Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Natural Products, a Potential Therapeutic Modality in Management and Treatment of nCoV-19 Infection: Preclinical and Clinical Based Evidence

Author(s): Ashif Iqubal, Mohammad K. Iqubal, Musheer Ahmed and Syed E. Haque*

Volume 27, Issue 9, 2021

Published on: 11 January, 2021

Page: [1153 - 1169] Pages: 17

DOI: 10.2174/1381612827999210111190855

Price: $65

Abstract

A recent outbreak of novel coronavirus (nCoV-19) has put an enormous burden on global public health. Millions of people were affected by this pandemic, and as of now, no effective antiviral drug has been found for the management of this situation. Cytokine storm, acute respiratory distress, hypoxia and multi-organ failure are hallmark clinical conditions of this disease. Trials for several investigational and repurposed drugs are being conducted, but none of them were found to be safe and effective. However, for the critically ill patient, plasma therapy, dexamethasone, and remdesivir are included in the treatment protocol. For a long time, various natural drugs have been used as antiviral agents in Indian and Chinese traditional medicines, which can be explored as a potential therapeutic option in such situation. It is, therefore, speculated that the proper screening and standardization of these medicines can be a breakthrough in the management and treatment of nCoV-19 infection. As natural products possess antioxidant, anti-inflammatory, anti-apoptotic, immunomodulatory properties and also specifically act on various viral enzymatic machinery and affect their replication process, thus they may be useful as alternatives in relieving symptoms and treatment of nCoV-19 infection. However, only on the basis of their traditional value, discrimination and off-label use of these natural drugs must be prevented, and robust preclinical and clinical data along with appropriate guidelines are needed for them to enter into clinical practice.

Keywords: Natural products, polyphenols, immunomodulatory, pneumocytes, nCoV-19, cytokine storm.

[1]
Novel CPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi 2020; 41(2): 145.
[2]
Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 2020; 35(5): 1545-9.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[3]
Disease WC. Disease WC. WHO COVID-19 update 2020. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
[4]
Yelin I, Aharony N, Shaer-Tamar E, et al. Evaluation of COVID-19 RT-qPCR test in multi-sample pools. MedRxiv 2020.
[5]
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci 2020; 24(4): 2006-11.
[PMID: 32141569]
[6]
Diaz JH. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med 2020; 27(3): taaa041.
[http://dx.doi.org/10.1093/jtm/taaa041] [PMID: 32186711]
[7]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[8]
Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica 2020; 44: e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[9]
da Silva Antonio A, Wiedemann LSM, Veiga-Junior VF. Natural products’ role against COVID-19. RSC Advances 2020; 10(39): 23379-93.
[http://dx.doi.org/10.1039/D0RA03774E]
[10]
Gorbalenya A, Baker S, Baric R, de Groot R, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology 2020; 5: 536-44.
[11]
Vellingiri B, Jayaramayya K, Iyer M, et al. COVID-19: A promising cure for the global panic. Sci Total Environ 2020; 725: 138277.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277] [PMID: 32278175]
[12]
Ahmad T, Khan M, Haroon THM, et al. COVID-19: Zoonotic aspects. Travel Med Infect Dis 2020; 36: 101607.
[http://dx.doi.org/10.1016/j.tmaid.2020.101607] [PMID: 32112857]
[13]
Chan JF-W, Kok K-H, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[14]
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[15]
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[16]
Lane JCE, Weaver J, Kostka K, et al. Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study. 2020.
[17]
Salata C, Calistri A, Parolin C, Palu G. Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathogens and disease 2019; 77(9)
[http://dx.doi.org/10.1093/femspd/ftaa006]
[18]
Tiwari R, Dhama K, Sharun K, et al. COVID-19: animals, veterinary and zoonotic links. Vet Q 2020; 40(1): 169-82.
[19]
Jalava K. First respiratory transmitted food borne outbreak? Int J Hyg Environ Health 2020; 226: 113490.
[http://dx.doi.org/10.1016/j.ijheh.2020.113490] [PMID: 32088598]
[20]
Harypursat V, Chen Y-K. Six weeks into the 2019 coronavirus disease outbreak: it is time to consider strategies to impede the emergence of new zoonotic infections. Chin Med J (Engl) 2020; 133(9): 1118-20.
[http://dx.doi.org/10.1097/CM9.0000000000000760] [PMID: 32097202]
[21]
Gorbalenya AE, Baker SC, Baric R. Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group. bioRxiv 2020.
[22]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[23]
Park Y-J, Walls AC, Wang Z, et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat Struct Mol Biol 2019; 26(12): 1151-7.
[http://dx.doi.org/10.1038/s41594-019-0334-7] [PMID: 31792450]
[24]
Chen L, Li X, Chen M, Feng Y, Xiong CJCR. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardio Res 2020; 116(6): 1097-100.
[http://dx.doi.org/10.1093/cvr/cvaa078]
[25]
Siu KL, Yuen KS, Castaño-Rodriguez C, et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 2019; 33(8): 8865-77.
[http://dx.doi.org/10.1096/fj.201802418R] [PMID: 31034780]
[26]
Shi C-S, Nabar NR, Huang N-N, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019; 5(1): 101.
[http://dx.doi.org/10.1038/s41420-019-0181-7] [PMID: 31231549]
[27]
Iqubal A, Iqubal MK, Sharma S, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2019; 218: 112-31.
[http://dx.doi.org/10.1016/j.lfs.2018.12.018] [PMID: 30552952]
[28]
Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 2014; 109: 97-109.
[http://dx.doi.org/10.1016/j.antiviral.2014.06.013] [PMID: 24995382]
[29]
Arora S, Ahmad S, Irshad R, et al. TLRs in pulmonary diseases. Life Sci 2019; 233: 116671.
[http://dx.doi.org/10.1016/j.lfs.2019.116671] [PMID: 31336122]
[30]
Wujtewicz M, Dylczyk-Sommer A, Aszkiełowicz A, Zdanowski S, Piwowarczyk S, Owczuk R. COVID-19 - what should anaethesiologists and intensivists know about it? Anaesthesiol Intensive Ther 2020; 52(1): 34-41.
[http://dx.doi.org/10.5114/ait.2020.93756] [PMID: 32191830]
[31]
Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun Rev 2020; 19(7): 102573.
[http://dx.doi.org/10.1016/j.autrev.2020.102573] [PMID: 32387470]
[32]
Sherwood ER, Toliver-Kinsky T. Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol 2004; 18(3): 385-405.
[http://dx.doi.org/10.1016/j.bpa.2003.12.002] [PMID: 15212335]
[33]
Syed MA, Choo-Wing R, Homer RJ, Bhandari V. Role of nitric oxide isoforms in vascular and alveolar development and lung injury in vascular endothelial growth factor overexpressing neonatal mice lungs. PLoS One 2016; 11(1): e0147588.
[http://dx.doi.org/10.1371/journal.pone.0147588] [PMID: 26799210]
[34]
Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020; 22(2): 95-7.
[PMID: 32294809]
[35]
Klok F, Kruip M, Van der Meer N, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020.
[36]
Lovato A, de Filippis C. Clinical presentation of COVID-19: a systematic review focusing on upper airway symptoms. Ear Nose Throat J 2020; 99(9): 569-76.
[http://dx.doi.org/10.1177/0145561320920762] [PMID: 32283980]
[37]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[38]
Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020; 20(4): 425-34.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[39]
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020; 34: 101623.
[http://dx.doi.org/10.1016/j.tmaid.2020.101623] [PMID: 32179124]
[40]
Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020; 172(9): 629-32.
[http://dx.doi.org/10.7326/M20-0533] [PMID: 32163542]
[41]
Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections. MedRxiv 2020.
[42]
Gostic K, Gomez AC, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. eLife 2020; 9: e55570.
[http://dx.doi.org/10.7554/eLife.55570] [PMID: 32091395]
[43]
Tang Y-W, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: current issues and challenges. J Clin Microbiol 2020; 58(6): e00512-20.
[http://dx.doi.org/10.1128/JCM.00512-20] [PMID: 32245835]
[44]
Inciardi RM, Adamo M, Lupi L, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J 2020; 41(19): 1821-9.
[http://dx.doi.org/10.1093/eurheartj/ehaa388] [PMID: 32383763]
[45]
Joung J, Ladha A, Saito M, Segel M, Bruneau R. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv 2020.
[46]
Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9(6): 399-406.
[PMID: 14660806]
[47]
Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020; 92(6): 556-63.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[48]
Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 2020; 248: 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[49]
Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 2019; 11(4): 326.
[http://dx.doi.org/10.3390/v11040326] [PMID: 30987343]
[50]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[51]
Holshue ML, DeBolt C, Lindquist S, et al. Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[52]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[53]
Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006; 6(2): 67-9.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[54]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[55]
Gupta N, Agrawal S, Ish P. Chloroquine in COVID-19: the evidence. Monaldi Arch Chest Dis 2020; 90(1)
[http://dx.doi.org/10.4081/monaldi.2020.1290] [PMID: 32231349]
[56]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[57]
Principi N, Esposito S. Chloroquine or hydroxychloroquine for prophylaxis of COVID-19. Lancet Infect Dis 2020; 20(10): 1118.
[http://dx.doi.org/10.1016/S1473-3099(20)30296-6] [PMID: 32311322]
[58]
McIntosh JJ. Corticosteroid guidance for pregnancy during COVID-19 pandemic. Am J Perinatol 2020; 37(8): 809-12.
[http://dx.doi.org/10.1055/s-0040-1709684] [PMID: 32274772]
[59]
Horby P, Lim WS, Emberson J, et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. medRxiv 2020.
[60]
Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020; 9(1): 382-5.
[http://dx.doi.org/10.1080/22221751.2020.1729069] [PMID: 32065055]
[61]
Chhikara BS, Rathi B, Singh J, Poonam F. Corona virus SARS-CoV-2 disease COVID-19: Infection, prevention and clinical advances of the prospective chemical drug therapeutics. Chemical Biology Letters 2020; 7(1): 63-72.
[62]
Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020; 55(5): 105955.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105955] [PMID: 32234468]
[63]
Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis 2015; 211(1): 80-90.
[http://dx.doi.org/10.1093/infdis/jiu396] [PMID: 25030060]
[64]
van Griensven J, Edwards T, de Lamballerie X, et al. Ebola-Tx Consortium. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N Engl J Med 2016; 374(1): 33-42.
[http://dx.doi.org/10.1056/NEJMoa1511812] [PMID: 26735992]
[65]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature 2020; 579(7798): 270-3.
[66]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[67]
Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[68]
Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev 2020; 35: 43-9.
[PMID: 32653463]
[69]
Yin G, Zhang C, Jin H. Current status on clinical trials and treatments for COVID-19.
[70]
Türkan F, Huyut Z, Atalar MN. The toxicological impact of some avermectins on human erythrocytes glutathione S-transferase enzyme. J Biochem Mol Toxicol 2018; 32(10): e22205.
[http://dx.doi.org/10.1002/jbt.22205] [PMID: 30091233]
[71]
Lin L-T, Hsu W-C, Lin C-C. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014; 4(1): 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[72]
Iqubal A, Syed MA, Haque MM, Najmi AK, Ali J, Haque SE. Effect of nerolidol on cyclophosphamide-induced bone marrow and hematologic toxicity in Swiss albino mice. Exp Hematol 2020; 82: 24-32.
[http://dx.doi.org/10.1016/j.exphem.2020.01.007] [PMID: 31987924]
[73]
Iqubal MK, Saleem S, Iqubal A, et al. Natural, Synthetic and their Combinatorial Nanocarriers Based Drug Delivery System in the Treatment Paradigm for Wound Healing Via Dermal Targeting. Curr Pharm Des 2020; 26(36): 4551-68.
[http://dx.doi.org/10.2174/1381612826666200612164511] [PMID: 32532188]
[74]
Iqubal A, Sharma S, Najmi AK, et al. Nerolidol ameliorates cyclophosphamide-induced oxidative stress, neuroinflammation and cognitive dysfunction: Plausible role of Nrf2 and NF- κB. Life Sci 2019; 236: 116867.
[http://dx.doi.org/10.1016/j.lfs.2019.116867] [PMID: 31520598]
[75]
Çağlayan C, Taslimi P, Demir Y, Küçükler S, Kandemir FM, Gulçin İ. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J Biochem Mol Toxicol 2019; 33(10): e22381.
[http://dx.doi.org/10.1002/jbt.22381] [PMID: 31454121]
[76]
Demir Y, Durmaz L, Taslimi P, Gulçin İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnol Appl Biochem 2019; 66(5): 781-6.
[http://dx.doi.org/10.1002/bab.1781] [PMID: 31135076]
[77]
Demir Y, Özaslan MS, Duran HE, Küfrevioğlu Öİ, Beydemir Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ Toxicol Pharmacol 2019; 70: 103195.
[http://dx.doi.org/10.1016/j.etap.2019.103195] [PMID: 31125830]
[78]
Özaslan MS, Demir Y, Aslan HE, Beydemir Ş, Küfrevioğlu Öİ. Evaluation of chalcones as inhibitors of glutathione S-transferase. J Biochem Mol Toxicol 2018; 32(5): e22047.
[http://dx.doi.org/10.1002/jbt.22047] [PMID: 29473699]
[79]
Ceylan H, Demir Y, Beydemir Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an in vitro study. Protein Pept Lett 2019; 26(5): 364-70.
[http://dx.doi.org/10.2174/0929866526666190301115122] [PMID: 30827223]
[80]
Aslan HE, Demir Y, Özaslan MS, Türkan F, Beydemir Ş, Küfrevioğlu ÖI. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem Toxicol 2019; 42(6): 634-40.
[http://dx.doi.org/10.1080/01480545.2018.1463242] [PMID: 29860891]
[81]
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79(3): 629-61.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[82]
Lee J-Y, Abundo MEC, Lee C-W. Herbal Medicines with Antiviral Activity Against the Influenza Virus, a Systematic Review. Am J Chin Med 2018; 46(8): 1663-700.
[http://dx.doi.org/10.1142/S0192415X18500854] [PMID: 30612461]
[83]
Rajbhandari M, Mentel R, Jha PK, et al. Antiviral activity of some plants used in Nepalese traditional medicine. Evid Based Complement Alternat Med 2009; 6(4): 517-22.
[http://dx.doi.org/10.1093/ecam/nem156] [PMID: 18955262]
[84]
Gyawali R, Paudel PN, Basyal D, et al. A Review on Ayurvedic Medicinal Herbs as Remedial Perspective for COVID-19. J Karnali Acad Health Sci 2020; 3.
[85]
Caglayan C, Demir Y, Kucukler S, Taslimi P, Kandemir FM, Gulçin İ. The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. J Food Biochem 2019; 43(2): e12720.
[http://dx.doi.org/10.1111/jfbc.12720] [PMID: 31353640]
[86]
Demir Y, Işık M, Gülçin İ, Beydemir Ş. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J Biochem Mol Toxicol 2017; 31(9): e21936.
[http://dx.doi.org/10.1002/jbt.21935] [PMID: 28557170]
[87]
Taslimi P, Kandemir FM, Demir Y, et al. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J Biochem Mol Toxicol 2019; 33(6): e22313.
[http://dx.doi.org/10.1002/jbt.22313] [PMID: 30801880]
[88]
Park J-Y, Yuk HJ, Ryu HW, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem 2017; 32(1): 504-15.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[89]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[90]
Choi H-J. Chemical Constituents of Essential Oils Possessing Anti-Influenza A/WS/33 Virus Activity. Osong Public Health Res Perspect 2018; 9(6): 348-53.
[http://dx.doi.org/10.24171/j.phrp.2018.9.6.09] [PMID: 30584499]
[91]
Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2006; 33(7): 612-6.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[92]
Yu M-S, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[93]
Zhang DH, Wu KL, Zhang X, Deng SQ, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med 2020; 18(2): 152-8.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[94]
Dudani T, Saraogi A. Use of Herbal Medicines on Coronavirus. Acta Scientific Pharmaceutical Sciences 2020; 4: 61-3.
[http://dx.doi.org/10.31080/ASPS.2020.04.0518]
[95]
Loffredo L, Violi F. COVID-19 and cardiovascular injury: A role for oxidative stress and antioxidant treatment? Int J Cardiol 2020; 312: 136.
[http://dx.doi.org/10.1016/j.ijcard.2020.04.066] [PMID: 32505331]
[96]
Zhang R, Wang X, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci 2020; 250: 117583.
[http://dx.doi.org/10.1016/j.lfs.2020.117583] [PMID: 32217117]
[97]
Ansari MA, Iqubal A, Ekbbal R, Haque SE. Effects of nimodipine, vinpocetine and their combination on isoproterenol-induced myocardial infarction in rats. Biomed Pharmacother 2019; 109: 1372-80.
[http://dx.doi.org/10.1016/j.biopha.2018.10.199] [PMID: 30551388]
[98]
Iqubal A, Sharma S, Ansari MA, et al. Nerolidol attenuates cyclophosphamide-induced cardiac inflammation, apoptosis and fibrosis in Swiss Albino mice. Eur J Pharmacol 2019; 863: 172666.
[http://dx.doi.org/10.1016/j.ejphar.2019.172666] [PMID: 31541628]
[99]
Iqubal A, Sharma S, Sharma K, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci 2018; 211: 172-81.
[http://dx.doi.org/10.1016/j.lfs.2018.09.025] [PMID: 30227132]
[100]
Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008; 133(2): 235-49.
[http://dx.doi.org/10.1016/j.cell.2008.02.043] [PMID: 18423196]
[101]
Ye Q, Wang B, Mao J. Cytokine storm in COVID-19 and treatment. J Infect 2020.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[102]
Arora S, Dev K, Agarwal B, Das P, Syed MA. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology 2018; 223(4-5): 383-96.
[http://dx.doi.org/10.1016/j.imbio.2017.11.001] [PMID: 29146235]
[103]
Shah A. Novel Coronavirus-Induced NLRP3 Inflammasome Activation: A Potential Drug Target in the Treatment of COVID-19. Front Immunol 2020; 11: 1021.
[http://dx.doi.org/10.3389/fimmu.2020.01021] [PMID: 32574259]
[104]
Zhang Y, Li X, Grailer JJ, et al. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res 2016; 60(4): 405-14.
[http://dx.doi.org/10.1111/jpi.12322] [PMID: 26888116]
[105]
Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020; 20(5): 269-70.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[106]
Rogers MC, Williams JV. Quis Custodiet Ipsos Custodes? Regulation of cell-mediated immune responses following viral lung infections. Annu Rev Virol 2018; 5(1): 363-83.
[http://dx.doi.org/10.1146/annurev-virology-092917-043515] [PMID: 30052492]
[107]
Yang C-Y, Chen C-S, Yiang G-T, et al. New insights into the immune molecular regulation of the pathogenesis of acute Respiratory Distress Syndrome. Int J Mol Sci 2018; 19(2): 588.
[http://dx.doi.org/10.3390/ijms19020588] [PMID: 29462936]
[108]
Chiappelli F, Khakshooy A, Greenberg G. CoViD-19 Immunopathology and Immunotherapy. Bioinformation 2020; 16(3): 219-22.
[http://dx.doi.org/10.6026/97320630016219] [PMID: 32308263]
[109]
Iqubal A, Syed MA, Najmi AK, Ali J, Haque SE. Ameliorative effect of nerolidol on cyclophosphamide-induced gonadal toxicity in Swiss Albino mice: Biochemical-, histological- and immunohistochemical-based evidences. Andrologia 2020; 52(4): e13535.
[http://dx.doi.org/10.1111/and.13535] [PMID: 32048763]
[110]
Miller SC, Pandi-Perumal SR, Esquifino AI, Cardinali DP, Maestroni GJ. The role of melatonin in immuno-enhancement: potential application in cancer. Int J Exp Pathol 2006; 87(2): 81-7.
[http://dx.doi.org/10.1111/j.0959-9673.2006.00474.x] [PMID: 16623752]
[111]
Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res 2017; 142: 37-54.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.007] [PMID: 28322922]
[112]
Hwang H-J, Han J-W, Jeon H, et al. Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules 2020; 10(2): 333.
[http://dx.doi.org/10.3390/biom10020333] [PMID: 32092955]
[113]
Petersen KA, Matthiesen F, Agger T, et al. Phase I safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin. J Clin Immunol 2006; 26(5): 465-75.
[http://dx.doi.org/10.1007/s10875-006-9037-z] [PMID: 16990992]
[114]
Mani JS, Johnson JB, Steel JC, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res 2020; 284: 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[115]
Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75(3): 179-87.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[116]
Singh S, Pandey S, Srivastava S, Gupta V, Patro B, Ghosh A. Chemistry and medicinal properties of Tinospora cordifolia (Guduchi). Indian J Pharmacol 2003; 35(2): 83-91.
[117]
Gupta GD, Sujatha N, Dhanik A, Rai NP. Clinical evaluation of Shilajatu Rasayana in patients with HIV infection. Ayu 2010; 31(1): 28-32.
[http://dx.doi.org/10.4103/0974-8520.68205] [PMID: 22131681]
[118]
Saha S, Ghosh S. Tinospora cordifolia: One plant, many roles. Anc Sci Life 2012; 31(4): 151-9.
[http://dx.doi.org/10.4103/0257-7941.107344] [PMID: 23661861]
[119]
Sharma U, Bala M, Kumar N, Singh B, Munshi RK, Bhalerao S. Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol 2012; 141(3): 918-26.
[http://dx.doi.org/10.1016/j.jep.2012.03.027] [PMID: 22472109]
[120]
Ranjith M, Ranjitsingh A, Shankar SG, Vijayalaksmi G, Deepa K, Sidhu HS. Enhanced Phagocytosis and Antibody Production by Tinospora cordifolia-A new dimension in Immunomodulation. Afr J Biotechnol 2008; 7(2)
[121]
Sagar V, Kumar AH. Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase. Virology 2020; 1-10.
[122]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[123]
Moisy D, Avilov SV, Jacob Y, et al. HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012; 86(17): 9122-33.
[http://dx.doi.org/10.1128/JVI.00789-12] [PMID: 22696656]
[124]
van Rossum TG, Vulto AG, Hop WC, Brouwer JT, Niesters HG, Schalm SW. Intravenous glycyrrhizin for the treatment of chronic hepatitis C: a double-blind, randomized, placebo-controlled phase I/II trial. J Gastroenterol Hepatol 1999; 14(11): 1093-9.
[http://dx.doi.org/10.1046/j.1440-1746.1999.02008.x] [PMID: 10574137]
[125]
Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[126]
Choi H-J, Kim J-H, Lee C-H, et al. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antiviral Res 2009; 81(1): 77-81.
[http://dx.doi.org/10.1016/j.antiviral.2008.10.002] [PMID: 18992773]
[127]
Kumar V, Van Staden J. A review of Swertia chirayita (Gentianaceae) as a traditional medicinal plant. Front Pharmacol 2016; 6: 308.
[http://dx.doi.org/10.3389/fphar.2015.00308] [PMID: 26793105]
[128]
Joshi P, Dhawan V. Swertia chirayita-an overview. Curr Sci 2005; 635-40.
[129]
Zhou N-J, Geng C-A, Huang X-Y, et al. Anti-hepatitis B virus active constituents from Swertia chirayita. Fitoterapia 2015; 100: 27-34.
[http://dx.doi.org/10.1016/j.fitote.2014.11.011] [PMID: 25447162]
[130]
Kulkarni KV, Adavirao BV. A review on: Indian traditional shrub Tulsi (Ocimum sanctum): the unique medicinal plant. J Med Plants Studies 2018; 6(2): 106-10.
[131]
Joshi RK. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc Sci Life 2014; 33(3): 151-6.
[http://dx.doi.org/10.4103/0257-7941.144618] [PMID: 25538349]
[132]
Jamshidi N, Cohen MM. The clinical efficacy and safety of Tulsi in humans: a systematic review of the literature. Evidence-Based Complementary and Alternative Medicine 2017.
[http://dx.doi.org/10.1155/2017/9217567]
[133]
Sharma G. Anti-asthmatic efficacy of Ocimum sanctum. Sacitra Ayurveda 1983; 35(10): 665-8.
[134]
Jeba C, Vaidyanathan R, Rameshkumar G. Immunomodulatory activity of aqueous extract of Ocimum sanctum in rat. Int J Pharm Biomed Res 2011; 2(1): 33-8.
[135]
Gautam S, Gautam A, Chhetri S, Bhattarai U. Immunity Against COVID-19: Potential Role of Ayush Kwath. J Ayurveda Integr Med 2020. In press.
[http://dx.doi.org/10.1016/j.jaim.2020.08.003] [PMID: 32837101]
[136]
Park EJ, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metastasis Rev 2002; 21(3-4): 231-55.
[http://dx.doi.org/10.1023/A:1021254725842] [PMID: 12549763]
[137]
Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN. Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry 2004; 65(13): 1937-54.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.008] [PMID: 15280001]
[138]
Kubra IR, Murthy PS, Rao LJM. In vitro antifungal activity of dehydrozingerone and its fungitoxic properties. J Food Sci 2013; 78(1): M64-9.
[http://dx.doi.org/10.1111/j.1750-3841.2012.03009.x] [PMID: 23278709]
[139]
Shariatpanahi ZV, Taleban FA, Mokhtari M, Shahbazi S. Ginger extract reduces delayed gastric emptying and nosocomial pneumonia in adult respiratory distress syndrome patients hospitalized in an intensive care unit. J Crit Care 2010; 25(4): 647-50.
[http://dx.doi.org/10.1016/j.jcrc.2009.12.008] [PMID: 20149584]
[140]
Ghayur MN, Gilani AH, Janssen LJ. Ginger attenuates acetylcholine-induced contraction and Ca2+ signalling in murine airway smooth muscle cells. Can J Physiol Pharmacol 2008; 86(5): 264-71.
[http://dx.doi.org/10.1139/Y08-030] [PMID: 18432287]
[141]
Rajagopal K, Byran G, Jupudi S, Vadivelan R. Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): An in silico approach. Int J Health Allied Sci 2020; 9(5): 43.
[142]
Araújo CC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 2001; 96(5): 723-8.
[http://dx.doi.org/10.1590/S0074-02762001000500026] [PMID: 11500779]
[143]
Kuete V. African medicinal spices and vegetables and their potential in the management of metabolic syndrome. Medicinal Spices and Vegetables from Africa Elsevier . 2017; pp. 315-27.
[http://dx.doi.org/10.1016/B978-0-12-809286-6.00012-1]
[144]
Wei Z-Q, Zhang Y-H, Ke C-Z, et al. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol 2017; 23(34): 6252-60.
[http://dx.doi.org/10.3748/wjg.v23.i34.6252] [PMID: 28974891]
[145]
Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol 2018; 45(1): 84-93.
[http://dx.doi.org/10.1111/1440-1681.12848] [PMID: 28853207]
[146]
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[147]
Wen C-C, Kuo Y-H, Jan J-T, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[148]
Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules 2020; 25(9): 2076.
[http://dx.doi.org/10.3390/molecules25092076] [PMID: 32365556]
[149]
Lawson LD. Garlic: a review of its medicinal effects and indicated active compounds ACS Publications. 1998.
[150]
Shoji S, Furuishi K, Yanase R, Miyazaka T, Kino M. Allyl compounds selectively killed human immunodeficiency virus (type 1)-infected cells. Biochem Biophys Res Commun 1993; 194(2): 610-21.
[http://dx.doi.org/10.1006/bbrc.1993.1865] [PMID: 8343148]
[151]
akbarpour Beni m, omidi m. Effect of short-term garlic supplementation on CD4 and CD8 factors in young karate athletes after intense exercise session. Complementary Medicine Journal 2018; 7(4): 2041-51.
[152]
Donma MM, Donma O. The effects of allium sativum on immunity within the scope of COVID-19 infection. Med Hypotheses 2020; 144: 109934.
[http://dx.doi.org/10.1016/j.mehy.2020.109934] [PMID: 32512493]
[153]
Elsakka M, Grigorescu E, Stănescu U, Stănescu U, Dorneanu V. New data referring to chemistry of Withania somnifera species. Rev Med Chir Soc Med Nat Iasi 1990; 94(2): 385-7.
[PMID: 2100857]
[154]
Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B. Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 1996; 50(2): 69-76.
[http://dx.doi.org/10.1016/0378-8741(95)01318-0] [PMID: 8866726]
[155]
Tripathi MK, Singh P, Sharma S, Singh TP, Ethayathulla AS, Kaur P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J Biomol Struct Dyn 2020; 1-14. In press.
[PMID: 32643552]
[156]
Sujatha B, Patel P. Moringa Oleifera–Nature’s Gold. Imperial J Interdisciplinary Res 2017; 3(5): 1175-9.
[157]
Biswas D, Nandy S, Mukherjee A, Pandey D, Dey A. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. S Afr J Bot 2020; 129: 272-82.
[http://dx.doi.org/10.1016/j.sajb.2019.07.049]
[158]
Hamza M, Ali A, Khan S, et al. nCOV-19 peptides mass fingerprinting identification, binding, and blocking of inhibitors flavonoids and anthraquinone of Moringa oleifera and hydroxychloroquine. J Biomol Struct Dyn 2020; 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1778534] [PMID: 32567487]
[159]
Ravishankar B, Shukla VJ. Indian systems of medicine: a brief profile. Afr J Tradit Complement Altern Med 2007; 4(3): 319-37.
[http://dx.doi.org/10.4314/ajtcam.v4i3.31226] [PMID: 20161896]
[160]
Tabuti JR, Lye KA, Dhillion SS. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. J Ethnopharmacol 2003; 88(1): 19-44.
[http://dx.doi.org/10.1016/S0378-8741(03)00161-2] [PMID: 12902048]
[161]
Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev 2014; 8(16): 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]
[162]
Vimalanathan S, Ignacimuthu S, Hudson J. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharm Biol 2009; 47(5): 422-9.
[http://dx.doi.org/10.1080/13880200902800196]
[163]
Alam G, Wahyuono S, Ganjar IG, Hakim L, Timmerman H, Verpoorte R. Tracheospasmolytic activity of viteosin-A and vitexicarpin isolated from vitex trifolia. Planta Med 2002; 68(11): 1047-9.
[http://dx.doi.org/10.1055/s-2002-35650] [PMID: 12451502]
[164]
Olivieri F, Prasad V, Valbonesi P, et al. A systemic antiviral resistance-inducing protein isolated from Clerodendrum inerme Gaertn. is a polynucleotide:adenosine glycosidase (ribosome-inactivating protein). FEBS Lett 1996; 396(2-3): 132-4.
[http://dx.doi.org/10.1016/0014-5793(96)01089-7] [PMID: 8914973]
[165]
Yarnell E. Herbs for viral respiratory infections. Altern Complement Ther 2018; 24(1): 35-43.
[http://dx.doi.org/10.1089/act.2017.29150.eya]
[166]
Liu Z, Xiao X, Wei X, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol 2020; 92(6): 595-601.
[http://dx.doi.org/10.1002/jmv.25726] [PMID: 32100877]
[167]
Ministry of AYUSH. Available at: https://www.ayush.gov.in/
[169]
Clinical trial on natural products for COVID-19. Available at: https://link.springer.com/article/10.1007/s12088-020-00919-x
[170]
Coronavirus. Natural products and COVID 19. Available at: https://onlinelibrary.wiley.com/doi/10.1002/ptr.6873
[171]
(COVID19). Natural products and COVID-19. Available at: https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra03774e#!divAbstract
[172]
Infection. Natural products in COVID-19. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6873
[174]
Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2020; S0975-9476(20): 30019-X.
[PMID: 32382220]
[175]
Ren JL, Zhang A-H, Wang X-J. Traditional Chinese medicine for COVID-19 treatment. Pharmacol Res 2020; 155.
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[176]
Liu CX. Pay attention to situation of SARS-CoV-2 and TCM advantages in treatment of novel coronavirus infection. Chin Herb Med 2020; 12(2): 97-103.
[http://dx.doi.org/10.1016/j.chmed.2020.03.004] [PMID: 32518555]
[177]
National Health Comission of the people's Republic of China. Available at: http://en.nhc.gov.cn/
[178]
Vanherweghem J-L, Depierreux M, Tielemans C, et al. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 1993; 341(8842): 387-91.
[http://dx.doi.org/10.1016/0140-6736(93)92984-2] [PMID: 8094166]
[179]
Mayo Clinic. Diagnosis andtreatment protocol of COVID-19. Available at: https://www.mayoclinic.org/diseases-conditions/coronavirus/diagnosis-treatment/drc-20479976
[180]
Yang Y. Use of herbal drugs to treat COVID-19 should be with caution. Lancet 2020; 395(10238): 1689-90.
[http://dx.doi.org/10.1016/S0140-6736(20)31143-0] [PMID: 32422123]
[181]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy