
[96]
Campanella, C.; Rappa, F.; Sciumè, C.; Marino Gammazza, A.; Barone, R.; Bucchieri, F.; David, S.; Curcurù, G.; Caruso Bavisotto, C.; Pitruzzella, A.; Geraci, G.; Modica, G.; Farina, F.; Zummo, G.; Fais, S.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer, 2015, 121(18), 3230-3239.
[http://dx.doi.org/10.1002/cncr.29499] [PMID: 26060090]
[97]
Li, J.; Chen, Y.; Guo, X.; Zhou, L.; Jia, Z.; Peng, Z.; Tang, Y.; Liu, W.; Zhu, B.; Wang, L.; Ren, C. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J. Cell. Mol. Med., 2017, 21(5), 838-847.
[http://dx.doi.org/10.1111/jcmm.12941] [PMID: 28233416]
[98]
Tian, Y.; Ma, L.; Gong, M.; Su, G.; Zhu, S.; Zhang, W.; Wang, S.; Li, Z.; Chen, C.; Li, L.; Wu, L.; Yan, X. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano, 2018, 12(1), 671-680.
[http://dx.doi.org/10.1021/acsnano.7b07782] [PMID: 29300458]
[99]
Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; Watanabe, M.; Nakagama, H.; Yokota, J.; Kohno, T.; Tsuchiya, N.; Tsuchiya, N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One, 2014, 9(4), e92921.
[http://dx.doi.org/10.1371/journal.pone.0092921] [PMID: 24705249]
[100]
Karimi, N.; Ali Hosseinpour Feizi, M.; Safaralizadeh, R.; Hashemzadeh, S.; Baradaran, B.; Shokouhi, B.; Teimourian, S. Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J. Chin. Med. Assoc., 2019, 82(3), 215-220.
[http://dx.doi.org/10.1097/JCMA.0000000000000031] [PMID: 30913118]
[101]
Zhao, Y.J.; Song, X.; Niu, L.; Tang, Y.; Song, X.; Xie, L. Circulating exosomal miR-150-5p and miR-99b-5p as diagnostic biomarkers for colorectal cancer. Front. Oncol., 2019, 9, 1129.
[http://dx.doi.org/10.3389/fonc.2019.01129] [PMID: 31750241]
[102]
Zou, S.L.; Chen, Y.L.; Ge, Z.Z.; Qu, Y.Y.; Cao, Y.; Kang, Z.X. Downregulation of serum exosomal miR-150-5p is associated with poor prognosis in patients with colorectal cancer. Dis. Markers, 2019, 26(1), 69-77.
[http://dx.doi.org/10.3233/CBM-190156] [PMID: 31306108]
[103]
Wang, J.; Yan, F.; Zhao, Q.; Zhan, F.; Wang, R.; Wang, L.; Zhang, Y.; Huang, X. Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci. Rep., 2017, 7(1), 4150.
[http://dx.doi.org/10.1038/s41598-017-04386-1] [PMID: 28646161]
[104]
Min, L.; Zhu, S.; Chen, L.; Liu, X.; Wei, R.; Zhao, L.; Yang, Y.; Zhang, Z.; Kong, G.; Li, P.; Zhang, S. Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: A comparison with plasma total miRNAs. J. Extracell. Vesicles, 2019, 8(1), 1643670.
[http://dx.doi.org/10.1080/20013078.2019.1643670] [PMID: 31448068]
[105]
Fu, F.; Jiang, W.; Zhou, L.; Chen, Z. Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl. Oncol., 2018, 11(2), 221-232.
[http://dx.doi.org/10.1016/j.tranon.2017.12.012] [PMID: 29367070]
[106]
Yan, S.; Jiang, Y.; Liang, C.; Cheng, M.; Jin, C.; Duan, Q.; Xu, D.; Yang, L.; Zhang, X.; Ren, B.; Jin, P. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J. Cell. Biochem., 2018, 119(5), 4113-4119.
[http://dx.doi.org/10.1002/jcb.26609] [PMID: 29240249]
[107]
Tsukamoto, M.; Iinuma, H.; Yagi, T.; Matsuda, K.; Hashiguchi, Y. Circulating exosomal MicroRNA-21 as a biomarker in each tumor stage of colorectal cancer. Oncology, 2017, 92(6), 360-370.
[http://dx.doi.org/10.1159/000463387] [PMID: 28376502]
[108]
Liu, L.; Meng, T.; Yang, X.H.; Sayim, P.; Lei, C.; Jin, B.; Ge, L.; Wang, H.J. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Dis. Markers, 2018, 22(2), 283-299.
[http://dx.doi.org/10.3233/CBM-171011] [PMID: 29630521]
[109]
Zhao, Y.; Du, T.; Du, L.; Li, P.; Li, J.; Duan, W.; Wang, Y.; Wang, C. Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic marker for colorectal cancer. Cell Death Dis., 2019, 10(8), 568.
[http://dx.doi.org/10.1038/s41419-019-1804-x] [PMID: 31358735]
[110]
Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Scalia, M.; Magnano, A.; Caltabiano, R.; Barbagallo, D.; Biondi, A.; Cappellani, A.; Basile, F.; Di Pietro, C.; Purrello, M.; Ragusa, M. LncRNA UCA1, Upregulated in CRC Biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol. Ther. Nucleic Acids, 2018, 12, 229-241.
[http://dx.doi.org/10.1016/j.omtn.2018.05.009] [PMID: 30195762]
[111]
Wang, L.; Duan, W.; Yan, S.; Xie, Y.; Wang, C. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer. Biomed. Pharmacother., 2019, 113, 108758.
[http://dx.doi.org/10.1016/j.biopha.2019.108758] [PMID: 30877883]
[112]
Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget, 2016, 7(51), 85551-85563.
[http://dx.doi.org/10.18632/oncotarget.13465] [PMID: 27888803]
[113]
Hu, D.; Zhan, Y.; Zhu, K.; Bai, M.; Han, J.; Si, Y.; Zhang, H.; Kong, D. Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer. Cell. Physiol. Biochem., 2018, 51(6), 2704-2715.
[http://dx.doi.org/10.1159/000495961] [PMID: 30562751]
[114]
Pan, B.; Qin, J.; Liu, X.; He, B.; Wang, X.; Pan, Y.; Sun, H.; Xu, T.; Xu, M.; Chen, X.; Xu, X.; Zeng, K.; Sun, L.; Wang, S. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front. Genet., 2019, 10, 1096.
[http://dx.doi.org/10.3389/fgene.2019.01096] [PMID: 31737058]
[115]
Lai, C.P.; Mardini, O.; Ericsson, M.; Prabhakar, S.; Maguire, C.; Chen, J.W.; Tannous, B.A.; Breakefield, X.O. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano, 2014, 8(1), 483-494.
[http://dx.doi.org/10.1021/nn404945r] [PMID: 24383518]
[116]
Xitong, D.; Xiaorong, Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene, 2016, 575(2 Pt 2), 377-384.
[http://dx.doi.org/10.1016/j.gene.2015.08.067] [PMID: 26341056]
[117]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D.S.; Roh, T.Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y.K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[118]
Liang, G.; Zhu, Y.; Ali, D.J.; Tian, T.; Xu, H.; Si, K.; Sun, B.; Chen, B.; Xiao, Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnology, 2020, 18(1), 10.
[http://dx.doi.org/10.1186/s12951-019-0563-2] [PMID: 31918721]
[119]
Dai, S.; Wei, D.; Wu, Z.; Zhou, X.; Wei, X.; Huang, H.; Li, G.; Phase, I. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther., 2008, 16(4), 782-790.
[http://dx.doi.org/10.1038/mt.2008.1] [PMID: 18362931]
[120]
Kuslich, C.; Poste, G.; Klass, M. Diagnostic methods using exosomes. GB2463401, 2010.
[121]
Ohta, H.; Okamoto, H.; Sonoda, H.; Ochiya, T. Method for detecting colon cancer. US2016047812A1, 2016.
[122]
Cao, B.; Zhao, L. Application of p-ERK of exosome in preparation of colorectal cancer diagnosis product. CN107271672, 2017.
[123]
Simpson, R. J.; Chen, M. Biomarkers of colorectal cancer. WO2019144183A1, 2019.
[124]
Min, L.; Kong, G.; Zhu, S.; Liu, X.; Zhao, L.; Chen, S.; Zhang, S. Exosome miRNA marker for colorectal cancer diagnosis and diagnosis kit. CN109439749, 2019.
[125]
Zhang, L.; Liu, H.; Ning, S.; Li, J. Combination of plasma exosome circRNA as marker for diagnosing colorectal cancer. CN111518902A, 2020.
[126]
Zhu, S.; Min, L.; Kong, G.; Liu, X.; Zhang, S. Exosome RNA molecular marker combination used for early diagnosis of colorectal cancer and application of exosome RNA molecular marker combination used for early diagnosis of colorectal cancer. CN111455052A, 2020.
[127]
Wang, C. Colorectal cancer diagnosis biomarker and application thereof. CN111778330A, 2020.
[128]
Xiao, X.; Tong, K.; Huang, L.; Zhang, S. Application of exosome membrane proteins as diagnostic markers of colon cancer and early diagnosis kit for colon cancer. CN112379096A, 2021.
[129]
Xie, L.; Song, X. Kit for early warning of colorectal cancer metastasis. CN110468209A, 2019.
[130]
Zhang, L.; Liu, H.; Ning, S.; Li, J. Plasma exosome circRNA serving as marker for diagnosing liver metastasis of colorectal cancer. CN111518902A, 2020.
[131]
Yao, J.; Dai, J.; Geng, P.; Du, W. Serum miRNA combination for colon cancer metastasis prediction, probe combination and application thereof. CN106282360A, 2019.
[132]
Subramanian, S.; Zhao, X. Tumor cell-derived exosomes and method of treating colorectal cancer. US2021220456A1, 2021.
[133]
Nakamura, Y.; Tsunoda, T.; Shida, M.; Fujioka, T.; Osawa, R. Peptide vaccines for cancers expressing mphosph1 or DEPDC1 polypeptides. WO2008047473A1, 2008.
[134]
Osawa, R.; Tsunoda, T. TEM8 peptides and vaccines comprising the same. AU2008238739A1, 2013.
[135]
Yokomine, K.; Nakamura, Y.; Nishimura, Y.; Tsunoda, T. FOXM1 peptide and medicinal agent comprising the same. AU2008290049B2, 2013.
[136]
Nishimura, Y.; Tsunoda, T.; Imai, K.; Nakamura, Y. CDH3 peptide and medicinal agent comprising the same. AU2008290060B2, 2014.
[137]
Tsunoda, T.; Ohsawa, R. MELK epitope peptides and vaccines containing the same. AU2009277811B2, 2015.
[138]
Tsunoda, T.; Ohsawa, R.; Yoshimura, S.; Watanabe, T.; Nakamura, Y.; Furukawa, Y. NEIL3 peptides and vaccines including the same. AU2010225997B2, 2016.
[139]
Mao, F.; Wang, J.; Wang, R.; Yan, Y.; Zhang, X.; Qian, H.; Xu, W. Application of stem cell exosome in preparation of drug for resisting colitis deterioration. CN111759862A, 2020.
[140]
Niazi, K.; Curcio, F. Cancer stem cell exosomes. US20200046766A1, 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy