Abstract
Xanthones or 9H-xanthen-9-ones (dibenzo-γ-pirone) comprise an important class of oxygenated heterocycles whose role is well-known in Medicinal Chemistry. The biological activities of this class of compounds are associated with their tricyclic scaffold but vary depending on the nature and/or position of the different substituents. In this review, an array of biological/pharmacological effects is presented for both natural and synthetic xanthone derivatives, with an emphasis on some significant studies on structure-activity relationships. The antitumor activity of some xanthones as well as the related targets, particularly PKC modulation studies, is also discussed in detail. Examples of the "hit" compounds involved in cancer therapy, namely DMXAA, psorospermin, mangiferin, norathyriol, mangostins, and AH6809, a prostanoid receptor antagonist, are also mentioned. Finally, a historical perspective of these xanthonic derivatives, their relevance as therapeutic agents and/or their uses as pharmacological tools and as extract components in folk medicine are also highlighted.
Keywords: xanthone, xanthenone, heterocycle, antitumor, pkc modulation, structure-activity relationship