Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Palmitoylated Prolactin-releasing Peptide Reduced Aβ Plaques and Microgliosis in the Cerebellum: APP/PS1 Mice Study

Author(s): Anna Mengr, Lucie Hrubá, Aneta Exnerová, Martina Holubová, Andrea Popelová, Blanka Železná, Jaroslav Kuneš and Lenka Maletínská*

Volume 18, Issue 8, 2021

Published on: 22 September, 2021

Page: [607 - 622] Pages: 16

DOI: 10.2174/1567205018666210922110652

Price: $65

Abstract

Background: Prolactin-releasing peptide (PrRP) is a potential drug for the treatment of obesity and associated Type 2 Diabetes Mellitus (T2DM) due to its strong anorexigenic and antidiabetic properties. In our recent study, the lipidized PrRP analog palm11-PrRP31 was proven to exert beneficial effects in APP/PS1 mice, a model of Alzheimer´s Disease (AD)-like amyloid-β (Aβ) pathology, reducing the Aβ plaque load, microgliosis and astrocytosis in the hippocampus and cortex.

Objective: In this study, we focused on the neuroprotective and anti-inflammatory effects of palm11-PrRP31 and its possible impact on synaptogenesis in the cerebellum of APP/PS1 mice, because others have suggested that cerebellar Aβ plaques contribute to cognitive deficits in AD.

Methods: APP/PS1 mice were treated subcutaneously with palm11-PrRP31 for 2 months, then immunoblotting and immunohistochemistry were used to quantify pathological markers connected to AD, compared to control mice.

Results: In the cerebella of 8 months old APP/PS1 mice, we found widespread Aβ plaques surrounded by activated microglia detected by ionized calcium-binding adapter molecule (Iba1), but no increase in astrocytic marker Glial Fibrillary Acidic Protein (GFAP) compared to controls. Interestingly, no difference in both presynaptic markers syntaxin1A and postsynaptic marker spinophilin was registered between APP/PS1 and control mice. Palm11-PrRP31 treatment significantly reduced the Aβ plaque load and microgliosis in the cerebellum. Furthermore, palm11-PrRP31 increased synaptogenesis and attenuated neuroinflammation and apoptosis in the hippocampus of APP/PS1 mice.

Conclusion: These results suggest palm11-PrRP31 is a promising agent for the treatment of neurodegenerative disorders.

Keywords: APP/PS1 mice, Alzheimer's disease, palm11-PrRP31, hippocampus, cerebellum, amyloid-β plaques, neuroinflammation, synaptogenesis.

Next »
[1]
Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014; 71(4): 505-8.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[2]
Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJ 2012; 2012: 756357-7.
[http://dx.doi.org/10.1100/2012/756357] [PMID: 22566778]
[3]
Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: Implications for therapy. Curr Neuropharmacol 2018; 16(5): 508-18.
[http://dx.doi.org/10.2174/1570159X15666170720095240] [PMID: 28730967]
[4]
Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K. Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord 2000; 14(1): S47-53.
[http://dx.doi.org/10.1097/00002093-200000001-00008] [PMID: 10850730]
[5]
Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007; 184(1-2): 69-91.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.017] [PMID: 17222916]
[6]
Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12(9): 1005-15.
[PMID: 16960575]
[7]
Griffin WS, Mrak RE. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 2002; 72(2): 233-8.
[PMID: 12149413]
[8]
Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 2005; 37(2): 289-305.
[http://dx.doi.org/10.1016/j.biocel.2004.07.009] [PMID: 15474976]
[9]
McGeer EMaP. Inflammatory cytokines in the CNS. CNS Drugs 1997; 7: 214-87.
[http://dx.doi.org/10.2165/00023210-199707030-00005]
[10]
Rossi F, Bianchini E. Synergistic induction of nitric oxide by beta-amyloid and cytokines in astrocytes. Biochem Biophys Res Commun 1996; 225(2): 474-8.
[http://dx.doi.org/10.1006/bbrc.1996.1197] [PMID: 8753786]
[11]
Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2006; 27(10): 1372-84.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.012] [PMID: 16289476]
[12]
Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 2010; 9(1): 119-28.
[http://dx.doi.org/10.1016/S1474-4422(09)70299-6] [PMID: 20083042]
[13]
Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416(6880): 535-9.
[http://dx.doi.org/10.1038/416535a] [PMID: 11932745]
[14]
Fein JA, Sokolow S, Miller CA, et al. Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol 2008; 172(6): 1683-92.
[http://dx.doi.org/10.2353/ajpath.2008.070829] [PMID: 18467692]
[15]
Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352(6286): 712-6.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[16]
Jackson J, Jambrina E, Li J, et al. Targeting the Synapse in Alzheimer’s Disease. Front Neurosci 2019; 13: 735.
[http://dx.doi.org/10.3389/fnins.2019.00735] [PMID: 31396031]
[17]
Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10): 136.
[PMID: 26207229]
[18]
Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007; 68(18): 1501-8.
[http://dx.doi.org/10.1212/01.wnl.0000260698.46517.8f] [PMID: 17470753]
[19]
Miniaci MC, De Leonibus E. Missing the egocentric spatial reference: a blank on the map. F1000 Res 2018; 7: 168.
[http://dx.doi.org/10.12688/f1000research.13675.1] [PMID: 29568496]
[20]
Hoxha E, Lippiello P, Zurlo F, et al. The emerging role of altered cerebellar synaptic processing in Alzheimer’s disease. Front Aging Neurosci 2018; 10: 396.
[http://dx.doi.org/10.3389/fnagi.2018.00396] [PMID: 30542279]
[21]
Braak H, Braak E, Bohl J, Lang W. Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci 1989; 93(2-3): 277-87.
[http://dx.doi.org/10.1016/0022-510X(89)90197-4] [PMID: 2556503]
[22]
Joachim CL, Morris JH, Selkoe DJ. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 1989; 135(2): 309-19.
[PMID: 2675616]
[23]
Singh-Bains MK, Linke V, Austria MDR, et al. Altered microglia and neurovasculature in the Alzheimer’s disease cerebellum. Neurobiol Dis 2019; 132: 104589.
[http://dx.doi.org/10.1016/j.nbd.2019.104589] [PMID: 31454549]
[24]
Kozuki M, Kurata T, Miyazaki K, et al. Atorvastatin and pitavastatin protect cerebellar Purkinje cells in AD model mice and preserve the cytokines MCP-1 and TNF-α. Brain Res 2011; 1388: 32-8.
[http://dx.doi.org/10.1016/j.brainres.2011.03.024] [PMID: 21419111]
[25]
Lomoio S, López-González I, Aso E, et al. Cerebellar amyloid-β plaques: disturbed cortical circuitry in AβPP/PS1 transgenic mice as a model of familial Alzheimer’s disease. J Alzheimers Dis 2012; 31(2): 285-300.
[http://dx.doi.org/10.3233/JAD-2012-112198] [PMID: 22561329]
[26]
Bjursell M, Lennerås M, Göransson M, Elmgren A, Bohlooly-Y M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem Biophys Res Commun 2007; 363(3): 633-8.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.016] [PMID: 17904108]
[27]
Pražienková V, Popelová A, Kuneš J, Maletínská L. Prolactin-releasing peptide: Physiological and pharmacological properties. Int J Mol Sci 2019; 20(21): 20.
[http://dx.doi.org/10.3390/ijms20215297] [PMID: 31653061]
[28]
Maletínská L, Nagelová V, Tichá A, et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes 2015; 39(6): 986-93.
[http://dx.doi.org/10.1038/ijo.2015.28] [PMID: 25771926]
[29]
Pražienková V, Holubová M, Pelantová H, et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS One 2017; 12(8): e0183449.
[http://dx.doi.org/10.1371/journal.pone.0183449] [PMID: 28820912]
[30]
Špolcová A, Mikulášková B, Holubová M, et al. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J Alzheimers Dis 2015; 45(3): 823-35.
[http://dx.doi.org/10.3233/JAD-143150] [PMID: 25624414]
[31]
Hölscher C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology 2018; 136(Pt B): 251-9.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.040] [PMID: 29402504]
[32]
Holubová M, Hrubá L, Popelová A, et al. Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology 2019; 144: 377-87.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.002] [PMID: 30428311]
[33]
Pražienková V, Schirmer C, Holubová M, et al. Lipidized Prolactin-Releasing Peptide Agonist Attenuates Hypothermia-Induced Tau Hyperphosphorylation in Neurons. J Alzheimers Dis 2019; 67(4): 1187-200.
[http://dx.doi.org/10.3233/JAD-180837] [PMID: 30689580]
[34]
Zmeškalová A, Popelová A, Exnerová A, Železná B, Kuneš J, Maletínská L. Cellular signaling and anti-apoptotic effects of prolactin-releasing peptide and its analog on SH-SY5Y cells. Int J Mol Sci 2020; 21(17): 21.
[http://dx.doi.org/10.3390/ijms21176343] [PMID: 32882929]
[35]
Popelová A, Pražienková V, Neprašová B, et al. Novel lipidized analog of prolactin-releasing peptide improves memory impairment and attenuates hyperphosphorylation of Tau protein in a mouse model of tauopathy. J Alzheimers Dis 2018; 62(4): 1725-36.
[http://dx.doi.org/10.3233/JAD-171041] [PMID: 29614684]
[36]
Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 2001; 17(6): 157-65.
[http://dx.doi.org/10.1016/S1389-0344(01)00067-3] [PMID: 11337275]
[37]
Maletínská L, Spolcová A, Maixnerová J, Blechová M, Zelezná B. Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides 2011; 32(9): 1887-92.
[http://dx.doi.org/10.1016/j.peptides.2011.08.011] [PMID: 21872625]
[38]
Paxinos G, Franklin KBJ. The Mouse Brain In Stereotaxic Coordinates. 2003.
[39]
Mikulášková B, Holubová M, Pražienková V, et al. Lipidized prolactin-releasing peptide improved glucose tolerance in metabolic syndrome: Koletsky and spontaneously hypertensive rat study. Nutr Diabetes 2018; 8(1): 5.
[http://dx.doi.org/10.1038/s41387-017-0015-8] [PMID: 29339795]
[40]
Popelová A, Kákonová A, Hrubá L, Kuneš J, Maletínská L, Železná B. Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol Res 2018; 67(2): 339-46.
[http://dx.doi.org/10.33549/physiolres.933761] [PMID: 29303606]
[41]
Mitew S, Kirkcaldie MT, Dickson TC, Vickers JC. Altered synapses and gliotransmission in Alzheimer’s disease and AD model mice. Neurobiol Aging 2013; 34(10): 2341-51.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.04.010] [PMID: 23643146]
[42]
Yousefi BH, von Reutern B, Scherübl D, et al. FIBT versus florbetaben and PiB: a preclinical comparison study with amyloid-PET in transgenic mice. EJNMMI Res 2015; 5: 20.
[http://dx.doi.org/10.1186/s13550-015-0090-6] [PMID: 25918674]
[43]
Caine D, Hodges JR. Heterogeneity of semantic and visuospatial deficits in early Alzheimer’s disease. Neuropsychology 2001; 15(2): 155-64.
[http://dx.doi.org/10.1037/0894-4105.15.2.155] [PMID: 11324859]
[44]
Lambon Ralph MA, Patterson K, Graham N, Dawson K, Hodges JR. Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer’s disease: a cross-sectional and longitudinal study of 55 cases. Brain 2003; 126(Pt 11): 2350-62.
[http://dx.doi.org/10.1093/brain/awg236] [PMID: 12876147]
[45]
Albers MW, Gilmore GC, Kaye J, et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement 2015; 11(1): 70-98.
[http://dx.doi.org/10.1016/j.jalz.2014.04.514] [PMID: 25022540]
[46]
Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014; 76(6): 845-61.
[http://dx.doi.org/10.1002/ana.24271] [PMID: 25204284]
[47]
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4(147): 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[48]
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018; 17(11): 1016-24.
[http://dx.doi.org/10.1016/S1474-4422(18)30318-1] [PMID: 30353860]
[49]
Van Gool B, Storck SE, Reekmans SM, et al. LRP1 has a predominant role in production over clearance of Aβ in a mouse model of Alzheimer’s disease. Mol Neurobiol 2019; 56(10): 7234-45.
[http://dx.doi.org/10.1007/s12035-019-1594-2] [PMID: 31004319]
[50]
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: evidence from clinical and preclinical studies. J Lipid Res 2017; 58(7): 1267-81.
[http://dx.doi.org/10.1194/jlr.R075796] [PMID: 28381441]
[51]
Oddo S. The role of mTOR signaling in Alzheimer disease. Front Biosci (Schol Ed) 2012; 4: 941-52.
[http://dx.doi.org/10.2741/s310] [PMID: 22202101]
[52]
Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 2010; 285(17): 13107-20.
[http://dx.doi.org/10.1074/jbc.M110.100420] [PMID: 20178983]
[53]
Zhou XW, Tanila H, Pei JJ. Parallel increase in p70 kinase activation and tau phosphorylation (S262) with Abeta overproduction. FEBS Lett 2008; 582(2): 159-64.
[http://dx.doi.org/10.1016/j.febslet.2007.11.078] [PMID: 18068129]
[54]
Tramutola A, Triplett JC, Di Domenico F, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 2015; 133(5): 739-49.
[http://dx.doi.org/10.1111/jnc.13037] [PMID: 25645581]
[55]
Lafay-Chebassier C, Paccalin M, Page G, et al. mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer’s disease. J Neurochem 2005; 94(1): 215-25.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03187.x] [PMID: 15953364]
[56]
Talboom JS, Velazquez R, Oddo S. The mammalian target of rapamycin at the crossroad between cognitive aging and Alzheimer’s disease. Npj Aging Mecha Dis 2015; 1: 15008.
[57]
Mueed Z, Tandon P, Maurya SK, Deval R, Kamal MA, Poddar NK. Tau and mTOR: The hotspots for multifarious diseases in Alzheimer’s development. Front Neurosci 2019; 12: 1017.
[http://dx.doi.org/10.3389/fnins.2018.01017] [PMID: 30686983]
[58]
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 2018; 217(2): 459-72.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[59]
Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol 2017; 7(12): 7.
[http://dx.doi.org/10.1098/rsob.170228] [PMID: 29237809]
[60]
Steele ML, Robinson SR. Reactive astrocytes give neurons less support: implications for Alzheimer’s disease. Neurobiol Aging 2012; 33(2): 423.e1-423.e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.09.018] [PMID: 21051108]
[61]
Serrano-Pozo A, Gómez-Isla T, Growdon JH, Frosch MP, Hyman BT. A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am J Pathol 2013; 182(6): 2332-44.
[http://dx.doi.org/10.1016/j.ajpath.2013.02.031] [PMID: 23602650]
[62]
Belfiore R, Rodin A, Ferreira E, et al. Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell 2019; 18(1): e12873.
[http://dx.doi.org/10.1111/acel.12873] [PMID: 30488653]
[63]
Zotova E, Holmes C, Johnston D, Neal JW, Nicoll JA, Boche D. Microglial alterations in human Alzheimer’s disease following Aβ42 immunization. Neuropathol Appl Neurobiol 2011; 37(5): 513-24.
[http://dx.doi.org/10.1111/j.1365-2990.2010.01156.x] [PMID: 21166690]
[64]
Zhang L, Xie H, Cui L. Activation of astrocytes and expression of inflammatory cytokines in rats with experimental autoimmune encephalomyelitis. Exp Ther Med 2018; 16(6): 4401-6.
[http://dx.doi.org/10.3892/etm.2018.6798] [PMID: 30546391]
[65]
Su JH, Deng G, Cotman CW. Bax protein expression is increased in Alzheimer’s brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol 1997; 56(1): 86-93.
[http://dx.doi.org/10.1097/00005072-199701000-00009] [PMID: 8990132]
[66]
Salakou S, Kardamakis D, Tsamandas AC, et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo 2007; 21(1): 123-32.
[PMID: 17354625]
[67]
Tai J, Liu W, Li Y, Li L, Hölscher C. Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res 2018; 1678: 64-74.
[http://dx.doi.org/10.1016/j.brainres.2017.10.012] [PMID: 29050859]
[68]
Jordà-Siquier T, Petrel M, Kouskoff V, et al. 2020; APP accumulates around dense-core amyloid plaques with presynaptic proteins in Alzheimer’s disease brain. bioRxiv 2020.2010.2016.342196.
[69]
Yang Y, Kim J, Kim HY, et al. Amyloid-β oligomers may impair SNARE-mediated exocytosis by direct binding to syntaxin 1a. Cell Rep 2015; 12(8): 1244-51.
[http://dx.doi.org/10.1016/j.celrep.2015.07.044] [PMID: 26279571]
[70]
Hunt CA, Schenker LJ, Kennedy MB. PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 1996; 16(4): 1380-8.
[http://dx.doi.org/10.1523/JNEUROSCI.16-04-01380.1996] [PMID: 8778289]
[71]
Carmody LC, Baucum AJ II, Bass MA, Colbran RJ. Selective targeting of the gamma1 isoform of protein phosphatase 1 to F-actin in intact cells requires multiple domains in spinophilin and neurabin. FASEB J 2008; 22(6): 1660-71.
[http://dx.doi.org/10.1096/fj.07-092841] [PMID: 18216290]
[72]
Allen PB, Zachariou V, Svenningsson P, et al. Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience 2006; 140(3): 897-911.
[http://dx.doi.org/10.1016/j.neuroscience.2006.02.067] [PMID: 16600521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy