Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Novel Applications of Nanotechnology in Controlling HIV and HSV Infections

Author(s): Sai Akilesh M and Ashish Wadhwani*

Volume 13, Issue 2, 2021

Published on: 24 November, 2020

Page: [120 - 129] Pages: 10

DOI: 10.2174/2589977512999201124121931

Price: $65

Abstract

Infectious diseases have been prevalent for many decades and viral pathogens have caused global health crises and economic meltdown on a devastating scale. The high occurrence of novel viral infections in recent years, in spite of the progress achieved in the field of pharmaceutical sciences, defines the critical need for newer and more effective antiviral therapies and diagnostics. The incidence of multi-drug resistance and adverse effects due to the prolonged use of anti-viral therapy is also a major concern. Nanotechnology offers a cutting edge platform for the development of novel compounds and formulations for biomedical applications. The unique properties of nano-based materials can be attributed to the multi-fold increase in the surface to volume ratio at the nano-scale, tunable surface properties of charge and chemical moieties. Idealistic pharmaceutical properties such as increased bioavailability and retention times, lower toxicity profiles, sustained- release formulations, lower dosage forms and most importantly, targeted drug delivery can be achieved through the approach of nanotechnology. The extensively researched nano-based materials are metal and polymeric nanoparticles, dendrimers and micelles, nano-drug delivery vesicles, liposomes and lipid-based nanoparticles. In this review article, the impact of nanotechnology on the treatment of Human Immunodeficiency Virus (HIV) and Herpes Simplex Virus (HSV) viral infections during the last decade is outlined.

Keywords: Nanotechnology, HIV, HSV, infectious diseases, viruses, therapy.

Graphical Abstract

[1]
Blattner W, Gallo RC, Temin HM. HIV causes AIDS. Science 1988; 241(4865): 515-6.
[http://dx.doi.org/10.1126/science.3399881] [PMID: 3399881]
[2]
Global AIDS Update. 2018. Available from: https://www.unaids.org/en/20180718_GR2018
[3]
UNAIDS. Core Epidemiology Slides UNAIDS AIDS info website. 2018. Available from: https://www.unaids.org/en/resources/documents/2018/core-epidemiology-slides
[4]
World Health Organization - Herpes Simplex Virus – 2017. Available from: https://www.who.int/bulletin/volumes/98/5/19-237149/en/
[5]
Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med 2012; 2(8): a006866.
[http://dx.doi.org/10.1101/cshperspect.a006866] [PMID: 22908191]
[6]
Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev 2010; 62(4-5): 478-90.
[http://dx.doi.org/10.1016/j.addr.2009.11.018] [PMID: 19913579]
[7]
Lu D-Y, Wu H-Y, Yarla NS, Xu B, Ding J, Lu T-R. HAART in HIV/AIDS treatments: future trends. Infect Disord Drug Targets 2018; 18(1): 15-22.
[http://dx.doi.org/10.2174/1871526517666170505122800] [PMID: 28474549]
[8]
Donalisio M, Leone F, Civra A, et al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics 2018; 10(2): 46.
[http://dx.doi.org/10.3390/pharmaceutics10020046] [PMID: 29642603]
[9]
Feng Z, Qiu Z, Sang Z, Lorenzo C, Glasser J. Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy. Math Biosci 2013; 245(2): 171-87.
[http://dx.doi.org/10.1016/j.mbs.2013.07.003] [PMID: 23850537]
[10]
Spruance SL, Kriesel JD. Treatment of herpes simplex labialis. Herpes 2002; 9(3): 64-9.
[PMID: 12470603]
[11]
Bras AP, Sitar DS, Aoki FY. Comparative bioavailability of acyclovir from oral valacyclovir and acyclovir in patients treated for recurrent genital herpes simplex virus infection. Can J Clin Pharmacol 2001; 8(4): 207-11.
[PMID: 11743593]
[12]
Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4(4): 105-31.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[13]
Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol 2003; 26(1): 29-37.
[http://dx.doi.org/10.1016/S1386-6532(02)00263-9] [PMID: 12589832]
[14]
Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B, Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif Cells Nanomed Biotechnol 2015; 43(2): 71-86.
[http://dx.doi.org/10.3109/21691401.2014.883400] [PMID: 24564348]
[15]
Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the inhibition of viral infections. Molecules 2015; 20(8): 14051-81.
[http://dx.doi.org/10.3390/molecules200814051] [PMID: 26247927]
[16]
Mamo T, Moseman EA, Kolishetti N, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5(2): 269-85.
[http://dx.doi.org/10.2217/nnm.10.1] [PMID: 20148638]
[17]
Lisziewicz J, Tőke ER. Nanomedicine applications towards the cure of HIV. Nanomedicine (Lond) 2013; 9(1): 28-38.
[http://dx.doi.org/10.1016/j.nano.2012.05.012] [PMID: 22659241]
[18]
Date AA, Destache CJ. A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 2013; 34(26): 6202-28.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.012] [PMID: 23726227]
[19]
Mahajan SD, Aalinkeel R, Law W-C, et al. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 2012; 7: 5301-14.
[http://dx.doi.org/10.2147/IJN.S25871] [PMID: 23055735]
[20]
Saravanan M, Asmalash T, Gebrekidan A, et al. Nano-medicine as a newly emerging approach to combat Human Immunodeficiency Virus (HIV). Pharm Nanotechnol 2018; 6(1): 17-27.
[http://dx.doi.org/10.2174/2211738506666180209095710] [PMID: 29424324]
[21]
Abd Elkodous M, El-Sayyad GS, Nasser HA, Elshamy AA, Morsi M, Abdelrahman IY, et al. Engineered nanomaterials as potential candidates for HIV treatment: between opportunities and challenges. J Cluster Sci 2019; 30: 531-40.
[http://dx.doi.org/10.1007/s10876-019-01533-8]
[22]
Kaushik A, Jayant RD, Nair M. Advancements in nano-enabled therapeutics for neuroHIV management. Int J Nanomedicine 2016; 11: 4317-25.
[http://dx.doi.org/10.2147/IJN.S109943] [PMID: 27621624]
[23]
Das MK, Sarma A, Chakraborty T. M.K. D. Nano-ART and neuroAIDS. Drug Deliv Transl Res 2016; 6(5): 452-72.
[http://dx.doi.org/10.1007/s13346-016-0293-z] [PMID: 27137528]
[24]
Roy U, Ding H, Pilakka-Kanthikeel S, et al. Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue. Int J Nanomedicine 2015; 10: 5819-35.
[http://dx.doi.org/10.2147/IJN.S68348] [PMID: 26425084]
[25]
Malik T, Chauhan G, Rath G, Murthy RSR, Goyal AK. “Fusion and binding inhibition” key target for HIV-1 treatment and pre-exposure prophylaxis: targets, drug delivery and nanotechnology approaches. Drug Deliv 2017; 24(1): 608-21.
[http://dx.doi.org/10.1080/10717544.2016.1228717] [PMID: 28240046]
[26]
Dubey V, Mishra D, Nahar M, Jain V, Jain NK. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes. Nanomedicine (Lond) 2010; 6(4): 590-6.
[http://dx.doi.org/10.1016/j.nano.2010.01.002] [PMID: 20093197]
[27]
Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: preparation, characterization and in vitro cytotoxic evaluation. Mater Sci Eng C 2017; 73: 406-16.
[http://dx.doi.org/10.1016/j.msec.2016.12.073] [PMID: 28183626]
[28]
Ramana LN, Sethuraman S, Ranga U, Krishnan UM. Development of a liposomal nanodelivery system for nevirapine. J Biomed Sci 2010; 17(1): 57.
[http://dx.doi.org/10.1186/1423-0127-17-57] [PMID: 20624325]
[29]
Qiao C, Liu J, Yang J, et al. Enhanced non-inflammasome mediated immune responses by mannosylated zwitterionic-based cationic liposomes for HIV DNA vaccines. Biomaterials 2016; 85: 1-17.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.054] [PMID: 26851653]
[30]
Lenjisa JL, Woldu MA, Satessa GD. New hope for eradication of HIV from the body: the role of polymeric nanomedicines in HIV/AIDS pharmacotherapy. J Nanobiotechnology 2014; 12: 9.
[http://dx.doi.org/10.1186/1477-3155-12-9] [PMID: 24655921]
[31]
Gandapu U, Chaitanya RK, Kishore G, Reddy RC, Kondapi AK. Curcumin-loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro. PLoS One 2011; 6(8): e23388.
[http://dx.doi.org/10.1371/journal.pone.0023388] [PMID: 21887247]
[32]
Yang H, Li J, Patel SK, Palmer KE, Devlin B, Rohan LC. Design of Poly(lactic-co-glycolic Acid) (PLGA) nanoparticles for vaginal co-delivery of Griffithsin and Dapivirine and Their synergistic effect for HIV prophylaxis. Pharmaceutics 2019; 11(4): 184.
[http://dx.doi.org/10.3390/pharmaceutics11040184] [PMID: 30995761]
[33]
Date AA, Shibata A, McMullen E, et al. Thermosensitive gel containing cellulose acetate phthalate-efavirenz combination nanoparticles for prevention of HIV-1 infection. J Biomed Nanotechnol 2015; 11(3): 416-27.
[http://dx.doi.org/10.1166/jbn.2015.1942] [PMID: 26307825]
[34]
Macchione MA, Guerrero-Beltrán C, Rosso AP, et al. Poly(N-vinylcaprolactam) nanogels with antiviral behavior against HIV-1 infection. Sci Rep 2019; 9(1): 5732.
[http://dx.doi.org/10.1038/s41598-019-42150-9] [PMID: 30952921]
[35]
Li W, Yu F, Wang Q, et al. Co-delivery of HIV-1 entry inhibitor and nonnucleoside reverse transcriptase inhibitor shuttled by nanoparticles: cocktail therapeutic strategy for antiviral therapy. AIDS 2016; 30(6): 827-38.
[http://dx.doi.org/10.1097/QAD.0000000000000971] [PMID: 26595538]
[36]
Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res 2009; 26(3): 502-11.
[http://dx.doi.org/10.1007/s11095-008-9765-2] [PMID: 19002569]
[37]
Kumar P, Lakshmi YS, Kondapi AK. Triple drug combination of zidovudine, efavirenz and lamivudine loaded lactoferrin nanoparticles: an effective nano first-line regimen for HIV therapy. Pharm Res 2017; 34(2): 257-68.
[http://dx.doi.org/10.1007/s11095-016-2048-4] [PMID: 27928647]
[38]
Chattopadhyay N, Zastre J, Wong H-L, Wu XY, Bendayan R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res 2008; 25(10): 2262-71.
[http://dx.doi.org/10.1007/s11095-008-9615-2] [PMID: 18516666]
[39]
Jindal AB, Bachhav SS, Devarajan PV. In situ hybrid nano drug delivery system (IHN-DDS) of antiretroviral drug for simultaneous targeting to multiple viral reservoirs: an in vivo proof of concept. Int J Pharm 2017; 521(1-2): 196-203.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.024] [PMID: 28229943]
[40]
Ortiz A, Domènech O, Muñoz-Juncosa M, et al. A study of HIV-1 FP inhibition by GBV-C peptides using lipid nano-assemblies. Colloids Surf A Physicochem Eng Asp 2015; 480: 184-90.
[http://dx.doi.org/10.1016/j.colsurfa.2014.12.048]
[41]
Khandelwal N, Kaur G, Kumar N, Tiwari A. Application of silver nanoparticles in viral inhibition: a new hope for antivirals. Dig J Nanomater Biostruct 2014; 9: 175-86.
[42]
Frazer RA. Use of silver nanoparticles in HIV treatment protocols: a research proposal. J Nanomed Nanotechnol 2012; 3: 127.
[43]
Vijayakumar S, Ganesan S. Gold nanoparticles as an HIV entry inhibitor. Curr HIV Res 2012; 10(8): 643-6.
[http://dx.doi.org/10.2174/157016212803901383] [PMID: 22954307]
[44]
Di Gianvincenzo P, Marradi M, Martínez-Avila OM, Bedoya LM, Alcamí J, Penadés S. Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett 2010; 20(9): 2718-21.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.079] [PMID: 20382017]
[45]
Malik T, Chauhan G, Rath G, Kesarkar RN, Chowdhary AS, Goyal AK. Efaverinz and nano-gold-loaded mannosylated niosomes: a host cell-targeted topical HIV-1 prophylaxis via thermogel system. Artif Cells, Nanomedicine, Biotechnol 2018; 46(1): 79-90.
[46]
Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 2005; 3: 6.
[http://dx.doi.org/10.1186/1477-3155-3-6] [PMID: 15987516]
[47]
Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology 2010; 8: 1.
[http://dx.doi.org/10.1186/1477-3155-8-1] [PMID: 20145735]
[48]
Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology 2011; 9: 30.
[http://dx.doi.org/10.1186/1477-3155-9-30] [PMID: 21812950]
[49]
Tian Y, Wang H, Liu Y, et al. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine. Nano Lett 2014; 14(3): 1439-45.
[http://dx.doi.org/10.1021/nl404560v] [PMID: 24564254]
[50]
Xu L, Liu Y, Chen Z, et al. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 2012; 12(4): 2003-12.
[http://dx.doi.org/10.1021/nl300027p] [PMID: 22372996]
[51]
Liu Y, Balachandran YL, Li D, Shao Y, Jiang X. Polyvinylpyrrolidone-Poly(ethylene glycol) modified silver nanorods can be a safe, noncarrier adjuvant for HIV vaccine. ACS Nano 2016; 10(3): 3589-96.
[http://dx.doi.org/10.1021/acsnano.5b08025] [PMID: 26844372]
[52]
Liu Y, Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev 2016; 103: 76-89.
[http://dx.doi.org/10.1016/j.addr.2016.02.010] [PMID: 26952542]
[53]
du Toit LC, Pillay V, Choonara YE. Nano-microbicides: challenges in drug delivery, patient ethics and intellectual property in the war against HIV/AIDS. Adv Drug Deliv Rev 2010; 62(4-5): 532-46.
[http://dx.doi.org/10.1016/j.addr.2009.11.022] [PMID: 19922751]
[54]
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2015; 113: 33-48.
[http://dx.doi.org/10.1016/j.antiviral.2014.10.014] [PMID: 25446339]
[55]
Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, Ángeles Muñoz-Fernández M. Mechanistic studies of viral entry: an overview of dendrimer-based microbicides as entry inhibitors against both HIV and HSV-2 overlapped infections. Med Res Rev 2017; 37(1): 149-79.
[http://dx.doi.org/10.1002/med.21405] [PMID: 27518199]
[56]
Rupp R, Rosenthal SL, Stanberry LR. VivaGel (SPL7013 Gel): a candidate dendrimer- microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine 2007; 2(4): 561-6.
[PMID: 18203424]
[57]
Sepúlveda-Crespo D, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: recent trends and developments in HIV treatment/therapy. Nanomedicine (Lond) 2015; 11(6): 1481-98.
[http://dx.doi.org/10.1016/j.nano.2015.03.008] [PMID: 25835558]
[58]
Sepúlveda-Crespo D, Serramía MJ, Tager AM, et al. Prevention vaginally of HIV-1 transmission in humanized BLT mice and mode of antiviral action of polyanionic carbosilane dendrimer G2-S16. Nanomedicine (Lond) 2015; 11(6): 1299-308.
[http://dx.doi.org/10.1016/j.nano.2015.04.013] [PMID: 25959924]
[59]
Nandy B, Bindu DH, Dixit NM, Maiti PK. Simulations reveal that the HIV-1 gp120-CD4 complex dissociates via complex pathways and is a potential target of the polyamidoamine (PAMAM) dendrimer. J Chem Phys 2013; 139(2): 024905.
[http://dx.doi.org/10.1063/1.4812801] [PMID: 23862963]
[60]
Peng J, Wu Z, Qi X, Chen Y, Li X. Dendrimers as potential therapeutic tools in HIV inhibition. Molecules 2013; 18(7): 7912-29.
[http://dx.doi.org/10.3390/molecules18077912] [PMID: 23884127]
[61]
Jain S, Mistry MA, Swarnakar NK. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv Transl Res 2011; 1(5): 395-406.
[http://dx.doi.org/10.1007/s13346-011-0036-0] [PMID: 25788423]
[62]
Al-Subaie MM, Hosny KM, El-Say KM, Ahmed TA, Aljaeid BM. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections. Int J Nanomedicine 2015; 10: 3973-85.
[PMID: 26109856]
[63]
Lembo D, Swaminathan S, Donalisio M, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 2013; 443(1-2): 262-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[64]
Akbarzadeh A, Kafshdooz L, Razban Z, et al. An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artif Cells Nanomed Biotechnol 2018; 46(2): 263-7.
[http://dx.doi.org/10.1080/21691401.2017.1307208] [PMID: 28403676]
[65]
Al-Dhubiab BE, Nair AB, Kumria R, Attimarad M, Harsha S. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids Surf B Biointerfaces 2015; 136: 878-84.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.045] [PMID: 26547315]
[66]
Sharma G, Thakur K, Setia A, et al. Fabrication of acyclovir-loaded flexible membrane vesicles (FMVs): evidence of preclinical efficacy of antiviral activity in murine model of cutaneous HSV-1 infection. Drug Deliv Transl Res 2017; 7(5): 683-94.
[http://dx.doi.org/10.1007/s13346-017-0417-0] [PMID: 28801835]
[67]
Baram-Pinto D, Shukla S, Gedanken A, Sarid R. Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small 2010; 6(9): 1044-50.
[http://dx.doi.org/10.1002/smll.200902384] [PMID: 20394070]
[68]
Etemadzade M, Ghamarypour A, Zabihollahi R. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses. Asian Pac J Trop Dis 2016; 6(11): 854-8.
[http://dx.doi.org/10.1016/S2222-1808(16)61145-3]
[69]
Mohammed Fayaz A, Ao Z, Girilal M, et al. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. Int J Nanomedicine 2012; 7: 5007-18.
[PMID: 23049252]
[70]
Hu RL, Li SR, Kong FJ, Hou RJ, Guan XL, Guo F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res 2014; 13(3): 7022-8.
[http://dx.doi.org/10.4238/2014.March.19.2] [PMID: 24682984]
[71]
Orlowski P, Tomaszewska E, Gniadek M, et al. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One 2014; 9(8): e104113.
[http://dx.doi.org/10.1371/journal.pone.0104113] [PMID: 25117537]
[72]
Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla D. Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Res 2012; 96(3): 363-75.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.020] [PMID: 23047013]
[73]
Mishra YK, Adelung R, Röhl C, Shukla D, Spors F, Tiwari V. Virostatic potential of micro-nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res 2011; 92(2): 305-12.
[http://dx.doi.org/10.1016/j.antiviral.2011.08.017] [PMID: 21893101]
[74]
Antoine TE, Hadigal SR, Yakoub AM, et al. Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J Immunol 2016; 196(11): 4566-75.
[http://dx.doi.org/10.4049/jimmunol.1502373] [PMID: 27183601]
[75]
Yadavalli T, Shukla D. Could zinc oxide tetrapod nanoparticles be used as an effective immunotherapy against HSV-2? In: Nanomedicine (London, England). 2016; 11: pp. 2239-42.
[76]
Agelidis A, Koujah L, Suryawanshi R, et al. An intra-vaginal Zinc Oxide Tetrapod Nanoparticles (ZOTEN) and genital herpesvirus cocktail can provide a novel platform for live virus vaccine. Front Immunol 2019; 10: 500.
[http://dx.doi.org/10.3389/fimmu.2019.00500] [PMID: 30949169]
[77]
Cagno V, Andreozzi P, D’Alicarnasso M, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater 2018; 17(2): 195-203.
[http://dx.doi.org/10.1038/nmat5053] [PMID: 29251725]
[78]
Lembo D, Donalisio M, Laine C, et al. Auto-associative heparin nanoassemblies: a biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. Eur J Pharm Biopharm 2014; 88(1): 275-82.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.007] [PMID: 24835150]
[79]
Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P&T 2017; 42(12): 742-55.
[PMID: 29234213]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy