Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Determinants of Cognitive Trajectories in Normal Aging: A Longitudinal PET-MRI Study in a Community-based Cohort

Author(s): François R. Herrmann, Marie-Louise Montandon, Valentina Garibotto, Cristelle Rodriguez, Sven Haller and Panteleimon Giannakopoulos*

Volume 18, Issue 6, 2021

Published on: 30 September, 2021

Page: [482 - 491] Pages: 10

DOI: 10.2174/1567205018666210930111806

Price: $65

Abstract

Background: The determinants of the progressive decrement of cognition in normal aging are still a matter of debate. Alzheimer disease (AD)-signature markers and vascular lesions, but also psychological variables such as personality factors, are thought to have an impact on the longitudinal trajectories of neuropsychological performances in healthy elderly individuals.

Objective: The current research aimed to identify the main determinants associated with cognitive trajectories in normal aging.

Methods: We performed a 4.5-year longitudinal study in 90 older community-dwellers coupling two neuropsychological assessments, medial temporal atrophy (MTA), number of cerebral microbleeds (CMB), and white matter hyperintensities (WMH) at inclusion, visual rating of amyloid and FDG PET at follow-up, and APOE genotyping. Personality factors were assessed at baseline using the NEO-PIR. Univariate and backward stepwise regression models were built to explore the association between the continuous cognitive score (CCS) and both imaging and personality variables.

Results: The number of strictly lobar CMB at baseline (4 or more) was related to a significant increase in the risk of cognitive decrement. In multivariable models, amyloid positivity was associated with a 1.73 unit decrease of the CCS at follow-up. MTA, WMH and abnormal FDG PET were not related to the cognitive outcome. Among personality factors, only higher agreeableness was related to better preservation of neuropsychological performances.

Conclusion: CMB and amyloid positivity are the only imaging determinants of cognitive trajectories in this highly selected series of healthy controls. Among personality factors, higher agreeableness confers a modest but significant protection against the decline of cognitive performances.

Keywords: Amyloid, atrophy, cognition, imaging markers, microbleeds, personality.

[1]
Abbott RA, Skirrow C, Jokisch M, et al. Normative data from linear and nonlinear quantile regression in CANTAB: Cognition in mid-to-late life in an epidemiological sample. Alzheimers Dement (Amst) 2018; 11: 36-44.
[http://dx.doi.org/10.1016/j.dadm.2018.10.007] [PMID: 30623017]
[2]
Deary IJ, Corley J, Gow AJ, et al. Age-associated cognitive decline. Br Med Bull 2009; 92: 135-52.
[http://dx.doi.org/10.1093/bmb/ldp033] [PMID: 19776035]
[3]
Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 2004; 5(2): 87-96.
[http://dx.doi.org/10.1038/nrn1323] [PMID: 14735112]
[4]
Hoogendam YY, Hofman A, van der Geest JN, van der Lugt A, Ikram MA. Patterns of cognitive function in aging: the Rotterdam Study. Eur J Epidemiol 2014; 29(2): 133-40.
[http://dx.doi.org/10.1007/s10654-014-9885-4] [PMID: 24553905]
[5]
Rabbitt P, Diggle P, Smith D, Holland F, Mc Innes L. Identifying and separating the effects of practice and of cognitive ageing during a large longitudinal study of elderly community residents. Neuropsychologia 2001; 39(5): 532-43.
[http://dx.doi.org/10.1016/S0028-3932(00)00099-3] [PMID: 11254936]
[6]
Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc 2010; 16(5): 754-60.
[http://dx.doi.org/10.1017/S1355617710000706] [PMID: 20673381]
[7]
Zaninotto P, Batty GD, Allerhand M, Deary IJ. Cognitive function trajectories and their determinants in older people: 8 years of follow-up in the English Longitudinal Study of Ageing. J Epidemiol Community Health 2018; 72(8): 685-94.
[http://dx.doi.org/10.1136/jech-2017-210116] [PMID: 29691286]
[8]
Downer B, Chen NW, Raji M, Markides KS. A longitudinal study of cognitive trajectories in Mexican Americans age 75 and older. Int J Geriatr Psychiatry 2017; 32(10): 1122-30.
[http://dx.doi.org/10.1002/gps.4575] [PMID: 27595613]
[9]
Lin FV, Wang X, Wu R, Rebok GW, Chapman BP. Identification of successful cognitive aging in the Alzheimer’s disease neuroimaging initiative study. J Alzheimers Dis 2017; 59(1): 101-11.
[http://dx.doi.org/10.3233/JAD-161278] [PMID: 28582857]
[10]
Min JW. A longitudinal study of cognitive trajectories and its factors for Koreans aged 60 and over: A latent growth mixture model. Int J Geriatr Psychiatry 2018; 33(5): 755-62.
[http://dx.doi.org/10.1002/gps.4855] [PMID: 29363183]
[11]
Daffner KR. Promoting successful cognitive aging: a comprehensive review. J Alzheimers Dis 2010; 19(4): 1101-22.
[http://dx.doi.org/10.3233/JAD-2010-1306] [PMID: 20308777]
[12]
Plassman BL, Williams JW Jr, Burke JR, Holsinger T, Benjamin S. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med 2010; 153(3): 182-93.
[http://dx.doi.org/10.7326/0003-4819-153-3-201008030-00258] [PMID: 20547887]
[13]
Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 2014; 14: 643.
[http://dx.doi.org/10.1186/1471-2458-14-643] [PMID: 24962204]
[14]
Chuang CS, Lin CL, Lin MC, Sung FC, Kao CH. Decreased prevalence of dementia associated with statins: a national population-based study. Eur J Neurol 2015; 22(6): 912-8.
[http://dx.doi.org/10.1111/ene.12402] [PMID: 24635778]
[15]
Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 2005; 64(2): 277-81.
[http://dx.doi.org/10.1212/01.WNL.0000149519.47454.F2] [PMID: 15668425]
[16]
Aljondi R, Szoeke C, Steward C, Gorelik A, Desmond P. The effect of midlife cardiovascular risk factors on white matter hyperintensity volume and cognition two decades later in normal ageing women. Brain Imaging Behav 2020; 14(1): 51-61.
[http://dx.doi.org/10.1007/s11682-018-9970-5] [PMID: 30259291]
[17]
Bauer CM, Cabral HJ, Killiany RJ. Multimodal discrimination between normal aging, mild cognitive impairment and Alzheimer’s disease and prediction of cognitive decline. Diagnostics (Basel) 2018; 8(1): 8.
[http://dx.doi.org/10.3390/diagnostics8010014] [PMID: 29415470]
[18]
Cavallin L, Bronge L, Zhang Y, et al. Comparison between visual assessment of MTA and hippocampal volumes in an elderly, non-demented population. Acta Radiol 2012; 53(5): 573-9.
[http://dx.doi.org/10.1258/ar.2012.110664] [PMID: 22593123]
[19]
Daugherty AM, Raz N. Incident risk and progression of cerebral microbleeds in healthy adults: a multi-occasion longitudinal study. Neurobiol Aging 2017; 59: 22-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.07.003] [PMID: 28800410]
[20]
Hirsiger S, Koppelmans V, Mérillat S, et al. Executive functions in healthy older adults are differentially related to macro- and microstructural white matter characteristics of the cerebral lobes. Front Aging Neurosci 2017; 9: 373.
[http://dx.doi.org/10.3389/fnagi.2017.00373] [PMID: 29249957]
[21]
Meier IB, Gu Y, Guzaman VA, et al. Lobar microbleeds are associated with a decline in executive functioning in older adults. Cerebrovasc Dis 2014; 38(5): 377-83.
[http://dx.doi.org/10.1159/000368998] [PMID: 25427958]
[22]
Petersen RC, Wiste HJ, Weigand SD, et al. Association of elevated amyloid levels with cognition and biomarkers in cognitively normal people from the community. JAMA Neurol 2016; 73(1): 85-92.
[http://dx.doi.org/10.1001/jamaneurol.2015.3098] [PMID: 26595683]
[23]
Ten Kate M, Barkhof F, Boccardi M, et al. Clinical validity of medial temporal atrophy as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52: 167-182.e1.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.05.024] [PMID: 28317647]
[24]
Terracciano A, Sutin AR. Personality and Alzheimer’s disease: An integrative review. Pers Disord 2019; 10(1): 4-12.
[http://dx.doi.org/10.1037/per0000268] [PMID: 30604979]
[25]
Vanhoenacker AS, Sneyers B, De Keyzer F, Heye S, Demaerel P. Evaluation and clinical correlation of practical cut-offs for visual rating scales of atrophy: normal aging versus mild cognitive impairment and Alzheimer’s disease. Acta Neurol Belg 2017; 117(3): 661-9.
[http://dx.doi.org/10.1007/s13760-017-0777-8] [PMID: 28397182]
[26]
Visser PJ, Verhey FR, Hofman PA, Scheltens P, Jolles J. Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 2002; 72(4): 491-7.
[PMID: 11909909]
[27]
Arvanitakis Z, Fleischman DA, Arfanakis K, Leurgans SE, Barnes LL, Bennett DA. Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment. Brain Struct Funct 2016; 221(4): 2135-46.
[http://dx.doi.org/10.1007/s00429-015-1034-7] [PMID: 25833685]
[28]
De Reuck JL, Deramecourt V, Auger F, et al. The significance of cortical cerebellar microbleeds and microinfarcts in neurodegenerative and cerebrovascular diseases. A post-mortem 7.0-tesla magnetic resonance study with neuropathological correlates. Cerebrovasc Dis 2015; 39(2): 138-43.
[http://dx.doi.org/10.1159/000371488] [PMID: 25661058]
[29]
Dubois B, Epelbaum S, Nyasse F, et al. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol 2018; 17(4): 335-46.
[http://dx.doi.org/10.1016/S1474-4422(18)30029-2] [PMID: 29500152]
[30]
Knopman DS, Lundt ES, Therneau TM, et al. Joint associations of β-amyloidosis and cortical thickness with cognition. Neurobiol Aging 2018; 65: 121-31.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.01.017] [PMID: 29471214]
[31]
Li L, Wu DH, Li HQ, et al. Association of cerebral microbleeds with cognitive decline: A longitudinal study. J Alzheimers Dis 2020; 75(2): 571-9.
[http://dx.doi.org/10.3233/JAD-191257] [PMID: 32310166]
[32]
Son SJ, Lee KS, Lee Y, et al. Association between white matter hyperintensity severity and cognitive impairment according to the presence of the apolipoprotein E (APOE) ε4 allele in the elderly: retrospective analysis of data from the CREDOS study. J Clin Psychiatry 2012; 73(12): 1555-62.
[http://dx.doi.org/10.4088/JCP.12m07702] [PMID: 23146133]
[33]
Rabin JS, Schultz AP, Hedden T, et al. Interactive associations of vascular risk and beta-amyloid burden with cognitive decline in clinically normal elderly individuals: Findings from the Harvard aging brain study. JAMA Neurol 2018; 75(9): 1124-31.
[http://dx.doi.org/10.1001/jamaneurol.2018.1123] [PMID: 29799986]
[34]
Al-Janabi OM, Panuganti P, Abner EL, et al. Global cerebral atrophy detected by routine imaging: Relationship with age, hippocampal atrophy, and white matter hyperintensities. J Neuroimaging 2018; 28(3): 301-6.
[http://dx.doi.org/10.1111/jon.12494] [PMID: 29314393]
[35]
Graff-Radford J, Lesnick T, Rabinstein AA, et al. Cerebral microbleed incidence, relationship to amyloid burden: The Mayo Clinic Study of Aging. Neurology 2020; 94(2): e190-9.
[http://dx.doi.org/10.1212/WNL.0000000000008735] [PMID: 31801832]
[36]
Lim EY, Ryu SY, Shim YS, Yang DW, Cho AH. Coexistence of cerebral microbleeds and amyloid pathology in patients with cognitive complaints. J Clin Neurol 2020; 16(1): 83-9.
[http://dx.doi.org/10.3988/jcn.2020.16.1.83] [PMID: 31942762]
[37]
Park JH, Seo SW, Kim C, et al. Pathogenesis of cerebral microbleeds: In vivo imaging of amyloid and subcortical ischemic small vessel disease in 226 individuals with cognitive impairment. Ann Neurol 2013; 73(5): 584-93.
[http://dx.doi.org/10.1002/ana.23845] [PMID: 23495089]
[38]
Roseborough A, Ramirez J, Black SE, Edwards JD. Associations between amyloid β and white matter hyperintensities: A systematic review. Alzheimers Dement 2017; 13(10): 1154-67.
[http://dx.doi.org/10.1016/j.jalz.2017.01.026] [PMID: 28322203]
[39]
Scott JA, Braskie MN, Tosun D, et al. Cerebral amyloid is associated with greater white-matter hyperintensity accrual in cognitively normal older adults. Neurobiol Aging 2016; 48: 48-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.014] [PMID: 27639120]
[40]
Vinke EJ, de Groot M, Venkatraghavan V, et al. Trajectories of imaging markers in brain aging: the Rotterdam Study. Neurobiol Aging 2018; 71: 32-40.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.07.001] [PMID: 30077040]
[41]
Montandon ML, Herrmann FR, Garibotto V, Rodriguez C, Haller S, Giannakopoulos P. Determinants of mesial temporal lobe volume loss in older individuals with preserved cognition: a longitudinal PET amyloid study. Neurobiol Aging 2020; 87: 108-14.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.12.002] [PMID: 32057528]
[42]
Giannakopoulos P, Rodriguez C, Montandon ML, Garibotto V, Haller S, Herrmann FR. Less agreeable, better preserved? A PET amyloid and MRI study in a community-based cohort. Neurobiol Aging 2020; 89: 24-31.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.02.004] [PMID: 32169357]
[43]
van der Thiel M, Rodriguez C, Giannakopoulos P, et al. Brain perfusion measurements using multidelay arterial spin-labeling are systematically biased by the number of delays. AJNR Am J Neuroradiol 2018; 39(8): 1432-8.
[http://dx.doi.org/10.3174/ajnr.A5717] [PMID: 29976831]
[44]
Xekardaki A, Rodriguez C, Montandon ML, et al. Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology 2015; 274(2): 490-9.
[http://dx.doi.org/10.1148/radiol.14140680] [PMID: 25291458]
[45]
Zanchi D, Montandon ML, Sinanaj I, et al. Decreased fronto-parietal and increased default mode network activation is associated with subtle cognitive deficits in elderly controls. Neurosignals 2017; 25(1): 127-38.
[http://dx.doi.org/10.1159/000486152] [PMID: 29268260]
[46]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[47]
Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983; 67(6): 361-70.
[http://dx.doi.org/10.1111/j.1600-0447.1983.tb09716.x] [PMID: 6880820]
[48]
Barberger-Gateau P, Commenges D, Gagnon M, Letenneur L, Sauvel C, Dartigues JF. Instrumental activities of daily living as a screening tool for cognitive impairment and dementia in elderly community dwellers. J Am Geriatr Soc 1992; 40(11): 1129-34.
[http://dx.doi.org/10.1111/j.1532-5415.1992.tb01802.x] [PMID: 1401698]
[49]
Wechsler D. Wechsler Adult Intelligence Scale. Third Edition. San Antonio, TX: The Psychological Corporation 1997.
[50]
Reitan RM. Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 1958; 8: 271-6.
[http://dx.doi.org/10.2466/pms.1958.8.3.271]
[51]
Wechsler D. Manual for the Wechsler adult intelligence scale. New York: Psychological Corporation 1955.
[52]
Milner B. Interhemispheric differences in the localization of psychological processes in man. Br Med Bull 1971; 27(3): 272-7.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a070866] [PMID: 4937273]
[53]
Buschke H, Sliwinski MJ, Kuslansky G, Lipton RB. Diagnosis of early dementia by the Double Memory Test: encoding specificity improves diagnostic sensitivity and specificity. Neurology 1997; 48(4): 989-97.
[http://dx.doi.org/10.1212/WNL.48.4.989] [PMID: 9109889]
[54]
Baddley A, Emslie H, Nimmo-Smith I. A test of visual and verbal recall and recognition. Bury St. Edmunds: Thames Valley Test Company 1994.
[55]
Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G. Wisconsin Card Sorting Test Manual: Revised and expanded. Odessa, FL: Psychological Assessment Resources, Inc. 1993.
[56]
Kaplan EF, Goodglass H, Weintraub S. The Boston naming test. Philadelphia: Lea & Febiger 1983.
[57]
Schnider A, Hanlon RE, Alexander DN, Benson DF. Ideomotor apraxia: behavioral dimensions and neuroanatomical basis. Brain Lang 1997; 58(1): 125-36.
[http://dx.doi.org/10.1006/brln.1997.1770] [PMID: 9184099]
[58]
Poeck K. Clues to the nature of disruption to limbic praxis.In: Roy EA, Ed Neuropsychological studies of apraxia and related disorders. New York, NY: North-Holland 1985.
[59]
Welsh KA, Butters N, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 1994; 44(4): 609-14.
[http://dx.doi.org/10.1212/WNL.44.4.609] [PMID: 8164812]
[60]
Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001; 58(12): 1985-92.
[http://dx.doi.org/10.1001/archneur.58.12.1985] [PMID: 11735772]
[61]
Costa PT, Mccrae RR. Normal Personality Assessment in Clinical Practice: The NEO Personality Inventory. Psychol Assess 1992; 4: 5-13.
[http://dx.doi.org/10.1037/1040-3590.4.1.5]
[62]
Courtois R, Petot JM, Plaisant O, et al. Validation of the French version of the 10-item Big Five Inventory. Encephale 2020; 46(6): 455-62.
[http://dx.doi.org/10.1016/j.encep.2020.02.006] [PMID: 32331765]
[63]
McCrae RR, Kurtz JE, Yamagata S, Terracciano A. Internal consistency, retest reliability, and their implications for personality scale validity. Pers Soc Psychol Rev 2011; 15(1): 28-50.
[http://dx.doi.org/10.1177/1088868310366253] [PMID: 20435807]
[64]
Varrone A, Asenbaum S, Vander Borght T, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 2009; 36(12): 2103-10.
[http://dx.doi.org/10.1007/s00259-009-1264-0] [PMID: 19838705]
[65]
Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995; 242(9): 557-60.
[http://dx.doi.org/10.1007/BF00868807] [PMID: 8551316]
[66]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[67]
Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral microbleeds: Imaging and clinical significance. Radiology 2018; 287(1): 11-28.
[http://dx.doi.org/10.1148/radiol.2018170803] [PMID: 29558307]
[68]
Buckley CJ, Sherwin PF, Smith AP, Wolber J, Weick SM, Brooks DJ. Validation of an electronic image reader training programme for interpretation of [18F]flutemetamol β-amyloid PET brain images. Nucl Med Commun 2017; 38(3): 234-41.
[http://dx.doi.org/10.1097/MNM.0000000000000633] [PMID: 27984539]
[69]
Garibotto V, Montandon ML, Viaud CT, et al. Regions of interest-based discriminant analysis of DaTSCAN SPECT and FDG-PET for the classification of dementia. Clin Nucl Med 2013; 38(3): e112-7.
[http://dx.doi.org/10.1097/RLU.0b013e318279b991] [PMID: 23357822]
[70]
Farrell ME, Chen X, Rundle MM, Chan MY, Wig GS, Park DC. Regional amyloid accumulation and cognitive decline in initially amyloid-negative adults. Neurology 2018; 91(19): e1809-21.
[http://dx.doi.org/10.1212/WNL.0000000000006469] [PMID: 30305451]
[71]
Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009; 8(2): 165-74.
[http://dx.doi.org/10.1016/S1474-4422(09)70013-4] [PMID: 19161908]
[72]
Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008; 70(14): 1208-14.
[http://dx.doi.org/10.1212/01.wnl.0000307750.41970.d9] [PMID: 18378884]
[73]
Akoudad S, Wolters FJ, Viswanathan A, et al. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol 2016; 73(8): 934-43.
[http://dx.doi.org/10.1001/jamaneurol.2016.1017] [PMID: 27271785]
[74]
Romero JR, Preis SR, Beiser A, et al. Cerebral microbleeds as predictors of mortality: The Framingham Heart study. Stroke 2017; 48(3): 781-3.
[http://dx.doi.org/10.1161/STROKEAHA.116.015354] [PMID: 28143923]
[75]
Ding J, Sigurðsson S, Jónsson PV, et al. Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology 2017; 88(22): 2089-97.
[http://dx.doi.org/10.1212/WNL.0000000000003983] [PMID: 28468844]
[76]
Bos D, Wolters FJ, Darweesh SKL, et al. Cerebral small vessel disease and the risk of dementia: A systematic review and meta-analysis of population-based evidence. Alzheimers Dement 2018; 14(11): 1482-92.
[http://dx.doi.org/10.1016/j.jalz.2018.04.007] [PMID: 29792871]
[77]
Pasi M, Charidimou A, Boulouis G, et al. Mixed-location cerebral hemorrhage/microbleeds: Underlying microangiopathy and recurrence risk. Neurology 2018; 90(2): e119-26.
[http://dx.doi.org/10.1212/WNL.0000000000004797] [PMID: 29247070]
[78]
Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and meta-analysis. JAMA Neurol 2019; 76(1): 81-94.
[http://dx.doi.org/10.1001/jamaneurol.2018.3122] [PMID: 30422209]
[79]
Herrmann FR, Rodriguez C, Haller S, Garibotto V, Montandon ML, Giannakopoulos P. Gray matter densities in limbic areas and APOE4 independently predict cognitive decline in normal brain aging. Front Aging Neurosci 2019; 11: 157.
[http://dx.doi.org/10.3389/fnagi.2019.00157] [PMID: 31316372]
[80]
Sojkova J, Zhou Y, An Y, et al. Longitudinal patterns of β-amyloid deposition in nondemented older adults. Arch Neurol 2011; 68(5): 644-9.
[http://dx.doi.org/10.1001/archneurol.2011.77] [PMID: 21555640]
[81]
Dubois B, Hampel H, Feldman HH, et al. Proceedings of the Meeting of the International Working G, the American Alzheimer's Association on "The Preclinical State of AD, July, Washington Dc USA (2016) Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12: 292-323.
[82]
Landau SM, Horng A, Jagust WJ. Memory decline accompanies subthreshold amyloid accumulation. Neurology 2018; 90(17): e1452-60.
[http://dx.doi.org/10.1212/WNL.0000000000005354] [PMID: 29572282]
[83]
Strickhouser JE, Zell E, Krizan Z. Does personality predict health and well-being? A metasynthesis. Health Psychol 2017; 36(8): 797-810.
[http://dx.doi.org/10.1037/hea0000475] [PMID: 28277701]
[84]
Bucher MA, Suzuki T, Samuel DB. A meta-analytic review of personality traits and their associations with mental health treatment outcomes. Clin Psychol Rev 2019; 70: 51-63.
[http://dx.doi.org/10.1016/j.cpr.2019.04.002] [PMID: 30981042]
[85]
Carver CS, Connor-Smith J. Personality and coping. Annu Rev Psychol 2010; 61: 679-704.
[http://dx.doi.org/10.1146/annurev.psych.093008.100352] [PMID: 19572784]
[86]
Allen MS, Walter EE. Health-Related Lifestyle Factors and Sexual Dysfunction: A Meta-Analysis of Population-Based Research. J Sex Med 2018; 15(4): 458-75.
[http://dx.doi.org/10.1016/j.jsxm.2018.02.008] [PMID: 29523476]
[87]
Davey A, Siegler IC, Martin P, Costa PT Jr, Poon LW, Georgia Centenarian S. Personality Structure Among Centenarians: The Georgia Centenarian Study. Exp Aging Res 2015; 41(4): 361-85.
[http://dx.doi.org/10.1080/0361073X.2015.1053752] [PMID: 26214097]
[88]
Maldonato NM, Sperandeo R, Dell’Orco S, et al. The Relationship Between Personality and Neurocognition Among the American Elderly: An Epidemiologic Study. Clin Pract Epidemiol Ment Health 2017; 13: 233-45.
[http://dx.doi.org/10.2174/1745017901713010233] [PMID: 29299046]
[89]
Ouanes S, Castelao E, von Gunten A, Vidal PM, Preisig M, Popp J. Personality, Cortisol, and Cognition in Non-demented Elderly Subjects: Results from a Population-Based Study. Front Aging Neurosci 2017; 9: 63.
[http://dx.doi.org/10.3389/fnagi.2017.00063] [PMID: 28352228]
[90]
Sadeq NA, Molinari V. Personality and its Relationship to Depression and Cognition in Older Adults: Implications for Practice. Clin Gerontol 2018; 41(5): 385-98.
[http://dx.doi.org/10.1080/07317115.2017.1407981] [PMID: 29279022]
[91]
Sutin AR, Stephan Y, Terracciano A. Self-Reported Personality Traits and Informant-Rated Cognition: A 10-Year Prospective Study. J Alzheimers Dis 2019; 72(1): 181-90.
[http://dx.doi.org/10.3233/JAD-190555] [PMID: 31561364]
[92]
Glodzik L, de Santi S, Tsui WH, et al. Phosphorylated tau 231, memory decline and medial temporal atrophy in normal elders. Neurobiol Aging 2011; 32(12): 2131-41.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.12.026] [PMID: 20133017]
[93]
Pettigrew C, Soldan A, Sloane K, et al. Progressive medial temporal lobe atrophy during preclinical Alzheimer’s disease. Neuroimage Clin 2017; 16: 439-46.
[http://dx.doi.org/10.1016/j.nicl.2017.08.022] [PMID: 28879085]
[94]
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 280-92.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[95]
Kloppenborg RP, Nederkoorn PJ, Geerlings MI, van den Berg E. Presence and progression of white matter hyperintensities and cognition: a meta-analysis. Neurology 2014; 82(23): 2127-38.
[http://dx.doi.org/10.1212/WNL.0000000000000505] [PMID: 24814849]
[96]
Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 2015; 11(3): 157-65.
[http://dx.doi.org/10.1038/nrneurol.2015.10] [PMID: 25686760]
[97]
Verdelho A, Madureira S, Moleiro C, et al. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology 2010; 75(2): 160-7.
[http://dx.doi.org/10.1212/WNL.0b013e3181e7ca05] [PMID: 20625169]
[98]
Alber J, Alladi S, Bae HJ, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimers Dement (N Y) 2019; 5: 107-17.
[http://dx.doi.org/10.1016/j.trci.2019.02.001] [PMID: 31011621]
[99]
Caselli RJ, Dueck AC, Locke DE, et al. Impact of Personality on Cognitive Aging: A Prospective Cohort Study. J Int Neuropsychol Soc 2016; 22(7): 765-76.
[http://dx.doi.org/10.1017/S1355617716000527] [PMID: 27346168]
[100]
Hock RS, Lee HB, Bienvenu OJ, et al. Personality and cognitive decline in the Baltimore Epidemiologic Catchment Area follow-up study. Am J Geriatr Psychiatry 2014; 22(9): 917-25.
[http://dx.doi.org/10.1016/j.jagp.2012.12.217] [PMID: 23759291]
[101]
Kuzma E, Sattler C, Toro P, Schönknecht P, Schröder J. Premorbid personality traits and their course in mild cognitive impairment: results from a prospective population-based study in Germany. Dement Geriatr Cogn Disord 2011; 32(3): 171-7.
[http://dx.doi.org/10.1159/000332082] [PMID: 22005607]
[102]
Luchetti M, Terracciano A, Stephan Y, Sutin AR. Personality and Cognitive Decline in Older Adults: Data From a Longitudinal Sample and Meta-Analysis. J Gerontol B Psychol Sci Soc Sci 2016; 71(4): 591-601.
[http://dx.doi.org/10.1093/geronb/gbu184] [PMID: 25583598]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy