Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Structural Understanding of SARS-CoV-2 Drug Targets, Active Site Contour Map Analysis and COVID-19 Therapeutics

Author(s): Chandrabose Selvaraj*, Dhurvas Chandrasekaran Dinesh, Petra Krafcikova, Evzen Boura, Murali Aarthy, Muthuraja Arun Pravin and Sanjeev Kumar Singh*

Volume 15, Issue 2, 2022

Published on: 20 December, 2021

Article ID: e060921196186 Pages: 16

DOI: 10.2174/1874467214666210906125959

Price: $65

Abstract

The pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2), is responsible for multiple worldwide lockdowns, an economic crisis, and a substantial increase in hospitalizations for viral pneumonia along with respiratory failure and multiorgan dysfunctions. Recently, the first few vaccines were approved by World Health Organization (WHO) and can eventually save millions of lives. Even though, few drugs are used in emergency like Remdesivir and several other repurposed drugs, still there is no approved drug for COVID-19. The coronaviral encoded proteins involved in host-cell entry, replication, and host-cell invading mechanism are potential therapeutic targets. This perspective review provides the molecular overview of SARS-CoV-2 life cycle for summarizing potential drug targets, structural insights, active site contour map analyses of those selected SARS-CoV-2 protein targets for drug discovery, immunology, and pathogenesis.

Keywords: SARS-CoV-2, COVID-19, repurposing, FDA, drug targets, antivirals, active site, contour maps, medicinal plants, phytochemicals, TCM, natural products.

Graphical Abstract

[1]
Zheng, J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[2]
Cascella, M. StatPearls; Treasure Island (FL), 2020.
[3]
Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol., 2020, 45(8), 100618.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100618] [PMID: 32439197]
[4]
Bordallo, B.; Bellas, M.; Cortez, A.F.; Vieira, M.; Pinheiro, M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv. Rheumatol., 2020, 60(1), 50.
[http://dx.doi.org/10.1186/s42358-020-00151-7] [PMID: 32962761]
[5]
Lega, S.; Naviglio, S.; Volpi, S.; Tommasini, A. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19. Vaccines (Basel), 2020, 8(2), E224.
[http://dx.doi.org/10.3390/vaccines8020224] [PMID: 32423059]
[6]
Newton-Cheh, C.; Zlotoff, D.A.; Hung, J.; Rupasov, A.; Crowley, J.C.; Funamoto, M. Case 24-2020: A 44-Year-Old Woman with Chest Pain, Dyspnea, and Shock. N. Engl. J. Med., 2020, 383(5), 475-484.
[http://dx.doi.org/10.1056/NEJMcpc2004975] [PMID: 32668103]
[7]
Liu, K.; Zeng, Y.; Xie, P.; Ye, X.; Xu, G.; Liu, J.; Wang, H.; Qian, J. COVID-19 with cystic features on computed tomography: A case report. Medicine (Baltimore), 2020, 99(18), e20175.
[http://dx.doi.org/10.1097/MD.0000000000020175] [PMID: 32358406]
[8]
Sohrabi, C.; Alsafi, Z.; O’fNeill, N.; Khan, M.; Kerwan, A.; Al- Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, 76, 71-76.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[9]
Contini, C.; Di Nuzzo, M.; Barp, N.; Bonazza, A.; De Giorgio, R.; Tognon, M.; Rubino, S. The novel zoonotic COVID-19 pandemic: An expected global health concern. J. Infect. Dev. Ctries., 2020, 14(3), 254-264.
[http://dx.doi.org/10.3855/jidc.12671] [PMID: 32235085]
[10]
Hamid, S.; Mir, M.Y.; Rohela, G.K. Novel coronavirus disease (COVID-19): a pandemic (epidemiology, pathogenesis and potential therapeutics). New Microbes New Infect., 2020, 35, 100679.
[http://dx.doi.org/10.1016/j.nmni.2020.100679] [PMID: 32322401]
[11]
Ye, Z.W.; Yuan, S.; Yuen, K.S.; Fung, S.Y.; Chan, C.P.; Jin, D.Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci., 2020, 16(10), 1686-1697.
[http://dx.doi.org/10.7150/ijbs.45472] [PMID: 32226286]
[12]
Matoba, Y.; Abiko, C.; Ikeda, T.; Aoki, Y.; Suzuki, Y.; Yahagi, K.; Matsuzaki, Y.; Itagaki, T.; Katsushima, F.; Katsushima, Y.; Mizuta, K. Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan. Jpn. J. Infect. Dis., 2015, 68(2), 138-141.
[http://dx.doi.org/10.7883/yoken.JJID.2014.266] [PMID: 25420656]
[13]
Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus, 2020, 12(3), e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[14]
Miyazawa, M. Immunopathogenesis of SARS-CoV-2-induced pneumonia: lessons from influenza virus infection. Inflamm. Regen., 2020, 40, 39.
[http://dx.doi.org/10.1186/s41232-020-00148-1] [PMID: 33062077]
[15]
Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[16]
Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al- Nasser, A.D. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens, 2020, 9(3), E231.
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[17]
Khan, M.I.; Khan, Z.A.; Baig, M.H.; Ahmad, I.; Farouk, A.E.; Song, Y.G.; Dong, J.J. Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight. PLoS One, 2020, 15(9), e0238344.
[http://dx.doi.org/10.1371/journal.pone.0238344] [PMID: 32881907]
[18]
Jaimes, J.A.; Andre, N.M.; Chappie, J.S.; Millet, J.K.; Whittaker, G.R. Phylogenetic Analysis and Structural Modeling of SARS- CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. J. Mol. Biol., 2020, 432(10), 3309-3325.
[http://dx.doi.org/10.1016/j.jmb.2020.04.009] [PMID: 32320687]
[19]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[20]
Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: are they closely related? Clin. Microbiol. Infect., 2020, 26(6), 729-734.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[21]
Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res., 2020, 21(1), 224.
[http://dx.doi.org/10.1186/s12931-020-01479-w] [PMID: 32854739]
[22]
Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020, 26(4), 450-452.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[23]
Hodcroft, E.B.; Domman, D.B.; Snyder, D.J.; Oguntuyo, K.; Van Diest, M.; Densmore, K.H.; Schwalm, K.C.; Femling, J.; Carroll, J.L.; Scott, R.S. Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting amino acid position 677 2021.
[24]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[25]
Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med., 2020, 76, 14-20.
[http://dx.doi.org/10.1016/j.ejim.2020.04.037] [PMID: 32336612]
[26]
Shrimp, J.H.; Kales, S.C.; Sanderson, P.E.; Simeonov, A.; Shen, M.; Hall, M.D. An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19. ACS Pharmacol. Transl. Sci., 2020, 3(5), 997-1007.
[http://dx.doi.org/10.1021/acsptsci.0c00106] [PMID: 33062952]
[27]
Yamamoto, M.; Kiso, M.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Takeda, M.; Kinoshita, N.; Ohmagari, N.; Gohda, J.; Semba, K.; Matsuda, Z.; Kawaguchi, Y.; Kawaoka, Y.; Inoue, J.I. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses, 2020, 12(6), E629.
[http://dx.doi.org/10.3390/v12060629] [PMID: 32532094]
[28]
Pišlar, A.; Mitrović, A.; Sabotič, J.; Pečar Fonović, U.; Perišić Nanut, M.; Jakoš, T.; Senjor, E.; Kos, J. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog., 2020, 16(11), e1009013.
[http://dx.doi.org/10.1371/journal.ppat.1009013] [PMID: 33137165]
[29]
Cannalire, R.; Stefanelli, I.; Cerchia, C.; Beccari, A.R.; Pelliccia, S.; Summa, V. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Int. J. Mol. Sci., 2020, 21(16), E5707.
[http://dx.doi.org/10.3390/ijms21165707] [PMID: 32784899]
[30]
Fung, T.S.; Liu, D.X. Human Coronavirus: Host-Pathogen Interaction. Annu. Rev. Microbiol., 2019, 73, 529-557.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[31]
Astuti, I.; Ysrafil, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[32]
Nakagawa, K.; Lokugamage, K.G.; Makino, S. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells. Adv. Virus Res., 2016, 96, 165-192.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.001] [PMID: 27712623]
[33]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol., 2020, 19, 155-170.
[http://dx.doi.org/10.1038/s41579-020-00468-6]
[34]
Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells, 2020, 9(5), E1267.
[http://dx.doi.org/10.3390/cells9051267] [PMID: 32443810]
[35]
Krafcikova, P.; Silhan, J.; Nencka, R.; Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun., 2020, 11(1), 3717.
[http://dx.doi.org/10.1038/s41467-020-17495-9] [PMID: 32709887]
[36]
Sicari, D.; Chatziioannou, A.; Koutsandreas, T.; Sitia, R.; Chevet, E. Role of the early secretory pathway in SARS-CoV-2 infection. J. Cell Biol., 2020, 219(9), e202006005.
[http://dx.doi.org/10.1083/jcb.202006005]
[37]
Hartenian, E.; Nandakumar, D.; Lari, A.; Ly, M.; Tucker, J.M.; Glaunsinger, B.A. The molecular virology of coronaviruses. J. Biol. Chem., 2020, 295(37), 12910-12934.
[http://dx.doi.org/10.1074/jbc.REV120.013930] [PMID: 32661197]
[38]
Perlman, S. Research Driven by Curiosity: The Journey from Basic Molecular Biology and Virology to Studies of Human Pathogenic Coronaviruses. PLoS Pathog., 2015, 11(7), e1005023.
[http://dx.doi.org/10.1371/journal.ppat.1005023] [PMID: 26172373]
[39]
Haque, S.M.; Ashwaq, O.; Sarief, A.; Azad John Mohamed, A.K. A comprehensive review about SARS-CoV-2. Future Virol., 2020, 15(9), 625-648.
[http://dx.doi.org/10.2217/fvl-2020-0124] [PMID: 33224265]
[40]
Esakandari, H.; Nabi-Afjadi, M.; Fakkari-Afjadi, J.; Farahmandian, N.; Miresmaeili, S.M.; Bahreini, E. A comprehensive review of COVID-19 characteristics. Biol. Proced. Online, 2020, 22, 19.
[http://dx.doi.org/10.1186/s12575-020-00128-2] [PMID: 32774178]
[41]
Pascarella, G.; Strumia, A.; Piliego, C.; Bruno, F.; Del Buono, R.; Costa, F.; Scarlata, S.; Agrò, F.E. COVID-19 diagnosis and management: a comprehensive review. J. Intern. Med., 2020, 288(2), 192-206.
[http://dx.doi.org/10.1111/joim.13091] [PMID: 32348588]
[42]
Decaro, N.; Lorusso, A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet. Microbiol., 2020, 244, 108693.
[http://dx.doi.org/10.1016/j.vetmic.2020.108693] [PMID: 32402329]
[43]
Zhang, T.; Wu, Q.; Zhang, Z. Probable Pangolin Origin of SARS- CoV-2 Associated with the COVID-19 Outbreak. Curr. Biol., 2020, 30(7), 1346-1351.e2.
[http://dx.doi.org/10.1016/j.cub.2020.03.022] [PMID: 32197085]
[44]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[45]
Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J., 2020, 19, 410-417.
[PMID: 32210742]
[46]
Henderson, R.; Edwards, R.J.; Mansouri, K.; Janowska, K.; Stalls, V.; Gobeil, S.M.C.; Kopp, M.; Li, D.; Parks, R.; Hsu, A.L.; Borgnia, M.J.; Haynes, B.F.; Acharya, P. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol., 2020, 27(10), 925-933.
[http://dx.doi.org/10.1038/s41594-020-0479-4] [PMID: 32699321]
[47]
Li, X.; Giorgi, E.E.; Marichann, M.H.; Foley, B.; Xiao, C.; Kong, X.P.; Chen, Y.; Korber, B.; Gao, F Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection. bioRxiv, Preprint., 2020.
[http://dx.doi.org/10.1101/2020.03.20.000885] [PMID: 32511348]
[48]
Cagliani, R.; Forni, D.; Clerici, M.; Sironi, M. Computational Inference of Selection Underlying the Evolution of the Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2. J. Virol., 2020, 94(12), e00411-20.
[http://dx.doi.org/10.1128/JVI.00411-20] [PMID: 32238584]
[49]
Davidson, A.M.; Wysocki, J.; Batlle, D. Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications. Hypertension, 2020, 76(5), 1339-1349.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15256] [PMID: 32851855]
[50]
Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol., 2020, 17(6), 613-620.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[51]
Valencia, I.; Peiró, C.; Lorenzo, Ó.; Sánchez-Ferrer, C.F.; Eckel, J.; Romacho, T. DPP4 and ACE2 in Diabetes and COVID-19: Therapeutic Targets for Cardiovascular Complications? Front. Pharmacol., 2020, 11, 1161.
[http://dx.doi.org/10.3389/fphar.2020.01161] [PMID: 32848769]
[52]
Boni, M.F.; Lemey, P.; Jiang, X.; Lam, T.T.; Perry, B.W.; Castoe, T.A.; Rambaut, A.; Robertson, D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol., 2020, 5(11), 1408-1417.
[http://dx.doi.org/10.1038/s41564-020-0771-4] [PMID: 32724171]
[53]
Singh, P.K.; Kulsum, U.; Rufai, S.B.; Mudliar, S.R.; Singh, S. Mutations in SARS-CoV-2 Leading to Antigenic Variations in Spike Protein: A Challenge in Vaccine Development. J. Lab. Physicians, 2020, 12(2), 154-160.
[http://dx.doi.org/10.1055/s-0040-1715790] [PMID: 32884216]
[54]
Sironi, M.; Hasnain, S.E.; Rosenthal, B.; Phan, T.; Luciani, F.; Shaw, M.A.; Sallum, M.A.; Mirhashemi, M.E.; Morand, S.; González-Candelas, F. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infect. Genet. Evol., 2020, 84, 104384.
[http://dx.doi.org/10.1016/j.meegid.2020.104384] [PMID: 32473976]
[55]
Islam, M.R.; Hoque, M.N.; Rahman, M.S.; Alam, A.S.M.R.U.; Akther, M.; Puspo, J.A.; Akter, S.; Sultana, M.; Crandall, K.A.; Hossain, M.A. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci. Rep., 2020, 10(1), 14004.
[http://dx.doi.org/10.1038/s41598-020-70812-6] [PMID: 32814791]
[56]
Shah, V.K.; Firmal, P.; Alam, A.; Ganguly, D.; Chattopadhyay, S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front. Immunol., 2020, 11, 1949.
[http://dx.doi.org/10.3389/fimmu.2020.01949] [PMID: 32849654]
[57]
Benedetti, F.; Snyder, G.A.; Giovanetti, M.; Angeletti, S.; Gallo, R.C.; Ciccozzi, M.; Zella, D. Emerging of a SARS-CoV-2 viral strain with a deletion in nsp1. J. Transl. Med., 2020, 18(1), 329.
[http://dx.doi.org/10.1186/s12967-020-02507-5] [PMID: 32867854]
[58]
Sa Ribero, M.; Jouvenet, N.; Dreux, M.; Nisole, S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog., 2020, 16(7), e1008737.
[http://dx.doi.org/10.1371/journal.ppat.1008737] [PMID: 32726355]
[59]
Daniloski, Z.; Jordan, T.X.; Wessels, H.H.; Hoagland, D.A.; Kasela, S.; Legut, M.; Maniatis, S.; Mimitou, E.P.; Lu, L.; Geller, E. Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell, 2021, 184(1), 92-105.e16.
[http://dx.doi.org/10.1016/j.cell.2020.10.030] [PMID: 33147445]
[60]
Vankadari, N.; Jeyasankar, N.N.; Lopes, W.J. Structure of the SARS-CoV-2 Nsp1/5′-Untranslated Region Complex and Implications for Potential Therapeutic Targets, a Vaccine, and Virulence. J. Phys. Chem. Lett., 2020, 11(22), 9659-9668.
[http://dx.doi.org/10.1021/acs.jpclett.0c02818] [PMID: 33135884]
[61]
Min, Y.Q.; Mo, Q.; Wang, J.; Deng, F.; Wang, H.; Ning, Y.J. SARS-CoV-2 nsp1: Bioinformatics, Potential Structural and Functional Features, and Implications for Drug/Vaccine Designs. Front. Microbiol., 2020, 11, 587317.
[http://dx.doi.org/10.3389/fmicb.2020.587317] [PMID: 33133055]
[62]
Schubert, K.; Karousis, E.D.; Jomaa, A.; Scaiola, A.; Echeverria, B.; Gurzeler, L.A.; Leibundgut, M.; Thiel, V.; Mühlemann, O.; Ban, N. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol., 2020, 27(10), 959-966.
[http://dx.doi.org/10.1038/s41594-020-0511-8] [PMID: 32908316]
[63]
Helmy, Y.A.; Fawzy, M.; Elaswad, A.; Sobieh, A.; Kenney, S.P.; Shehata, A.A. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J. Clin. Med., 2020, 9(4), E1225.
[http://dx.doi.org/10.3390/jcm9041225] [PMID: 32344679]
[64]
Parlikar, A.; Kalia, K.; Sinha, S.; Patnaik, S.; Sharma, N.; Vemuri, S.G.; Sharma, G. Understanding genomic diversity, pan-genome, and evolution of SARS-CoV-2. PeerJ, 2020, 8, e9576.
[http://dx.doi.org/10.7717/peerj.9576] [PMID: 32742815]
[65]
Perrin-Cocon, L.; Diaz, O.; Jacquemin, C.; Barthel, V.; Ogire, E.; Ramière, C.; Andre, P.; Lotteau, V.; Vidalain, P.O. The current landscape of coronavirus-host proteiN-protein interactions. J. Transl. Med., 2020, 18(1), 319.
[http://dx.doi.org/10.1186/s12967-020-02480-z] [PMID: 32811513]
[66]
Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res., 2018, 149, 58-74.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.001] [PMID: 29128390]
[67]
Angeletti, S.; Benvenuto, D.; Bianchi, M.; Giovanetti, M.; Pascarella, S.; Ciccozzi, M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J. Med. Virol., 2020, 92(6), 584-588.
[http://dx.doi.org/10.1002/jmv.25719] [PMID: 32083328]
[68]
Frick, D.N.; Virdi, R.S.; Vuksanovic, N.; Dahal, N.; Silvaggi, N.R. Molecular Basis for ADP-Ribose Binding to the Mac1 Domain of SARS-CoV-2 nsp3. Biochemistry, 2020, 59(28), 2608-2615.
[http://dx.doi.org/10.1021/acs.biochem.0c00309] [PMID: 32578982]
[69]
Gao, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B, 2020.
[http://dx.doi.org/10.1016/j.apsb.2020.08.014] [PMID: 32895623]
[70]
Debnath, P.; Debnath, B.; Bhaumik, S.; Debnath, S. In Silico Identification of Potential Inhibitors of ADP-Ribose Phosphatase of SARS-CoV-2 nsP3 by Combining E-Pharmacophore- and Receptor-Based Virtual Screening of Database. ChemistrySelect, 2020, 5(30), 9388-9398.
[http://dx.doi.org/10.1002/slct.202001419] [PMID: 32835090]
[71]
Giri, R.; Bhardwaj, T.; Shegane, M.; Gehi, B.R.; Kumar, P.; Gadhave, K.; Oldfield, C.J.; Uversky, V.N. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell. Mol. Life Sci., 2020.
[http://dx.doi.org/10.1007/s00018-020-03603-x] [PMID: 32712910]
[72]
Krichel, B.; Falke, S.; Hilgenfeld, R.; Redecke, L.; Uetrecht, C. Processing of the SARS-CoV pp1a/ab nsp7-10 region. Biochem. J., 2020, 477(5), 1009-1019.
[http://dx.doi.org/10.1042/BCJ20200029] [PMID: 32083638]
[73]
Kundu, D.; Selvaraj, C.; Singh, S.K.; Dubey, V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn., 2021, 39(9), 3428-3434.
[http://dx.doi.org/10.1080/07391102.2020.1763202] [PMID: 32362243]
[74]
Nayarisseri, A.; Khandelwal, R.; Madhavi, M.; Selvaraj, C.; Panwar, U.; Sharma, K.; Hussain, T.; Singh, S.K. Shape-based Machine Learning Models for the Potential Novel COVID-19 Protease Inhibitors Assisted by Molecular Dynamics Simulation. Curr. Top. Med. Chem., 2020, 20(24), 2146-2167.
[http://dx.doi.org/10.2174/1568026620666200704135327] [PMID: 32621718]
[75]
Shree, P.; Mishra, P.; Selvaraj, C.; Singh, S.K.; Chaube, R.; Garg, N.; Tripathi, Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J. Biomol. Struct. Dyn., 2020, 1, 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[76]
Santerre, M.; Arjona, S.P.; Allen, C.N.; Shcherbik, N.; Sawaya, B.E. Why do SARS-CoV-2 NSPs rush to the ER? J. Neurol., 2020, 268(6), 2013-2022.
[http://dx.doi.org/10.1007/s00415-020-10197-8] [PMID: 32870373]
[77]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; Ge, J.; Zheng, L.; Zhang, Y.; Wang, H.; Zhu, Y.; Zhu, C.; Hu, T.; Hua, T.; Zhang, B.; Yang, X.; Li, J.; Yang, H.; Liu, Z.; Xu, W.; Guddat, L.W.; Wang, Q.; Lou, Z.; Rao, Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368(6492), 779-782.
[http://dx.doi.org/10.1126/science.abb7498] [PMID: 32277040]
[78]
Wang, Q.; Wu, J.; Wang, H.; Gao, Y.; Liu, Q.; Mu, A.; Ji, W.; Yan, L.; Zhu, Y.; Zhu, C.; Fang, X.; Yang, X.; Huang, Y.; Gao, H.; Liu, F.; Ge, J.; Sun, Q.; Yang, X.; Xu, W.; Liu, Z.; Yang, H.; Lou, Z.; Jiang, B.; Guddat, L.W.; Gong, P.; Rao, Z. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 2020, 182(2), 417-428.e13.
[http://dx.doi.org/10.1016/j.cell.2020.05.034] [PMID: 32526208]
[79]
Konkolova, E.; Dejmek, M.; Hřebabecký, H.; Šála, M.; Böserle, J.; Nencka, R.; Boura, E. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Res., 2020, 182, 104899.
[http://dx.doi.org/10.1016/j.antiviral.2020.104899] [PMID: 32763313]
[80]
Konkolova, E.; Klima, M.; Nencka, R.; Boura, E. Structural analysis of the putative SARS-CoV-2 primase complex. J. Struct. Biol., 2020, 211(2), 107548.
[http://dx.doi.org/10.1016/j.jsb.2020.107548] [PMID: 32535228]
[81]
Diosa-Toro, M.; Prasanth, K.R.; Bradrick, S.S.; Garcia Blanco, M.A. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol. J., 2020, 17(1), 60.
[http://dx.doi.org/10.1186/s12985-020-01329-7] [PMID: 32334603]
[82]
Asghari, A.; Naseri, M.; Safari, H.; Saboory, E.; Parsamanesh, N. The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA Cell Biol., 2020, 39(10), 1741-1753.
[http://dx.doi.org/10.1089/dna.2020.5703] [PMID: 32716648]
[83]
Encinar, J.A.; Menendez, J.A. Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2′-O-Methylation of Viral RNA. Viruses, 2020, 12(5), E525.
[http://dx.doi.org/10.3390/v12050525] [PMID: 32397643]
[84]
Cavasotto, C.N.; Lamas, M.S.; Maggini, J. Functional and druggability analysis of the SARS-CoV-2 proteome. Eur. J. Pharmacol., 2020, 173705
[http://dx.doi.org/10.1016/j.ejphar.2020.173705] [PMID: 33137330]
[85]
Jiang, Y.; Yin, W.; Xu, H.E. RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochem. Biophys. Res. Commun., 2020.
[http://dx.doi.org/10.1016/j.bbrc.2020.08.116] [PMID: 32943188]
[86]
Aftab, S.O.; Ghouri, M.Z.; Masood, M.U.; Haider, Z.; Khan, Z.; Ahmad, A.; Munawar, N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med., 2020, 18(1), 275.
[http://dx.doi.org/10.1186/s12967-020-02439-0] [PMID: 32635935]
[87]
Adedeji, A.O.; Marchand, B.; Te Velthuis, A.J.; Snijder, E.J.; Weiss, S.; Eoff, R.L.; Singh, K.; Sarafianos, S.G. Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One, 2012, 7(5), e36521.
[http://dx.doi.org/10.1371/journal.pone.0036521] [PMID: 22615777]
[88]
Ogando, N.S.; Zevenhoven-Dobbe, J.C.; van der Meer, Y.; Bredenbeek, P.J.; Posthuma, C.C.; Snijder, E.J. The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2. J. Virol., 2020, 94(23), e01246-20.
[http://dx.doi.org/10.1128/JVI.01246-20] [PMID: 32938769]
[89]
Case, J.B.; Ashbrook, A.W.; Dermody, T.S.; Denison, M.R. Mutagenesis of S-Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity. J. Virol., 2016, 90(16), 7248-7256.
[http://dx.doi.org/10.1128/JVI.00542-16] [PMID: 27252528]
[90]
Kim, Y.; Jedrzejczak, R.; Maltseva, N.I.; Wilamowski, M.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci., 2020, 29(7), 1596-1605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[91]
Liya, G.; Yuguang, W.; Jian, L.; Huaiping, Y.; Xue, H.; Jianwei, H.; Jiaju, M.; Youran, L.; Chen, M.; Yiqing, J. Studies on viral pneumonia related to novel coronavirus SARS-CoV-2, SARS- CoV, and MERS-CoV: a literature review. APMIS, 2020, 128(6), 423-432.
[http://dx.doi.org/10.1111/apm.13047] [PMID: 32363707]
[92]
Lu, Y.; Cai, H.; Lu, M.; Ma, Y.; Li, A.; Gao, Y.; Zhou, J.; Gu, H.; Li, J.; Gu, J. Porcine Epidemic Diarrhea Virus Deficient in RNA Cap Guanine-N-7 Methylation Is Attenuated and Induces Higher Type I and III Interferon Responses. J. Virol., 2020, 94(16), e00447-20.
[http://dx.doi.org/10.1128/JVI.00447-20] [PMID: 32461321]
[93]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[94]
Kandeel, M.; Ibrahim, A.; Fayez, M.; Al-Nazawi, M. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. J. Med. Virol., 2020, 92(6), 660-666.
[http://dx.doi.org/10.1002/jmv.25754] [PMID: 32159237]
[95]
Sasidharan, S.; Selvaraj, C.; Singh, S.K.; Dubey, V.K.; Kumar, S.; Fialho, A.M.; Saudagar, P. Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: insights from molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2020, 1, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1787864] [PMID: 32619162]
[96]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[97]
Sigrist, C.J.; Bridge, A.; Le Mercier, P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res., 2020, 177, 104759.
[http://dx.doi.org/10.1016/j.antiviral.2020.104759] [PMID: 32130973]
[98]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS- CoV-2 Spike Glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[99]
Zhou, H.; Chen, X.; Hu, T.; Li, J.; Song, H.; Liu, Y.; Wang, P.; Liu, D.; Yang, J.; Holmes, E.C.; Hughes, A.C.; Bi, Y.; Shi, W. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr. Biol., 2020, 30(11), 2196-2203.e3.
[http://dx.doi.org/10.1016/j.cub.2020.05.023] [PMID: 32416074]
[100]
Greaney, A.J.; Starr, T.N.; Gilchuk, P.; Zost, S.J.; Binshtein, E.; Loes, A.N.; Hilton, S.K.; Huddleston, J.; Eguia, R.; Crawford, K.H.D. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe, 2020, 29(1), 44-57.e9.
[http://dx.doi.org/10.1016/j.chom.2020.11.007] [PMID: 33259788]
[101]
Messina, F.; Giombini, E.; Agrati, C.; Vairo, F.; Ascoli Bartoli, T.; Al Moghazi, S.; Piacentini, M.; Locatelli, F.; Kobinger, G.; Maeurer, M.; Zumla, A.; Capobianchi, M.R.; Lauria, F.N.; Ippolito, G. COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. J. Transl. Med., 2020, 18(1), 233.
[http://dx.doi.org/10.1186/s12967-020-02405-w] [PMID: 32522207]
[102]
Bianchi, M.; Benvenuto, D.; Giovanetti, M.; Angeletti, S.; Ciccozzi, M.; Pascarella, S. Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics? BioMed Res. Int., 2020, 2020, 4389089.
[http://dx.doi.org/10.1155/2020/4389089] [PMID: 32596311]
[103]
Ujike, M.; Taguchi, F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses, 2015, 7(4), 1700-1725.
[http://dx.doi.org/10.3390/v7041700] [PMID: 25855243]
[104]
Baruah, V.; Bose, S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J. Med. Virol., 2020, 92(5), 495-500.
[http://dx.doi.org/10.1002/jmv.25698] [PMID: 32022276]
[105]
Liu, W.; Liu, L.; Kou, G.; Zheng, Y.; Ding, Y.; Ni, W.; Wang, Q.; Tan, L.; Wu, W.; Tang, S.; Xiong, Z.; Zheng, S. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J. Clin. Microbiol., 2020, 58(6), e00461-20.
[http://dx.doi.org/10.1128/JCM.00461-20] [PMID: 32229605]
[106]
Mu, J.; Xu, J.; Zhang, L.; Shu, T.; Wu, D.; Huang, M.; Ren, Y.; Li, X.; Geng, Q.; Xu, Y.; Qiu, Y.; Zhou, X. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Sci. China Life Sci., 2020, 63(9), 1413-1416.
[http://dx.doi.org/10.1007/s11427-020-1692-1] [PMID: 32291557]
[107]
Zeng, W.; Liu, G.; Ma, H.; Zhao, D.; Yang, Y.; Liu, M.; Mohammed, A.; Zhao, C.; Yang, Y.; Xie, J.; Ding, C.; Ma, X.; Weng, J.; Gao, Y.; He, H.; Jin, T. Biochemical characterization of SARS- CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun., 2020, 527(3), 618-623.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.136] [PMID: 32416961]
[108]
Dinesh, D.C.; Chalupska, D.; Silhan, J.; Koutna, E.; Nencka, R.; Veverka, V.; Boura, E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog., 2020, 16(12), e1009100.
[http://dx.doi.org/10.1371/journal.ppat.1009100] [PMID: 33264373]
[109]
Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; Yan, Y.; Zhang, C.; Shan, H.; Chen, S. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B, 2020, 10(7), 1228-1238.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[110]
Zinzula, L.; Basquin, J.; Bohn, S.; Beck, F.; Klumpe, S.; Pfeifer, G.; Nagy, I.; Bracher, A.; Hartl, F.U.; Baumeister, W. High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochem. Biophys. Res. Commun., 2021, 538, 54-62.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.131] [PMID: 33039147]
[111]
Rahman, M.S.; Islam, M.R.; Alam, A.; Islam, I.; Hoque, M.N.; Akter, S.; Rahaman, M.M.; Sultana, M.; Hossain, M.A. Evolutionary dynamics of SARS-CoV-2 nucleocapsid protein and its consequences. J. Med. Virol., 2020, 93(4), 2177-2195.
[http://dx.doi.org/10.1002/jmv.26626] [PMID: 33095454]
[112]
Llanes, A.; Restrepo, C.M.; Caballero, Z.; Rajeev, S.; Kennedy, M.A.; Lleonart, R. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. Int. J. Mol. Sci., 2020, 21(12), E4546.
[http://dx.doi.org/10.3390/ijms21124546] [PMID: 32604724]
[113]
Baruah, C.; Devi, P.; Sharma, D.K. Sequence Analysis and Structure Prediction of SARS-CoV-2 Accessory Proteins 9b and ORF14: Evolutionary Analysis Indicates Close Relatedness to Bat Coronavirus. BioMed Res. Int., 2020, 2020, 7234961.
[http://dx.doi.org/10.1155/2020/7234961] [PMID: 33102591]
[114]
Tan, Y.J.; Lim, S.G.; Hong, W. Characterization of viral proteins encoded by the SARS-coronavirus genome. Antiviral Res., 2005, 65(2), 69-78.
[http://dx.doi.org/10.1016/j.antiviral.2004.10.001] [PMID: 15708633]
[115]
Michel, C.J.; Mayer, C.; Poch, O.; Thompson, J.D. Characterization of accessory genes in coronavirus genomes. Virol. J., 2020, 17(1), 131.
[http://dx.doi.org/10.1186/s12985-020-01402-1] [PMID: 32854725]
[116]
Konno, Y.; Kimura, I.; Uriu, K.; Fukushi, M.; Irie, T.; Koyanagi, Y.; Sauter, D.; Gifford, R.J.; Nakagawa, S.; Sato, K. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Rep., 2020, 32(12), 108185.
[http://dx.doi.org/10.1016/j.celrep.2020.108185] [PMID: 32941788]
[117]
Xia, H.; Cao, Z.; Xie, X.; Zhang, X.; Chen, J.Y.; Wang, H.; Menachery, V.D.; Rajsbaum, R.; Shi, P.Y. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep., 2020, 33(1), 108234.
[http://dx.doi.org/10.1016/j.celrep.2020.108234] [PMID: 32979938]
[118]
Taefehshokr, N.; Taefehshokr, S.; Hemmat, N.; Heit, B. Covid-19: Perspectives on Innate Immune Evasion. Front. Immunol., 2020, 11, 580641.
[http://dx.doi.org/10.3389/fimmu.2020.580641] [PMID: 33101306]
[119]
Kikkert, M. Innate Immune Evasion by Human Respiratory RNA Viruses. J. Innate Immun., 2020, 12(1), 4-20.
[http://dx.doi.org/10.1159/000503030] [PMID: 31610541]
[120]
Shibabaw, T.; Molla, M.D.; Teferi, B.; Ayelign, B. Role of IFN and Complements System: Innate Immunity in SARS-CoV-2. J. Inflamm. Res., 2020, 13, 507-518.
[http://dx.doi.org/10.2147/JIR.S267280] [PMID: 32982366]
[121]
Miorin, L.; Kehrer, T.; Sanchez-Aparicio, M.T.; Zhang, K.; Cohen, P.; Patel, R.S.; Cupic, A.; Makio, T.; Mei, M.; Moreno, E.; Danziger, O.; White, K.M.; Rathnasinghe, R.; Uccellini, M.; Gao, S.; Aydillo, T.; Mena, I.; Yin, X.; Martin-Sancho, L.; Krogan, N.J.; Chanda, S.K.; Schotsaert, M.; Wozniak, R.W.; Ren, Y.; Rosenberg, B.R.; Fontoura, B.M.A.; García-Sastre, A. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc. Natl. Acad. Sci. USA, 2020, 117(45), 28344-28354.
[http://dx.doi.org/10.1073/pnas.2016650117] [PMID: 33097660]
[122]
Taylor, J.K.; Coleman, C.M.; Postel, S.; Sisk, J.M.; Bernbaum, J.G.; Venkataraman, T.; Sundberg, E.J.; Frieman, M.B. Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference. J. Virol., 2015, 89(23), 11820-11833.
[http://dx.doi.org/10.1128/JVI.02274-15] [PMID: 26378163]
[123]
Waheed, A.A.; Gitzen, A.; Swiderski, M.; Freed, E.O. High-Mannose But Not Complex-Type Glycosylation of Tetherin Is Required for Restriction of HIV-1 Release. Viruses, 2018, 10(1), E26.
[http://dx.doi.org/10.3390/v10010026] [PMID: 29303997]
[124]
Ogando, N.S.; Dalebout, T.J.; Zevenhoven-Dobbe, J.C.; Limpens, R.W.A.L.; van der Meer, Y.; Caly, L.; Druce, J.; de Vries, J.J.C.; Kikkert, M.; Bárcena, M.; Sidorov, I.; Snijder, E.J. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol., 2020, 101(9), 925-940.
[http://dx.doi.org/10.1099/jgv.0.001453] [PMID: 32568027]
[125]
Shi, C.S.; Qi, H.Y.; Boularan, C.; Huang, N.N.; Abu-Asab, M.; Shelhamer, J.H.; Kehrl, J.H. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J. Immunol., 2014, 193(6), 3080-3089.
[http://dx.doi.org/10.4049/jimmunol.1303196] [PMID: 25135833]
[126]
Cavalcante-Silva, L.H.A.; Carvalho, D.C.M.; Lima, E.A.; Galvão, J.G.F.M.; da Silva, J.S.F.; Sales-Neto, J.M.; Rodrigues-Mascarenhas, S. Neutrophils and COVID-19: The road so far. Int. Immunopharmacol., 2021, 90, 107233.
[http://dx.doi.org/10.1016/j.intimp.2020.107233] [PMID: 33290963]
[127]
Gatti, P.; Ilamathi, H.S.; Todkar, K.; Germain, M. Mitochondria Targeted Viral Replication and Survival Strategies-Prospective on SARS-CoV-2. Front. Pharmacol., 2020, 11, 578599.
[http://dx.doi.org/10.3389/fphar.2020.578599] [PMID: 32982760]
[128]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[129]
Neuman, B.W. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles. Antiviral Res., 2016, 135, 97-107.
[http://dx.doi.org/10.1016/j.antiviral.2016.10.005] [PMID: 27743916]
[130]
Littler, D.R.; MacLachlan, B.J.; Watson, G.M.; Vivian, J.P.; Gully, B.S. A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Biochem. Soc. Trans., 2020, 48(6), 2625-2641.
[http://dx.doi.org/10.1042/BST20200396] [PMID: 33258925]
[131]
Alhammad, Y.M.O.; Fehr, A.R. The Viral Macrodomain Counters Host Antiviral ADP-Ribosylation. Viruses, 2020, 12(4), E384.
[http://dx.doi.org/10.3390/v12040384] [PMID: 32244383]
[132]
Grunewald, M.E.; Chen, Y.; Kuny, C.; Maejima, T.; Lease, R.; Ferraris, D.; Aikawa, M.; Sullivan, C.S.; Perlman, S.; Fehr, A.R. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog., 2019, 15(5), e1007756.
[http://dx.doi.org/10.1371/journal.ppat.1007756] [PMID: 31095648]
[133]
Fehr, A.R.; Jankevicius, G.; Ahel, I.; Perlman, S. Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends Microbiol., 2018, 26(7), 598-610.
[http://dx.doi.org/10.1016/j.tim.2017.11.011] [PMID: 29268982]
[134]
Alhammad, Y.M.O.; Kashipathy, M.M.; Roy, A.; Gagne, J.P.; McDonald, P.; Gao, P.; Nonfoux, L.; Battaile, K.P.; Johnson, D.K.; Holmstrom, E.D. The SARS-CoV-2 conserved macrodomain is a mono-ADP-ribosylhydrolase. J. Virol., 2021, 95(3), e01969-20.
[http://dx.doi.org/10.1128/JVI.01969-20] [PMID: 33158944]
[135]
Selvaraj, C.; Dinesh, D.C.; Panwar, U.; Boura, E.; Singh, S.K. High-throughput screening and quantum mechanics for identifying potent inhibitors against Mac1 domain of SARS-CoV-2 Nsp3. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 18(4), 1262-1270.
[http://dx.doi.org/10.1109/TCBB.2020.3037136]
[136]
Selvaraj, C.; Omer, A.; Singh, P.; Singh, S.K. Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors. Mol. Biosyst., 2015, 11(1), 178-189.
[http://dx.doi.org/10.1039/C4MB00486H] [PMID: 25335799]
[137]
Gioia, M.; Ciaccio, C.; Calligari, P.; De Simone, G.; Sbardella, D.; Tundo, G.; Fasciglione, G.F.; Di Masi, A.; Di Pierro, D.; Bocedi, A.; Ascenzi, P.; Coletta, M. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochem. Pharmacol., 2020, 182, 114225.
[http://dx.doi.org/10.1016/j.bcp.2020.114225] [PMID: 32956643]
[138]
Hilgenfeld, R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J., 2014, 281(18), 4085-4096.
[http://dx.doi.org/10.1111/febs.12936] [PMID: 25039866]
[139]
Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[140]
Macchiagodena, M.; Pagliai, M.; Procacci, P. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chem. Phys. Lett., 2020, 750, 137489.
[http://dx.doi.org/10.1016/j.cplett.2020.137489] [PMID: 32313296]
[141]
Sacco, M.D.; Ma, C.; Lagarias, P.; Gao, A.; Townsend, J.A.; Meng, X.; Dube, P.; Zhang, X.; Hu, Y.; Kitamura, N.; Hurst, B.; Tarbet, B.; Marty, M.T.; Kolocouris, A.; Xiang, Y.; Chen, Y.; Wang, J. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sci. Adv., 2020, 6(50), eabe0751.
[http://dx.doi.org/10.1126/sciadv.abe0751] [PMID: 33158912]
[142]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS- CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[143]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[144]
Li, Z.; Li, X.; Huang, Y.Y.; Wu, Y.; Liu, R.; Zhou, L.; Lin, Y.; Wu, D.; Zhang, L.; Liu, H.; Xu, X.; Yu, K.; Zhang, Y.; Cui, J.; Zhan, C.G.; Wang, X.; Luo, H.B. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc. Natl. Acad. Sci. USA, 2020, 117(44), 27381-27387.
[http://dx.doi.org/10.1073/pnas.2010470117] [PMID: 33051297]
[145]
Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L.W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol., 2020, 27(6), 529-532.
[http://dx.doi.org/10.1038/s41594-020-0440-6] [PMID: 32382072]
[146]
Estrada, E. Topological analysis of SARS CoV-2 main protease. Chaos, 2020, 30(6), 061102.
[http://dx.doi.org/10.1063/5.0013029] [PMID: 32611087]
[147]
Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds. Mol. Inform., 2020, 39(8), e2000028.
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[148]
Kneller, D.W.; Phillips, G.; Weiss, K.L.; Pant, S.; Zhang, Q.; O’Neill, H.M.; Coates, L.; Kovalevsky, A. Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography. J. Biol. Chem., 2020, 295(50), 17365-17373.
[http://dx.doi.org/10.1074/jbc.AC120.016154] [PMID: 33060199]
[149]
Kneller, D.W.; Phillips, G.; O’Neill, H.M.; Tan, K.; Joachimiak, A.; Coates, L.; Kovalevsky, A. Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL Mpro: insights into enzyme mechanism and drug design. IUCrJ, 2020, 7(Pt 6), 1028-1035.
[http://dx.doi.org/10.1107/S2052252520012634] [PMID: 33063790]
[150]
Kneller, D.W.; Phillips, G.; Kovalevsky, A.; Coates, L. Room-temperature neutron and X-ray data collection of 3CL Mpro from SARS-CoV-2. Acta Crystallogr. F Struct. Biol. Commun., 2020, 76(Pt 10), 483-487.
[http://dx.doi.org/10.1107/S2053230X20011814] [PMID: 33006576]
[151]
Singh, E.; Khan, R.J.; Jha, R.K.; Amera, G.M.; Jain, M.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. J. Genet. Eng. Biotechnol., 2020, 18(1), 69.
[http://dx.doi.org/10.1186/s43141-020-00085-z] [PMID: 33141358]
[152]
Forrestall, K.L.; Burley, D.E.; Cash, M.K.; Pottie, I.R.; Darvesh, S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem. Biol. Interact., 2021, 335(1), 109348.
[http://dx.doi.org/10.1016/j.cbi.2020.109348] [PMID: 33278462]
[153]
Bafna, K.; Krug, R.M.; Montelione, G.T. Structural Similarity of SARS-CoV2 M(pro) and HCV NS3/4A Proteases Suggests New Approaches for Identifying Existing Drugs Useful as COVID-19 Therapeutics ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12153615] [PMID: 32511291]
[154]
Selvaraj, C.; Panwar, U.; Dinesh, D.C.; Boura, E.; Singh, P.; Dubey, V.K.; Singh, S.K.J.F.C.; Microsecond, M.D. Simulation and Multiple-Confirmation Virtual Screening to Identify Potential Anti-COVID-19 Inhibitors Against SARS-CoV-2 Main Protease. Front Chem., 2020, 8, 1179.
[155]
Viswanathan, T.; Arya, S.; Chan, S.H.; Qi, S.; Dai, N.; Misra, A.; Park, J.G.; Oladunni, F.; Kovalskyy, D.; Hromas, R.A.; Martinez- Sobrido, L.; Gupta, Y.K. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun., 2020, 11(1), 3718.
[http://dx.doi.org/10.1038/s41467-020-17496-8] [PMID: 32709886]
[156]
Bouvet, M.; Lugari, A.; Posthuma, C.C.; Zevenhoven, J.C.; Bernard, S.; Betzi, S.; Imbert, I.; Canard, B.; Guillemot, J.C.; Lecine, P.; Pfefferle, S.; Drosten, C.; Snijder, E.J.; Decroly, E.; Morelli, X. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J. Biol. Chem., 2014, 289(37), 25783-25796.
[http://dx.doi.org/10.1074/jbc.M114.577353] [PMID: 25074927]
[157]
Rosas-Lemus, M.; Minasov, G.; Shuvalova, L.; Inniss, N.L.; Kiryukhina, O.; Brunzelle, J.; Satchell, K.J.F. High-resolution structures of the SARS-CoV-2 2′-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci. Signal., 2020, 13(651), eabe1202.
[http://dx.doi.org/10.1126/scisignal.abe1202] [PMID: 32994211]
[158]
Ma, Y.; Wu, L.; Shaw, N.; Gao, Y.; Wang, J.; Sun, Y.; Lou, Z.; Yan, L.; Zhang, R.; Rao, Z. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc. Natl. Acad. Sci. USA, 2015, 112(30), 9436-9441.
[http://dx.doi.org/10.1073/pnas.1508686112] [PMID: 26159422]
[159]
Chen, Y.; Su, C.; Ke, M.; Jin, X.; Xu, L.; Zhang, Z.; Wu, A.; Sun, Y.; Yang, Z.; Tien, P.; Ahola, T.; Liang, Y.; Liu, X.; Guo, D. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog., 2011, 7(10), e1002294.
[http://dx.doi.org/10.1371/journal.ppat.1002294] [PMID: 22022266]
[160]
Selvaraj, C.; Dinesh, D.C.; Panwar, U.; Abhirami, R.; Boura, E.; Singh, S.K. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J. Biomol. Struct. Dyn., 2020, 1, 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1778535] [PMID: 32567979]
[161]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.A.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug Targets and Potential Treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[162]
Egloff, M.P.; Benarroch, D.; Selisko, B.; Romette, J.L.; Canard, B. An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J., 2002, 21(11), 2757-2768.
[http://dx.doi.org/10.1093/emboj/21.11.2757] [PMID: 12032088]
[163]
Hercik, K.; Brynda, J.; Nencka, R.; Boura, E. Structural basis of Zika virus methyltransferase inhibition by sinefungin. Arch. Virol., 2017, 162(7), 2091-2096.
[http://dx.doi.org/10.1007/s00705-017-3345-x] [PMID: 28357511]
[164]
Bouvet, M.; Debarnot, C.; Imbert, I.; Selisko, B.; Snijder, E.J.; Canard, B.; Decroly, E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog., 2010, 6(4), e1000863.
[http://dx.doi.org/10.1371/journal.ppat.1000863] [PMID: 20421945]
[165]
Sevajol, M.; Subissi, L.; Decroly, E.; Canard, B.; Imbert, I. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res., 2014, 194, 90-99.
[http://dx.doi.org/10.1016/j.virusres.2014.10.008] [PMID: 25451065]
[166]
Decroly, E.; Debarnot, C.; Ferron, F.; Bouvet, M.; Coutard, B.; Imbert, I.; Gluais, L.; Papageorgiou, N.; Sharff, A.; Bricogne, G.; Ortiz-Lombardia, M.; Lescar, J.; Canard, B. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog., 2011, 7(5), e1002059.
[http://dx.doi.org/10.1371/journal.ppat.1002059] [PMID: 21637813]
[167]
Dutta, N.K.; Mazumdar, K.; Gordy, J.T. The Nucleocapsid Protein of SARS-CoV-2: a Target for Vaccine Development. J. Virol., 2020, 94(13), e00647-20.
[http://dx.doi.org/10.1128/JVI.00647-20] [PMID: 32546606]
[168]
Yao, H.; Song, Y.; Chen, Y.; Wu, N.; Xu, J.; Sun, C.; Zhang, J.; Weng, T.; Zhang, Z.; Wu, Z.; Cheng, L.; Shi, D.; Lu, X.; Lei, J.; Crispin, M.; Shi, Y.; Li, L.; Li, S. Molecular Architecture of the SARS-CoV-2 Virus. Cell, 2020, 183(3), 730-738.e13.
[http://dx.doi.org/10.1016/j.cell.2020.09.018] [PMID: 32979942]
[169]
Peng, Y.; Du, N.; Lei, Y.; Dorje, S.; Qi, J.; Luo, T.; Gao, G.F.; Song, H. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. EMBO J., 2020, 39(20), e105938.
[http://dx.doi.org/10.15252/embj.2020105938] [PMID: 32914439]
[170]
Ye, Q.; West, A.M.V.; Silletti, S.; Corbett, K.D. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Sci., 2020, 29(9), 1890-1901.
[http://dx.doi.org/10.1002/pro.3909] [PMID: 32654247]
[171]
Satarker, S.; Nampoothiri, M. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Arch. Med. Res., 2020, 51(6), 482-491.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.012] [PMID: 32493627]
[172]
Korn, S.M.; Lambertz, R.; Furtig, B.; Hengesbach, M.; Lohr, F.; Richter, C.; Schwalbe, H.; Weigand, J.E.; Wohnert, J.; Schlundt, A. (1)H, (13)C, and (15)N backbone chemical shift assignments of the C-terminal dimerization domain of SARS-CoV-2 nucleocapsid protein. Biomol. NMR Assign., 2020.
[http://dx.doi.org/10.1007/s12104-020-09971-6] [PMID: 33270159]
[173]
Carlson, C.R.; Asfaha, J.B.; Ghent, C.M.; Howard, C.J.; Hartooni, N.; Safari, M.; Frankel, A.D.; Morgan, D.O. Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions. Mol. Cell, 2020, 80(6), 1092-1103.e4.
[http://dx.doi.org/10.1016/j.molcel.2020.11.025] [PMID: 33248025]
[174]
Savastano, A.; Ibáñez de Opakua, A.; Rankovic, M.; Zweckstetter, M. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat. Commun., 2020, 11(1), 6041.
[http://dx.doi.org/10.1038/s41467-020-19843-1] [PMID: 33247108]
[175]
Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem. Rev., 2019, 119(18), 10520-10594.
[http://dx.doi.org/10.1021/acs.chemrev.8b00728] [PMID: 31294972]
[176]
Gawehn, E.; Hiss, J.A.; Schneider, G. Deep Learning in Drug Discovery. Mol. Inform., 2016, 35(1), 3-14.
[http://dx.doi.org/10.1002/minf.201501008] [PMID: 27491648]
[177]
Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr., 2020, 14(4), 337-339.
[http://dx.doi.org/10.1016/j.dsx.2020.04.012] [PMID: 32305024]
[178]
Alimadadi, A.; Aryal, S.; Manandhar, I.; Munroe, P.B.; Joe, B.; Cheng, X. Artificial intelligence and machine learning to fight COVID-19. Physiol. Genomics, 2020, 52(4), 200-202.
[http://dx.doi.org/10.1152/physiolgenomics.00029.2020] [PMID: 32216577]
[179]
Mei, X.; Lee, H.C.; Diao, K.Y.; Huang, M.; Lin, B.; Liu, C.; Xie, Z.; Ma, Y.; Robson, P.M.; Chung, M.; Bernheim, A.; Mani, V.; Calcagno, C.; Li, K.; Li, S.; Shan, H.; Lv, J.; Zhao, T.; Xia, J.; Long, Q.; Steinberger, S.; Jacobi, A.; Deyer, T.; Luksza, M.; Liu, F.; Little, B.P.; Fayad, Z.A.; Yang, Y. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat. Med., 2020, 26(8), 1224-1228.
[http://dx.doi.org/10.1038/s41591-020-0931-3] [PMID: 32427924]
[180]
Bragazzi, N.L.; Dai, H.; Damiani, G.; Behzadifar, M.; Martini, M.; Wu, J. How Big Data and Artificial Intelligence Can Help Better Manage the COVID-19 Pandemic. Int. J. Environ. Res. Public Health, 2020, 17(9), E3176.
[http://dx.doi.org/10.3390/ijerph17093176] [PMID: 32370204]
[181]
Hallak, J.A.; Scanzera, A.C.; Azar, D.T.; Chan, R.V.P. Artificial intelligence in ophthalmology during COVID-19 and in the post COVID-19 era. Curr. Opin. Ophthalmol., 2020, 31(5), 447-453.
[http://dx.doi.org/10.1097/ICU.0000000000000685] [PMID: 32694268]
[182]
Chen, J.; See, K.C. Artificial Intelligence for COVID-19: Rapid Review. J. Med. Internet Res., 2020, 22(10), e21476.
[http://dx.doi.org/10.2196/21476] [PMID: 32946413]
[183]
Saei, A.A.; Sharifi, S.; Mahmoudi, M. COVID-19: Nanomedicine Uncovers Blood-Clot Mystery. J. Proteome Res., 2020, 19(11), 4364-4373.
[http://dx.doi.org/10.1021/acs.jproteome.0c00425] [PMID: 32790309]
[184]
Choudhry, N.; Zhao, X.; Xu, D.; Zanin, M.; Chen, W.; Yang, Z.; Chen, J. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J. Med. Chem., 2020, 63(22), 13205-13227.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00626] [PMID: 32845145]
[185]
Batra, R.; Chan, H.; Kamath, G.; Ramprasad, R.; Cherukara, M.J.; Sankaranarayanan, S.K.R.S. Screening of Therapeutic Agents for COVID-19 Using Machine Learning and Ensemble Docking Studies. J. Phys. Chem. Lett., 2020, 11(17), 7058-7065.
[http://dx.doi.org/10.1021/acs.jpclett.0c02278] [PMID: 32787328]
[186]
Frances-Monerris, A.; Hognon, C.; Miclot, T.; García-Iriepa, C.; Iriepa, I.; Terenzi, A.; Grandemange, S.; Barone, G.; Marazzi, M.; Monari, A. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. J. Proteome Res., 2020, 19(11), 4291-4315.
[http://dx.doi.org/10.1021/acs.jproteome.0c00779] [PMID: 33119313]
[187]
Arita, M.; Fuchino, H.; Kawakami, H.; Ezaki, M.; Kawahara, N. Characterization of a New Antienterovirus D68 Compound Purified from Avocado. ACS Infect. Dis., 2020, 6(8), 2291-2300.
[http://dx.doi.org/10.1021/acsinfecdis.0c00404] [PMID: 32567833]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy