Review Article

铁凋亡:抗击癌症耐药性的可信赖盟友

卷 29, 期 1, 2022

发表于: 10 August, 2021

页: [41 - 55] 页: 15

弟呕挨: 10.2174/0929867328666210810115812

价格: $65

摘要

铁凋亡是一种铁依赖性、非凋亡细胞死亡机制,最近被提出作为癌症治疗的新方法。因其具有鲜明的特征及其独特的机制,所以提出了触发这种新发现的细胞死亡形式的潜在治疗益处。许多研究表明,凋亡途径通常在耐药细胞中失活,导致治疗失败。因此,需要替代策略来促进细胞死亡。越来越多的证据表明,耐药癌细胞对铁凋亡特别敏感。鉴于癌细胞比健康细胞消耗更多的铁,铁凋亡不仅是引发细胞死亡和逆转耐药性的绝佳替代品,而且还提供了治疗的选择性。本综述特别关注通过激活铁质形成途径来克服癌症中的药物耐药性,并汇集了相关的基于化疗和基于纳米治疗的研究,为研究人员提供了关于该机制在开发新型治疗策略中的潜在用途的观点。

关键词: 铁凋亡,擦除剂,癌症,耐药性,顺铂,纳米治疗。

[1]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[2]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S. III, B.M.; Stockwell, B.R. Ferroptosis: An iron-dependent form of non-apoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[3]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296.
[http://dx.doi.org/10.1038/s41571-020-00462-0] [PMID: 33514910]
[4]
Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[5]
Torti, S.V.; Torti, F.M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[http://dx.doi.org/10.1038/nrc3495] [PMID: 23594855]
[6]
Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol., 2020, 16(3), 302-309.
[http://dx.doi.org/10.1038/s41589-020-0472-6] [PMID: 32080622]
[7]
Bebber, C.M.; Müller, F.; Prieto Clemente, L.; Weber, J.; von Karstedt, S. Ferroptosis in cancer cell biology. Cancers (Basel), 2020, 12(1), E164.
[http://dx.doi.org/10.3390/cancers12010164] [PMID: 31936571]
[8]
Zuo, S.; Yu, J.; Pan, H.; Lu, L. Novel insights on targeting ferroptosis in cancer therapy. Biomark. Res., 2020, 8(1), 50.
[http://dx.doi.org/10.1186/s40364-020-00229-w] [PMID: 33024562]
[9]
Do Van, B.; Gouel, F.; Jonneaux, A.; Timmerman, K.; Gelé, P.; Pétrault, M.; Bastide, M.; Laloux, C.; Moreau, C.; Bordet, R.; Devos, D.; Devedjian, J.C. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol. Dis., 2016, 94, 169-178.
[http://dx.doi.org/10.1016/j.nbd.2016.05.011] [PMID: 27189756]
[10]
Gao, X.; Guo, N.; Xu, H.; Pan, T.; Lei, H.; Yan, A.; Mi, Y.; Xu, L. Ibuprofen induces ferroptosis of glioblastoma cells via downregulation of nuclear factor erythroid 2-related factor 2 signaling pathway. Anticancer Drugs, 2020, 31(1), 27-34.
[http://dx.doi.org/10.1097/CAD.0000000000000825] [PMID: 31490283]
[11]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[12]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35(Suppl.), S78-S103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001] [PMID: 25936818]
[13]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[14]
Shaili, E. Platinum anticancer drugs and photochemotherapeutic agents: recent advances and future developments. Sci. Prog., 2014, 97(Pt 1), 20-40.
[http://dx.doi.org/10.3184/003685014X13904811808460] [PMID: 24800467]
[15]
Jung, Y.; Lippard, S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev., 2007, 107(5), 1387-1407.
[http://dx.doi.org/10.1021/cr068207j] [PMID: 17455916]
[16]
Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460.
[http://dx.doi.org/10.4143/crt.2016.572] [PMID: 28494534]
[17]
Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis., 2014, 5, e1257.
[http://dx.doi.org/10.1038/cddis.2013.428] [PMID: 24874729]
[18]
Roh, J.L.; Kim, E.H.; Jang, H.J.; Park, J.Y.; Shin, D. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett., 2016, 381(1), 96-103.
[http://dx.doi.org/10.1016/j.canlet.2016.07.035] [PMID: 27477897]
[19]
Dondorp, A.; Nosten, F.; Stepniewska, K.; Day, N.; White, N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet, 2005, 366(9487), 717-725.
[http://dx.doi.org/10.1016/S0140-6736(05)67176-0] [PMID: 16125588]
[20]
Jeong, D.E.; Song, H.J.; Lim, S.; Lee, S.J.; Lim, J.E.; Nam, D.H.; Joo, K.M.; Jeong, B.C.; Jeon, S.S.; Choi, H.Y.; Lee, H.W. Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget, 2015, 6(32), 33046-33064.
[http://dx.doi.org/10.18632/oncotarget.5422] [PMID: 26426994]
[21]
Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532.
[http://dx.doi.org/10.18632/oncoscience.160] [PMID: 26097885]
[22]
Fan, Z.; Wirth, A-K.; Chen, D.; Wruck, C.J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis, 2017, 6(8)
[http://dx.doi.org/10.1038/oncsis.2017.65] [PMID: 28805788]
[23]
Roh, J.L.; Kim, E.H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol., 2017, 11(11), 254-262.
[http://dx.doi.org/10.1016/j.redox.2016.12.010] [PMID: 28012440]
[24]
Shin, D.; Kim, E.H.; Lee, J.; Roh, J.L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med., 2018, 129, 454-462.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.426] [PMID: 30339884]
[25]
Okuno, S.; Sato, H.; Kuriyama-Matsumura, K.; Tamba, M.; Wang, H.; Sohda, S.; Hamada, H.; Yoshikawa, H.; Kondo, T.; Bannai, S. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br. J. Cancer, 2003, 88(6), 951-956.
[http://dx.doi.org/10.1038/sj.bjc.6600786] [PMID: 12644836]
[26]
Sato, M.; Kusumi, R.; Hamashima, S.; Kobayashi, S.; Sasaki, S.; Komiyama, Y.; Izumikawa, T.; Conrad, M.; Bannai, S.; Sato, H. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci. Rep., 2018, 8(1), 968.
[http://dx.doi.org/10.1038/s41598-018-19213-4] [PMID: 29343855]
[27]
Hashemi, V.; Ahmadi, A.; Malakotikhah, F.; Chaleshtari, M.G.; Baghi Moornani, M.; Masjedi, A.; Sojoodi, M.; Atyabi, F.; Nikkhoo, A.; Rostami, N.; Baradaran, B.; Azizi, G.; Yousefi, B.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Silencing of p68 and STAT3 synergistically diminishes cancer progression. Life Sci., 2020, 249(249), 117499.
[http://dx.doi.org/10.1016/j.lfs.2020.117499] [PMID: 32142763]
[28]
Wang, Y.; Zhao, W.; Zhang, S. STAT3-induced upregulation of circCCDC66 facilitates the progression of non-small cell lung cancer by targeting miR-33a-5p/KPNA4 axis. Biomed. Pharmacother., 2020, 126(1), 110019.
[http://dx.doi.org/10.1016/j.biopha.2020.110019] [PMID: 32151944]
[29]
Liu, Q.; Wang, K. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol. Int., 2019, 43(11), 1245-1256.
[http://dx.doi.org/10.1002/cbin.11121] [PMID: 30811078]
[30]
Li, Y.; Yan, H.; Xu, X.; Liu, H.; Wu, C.; Zhao, L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol. Lett., 2020, 19(1), 323-333.
[http://dx.doi.org/10.3892/ol.2019.11066] [PMID: 31897145]
[31]
Zhang, X.; Sui, S.; Wang, L.; Li, H.; Zhang, L.; Xu, S.; Zheng, X. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J. Cell. Physiol., 2020, 235(4), 3425-3437.
[http://dx.doi.org/10.1002/jcp.29232] [PMID: 31556117]
[32]
Drabløs, F.; Feyzi, E.; Aas, P.A.; Vaagbø, C.B.; Kavli, B.; Bratlie, M.S.; Peña-Diaz, J.; Otterlei, M.; Slupphaug, G.; Krokan, H.E. Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair (Amst.), 2004, 3(11), 1389-1407.
[http://dx.doi.org/10.1016/j.dnarep.2004.05.004] [PMID: 15380096]
[33]
Chio, C.C.; Chen, K.Y.; Chang, C.K.; Chuang, J.Y.; Liu, C.C.; Liu, S.H.; Chen, R.M. Improved effects of honokiol on temozolomide-induced autophagy and apoptosis of drug-sensitive and -tolerant glioma cells. BMC Cancer, 2018, 18(1), 379.
[http://dx.doi.org/10.1186/s12885-018-4267-z] [PMID: 29614990]
[34]
Yin, H.; Zhou, Y.; Wen, C.; Zhou, C.; Zhang, W.; Hu, X.; Wang, L.; You, C.; Shao, J. Curcumin sensitizes glioblastoma to temozolomide by simultaneously generating ROS and disrupting AKT/mTOR signaling. Oncol. Rep., 2014, 32(4), 1610-1616.
[http://dx.doi.org/10.3892/or.2014.3342] [PMID: 25050915]
[35]
Chen, L.; Li, X.; Liu, L.; Yu, B.; Xue, Y.; Liu, Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol. Rep., 2015, 33(3), 1465-1474.
[http://dx.doi.org/10.3892/or.2015.3712] [PMID: 25585997]
[36]
Sehm, T.; Rauh, M.; Wiendieck, K.; Buchfelder, M.; Eyüpoglu, I.Y., Ii; Savaskan, N.E. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget, 2016, 7(46), 74630-74647.
[http://dx.doi.org/10.18632/oncotarget.11858] [PMID: 27612422]
[37]
Yang, W.B.; Chuang, J.Y.; Ko, C.Y.; Chang, W.C.; Hsu, T.I. Dehydroepiandrosterone Induces temozolomide resistance through modulating phosphorylation and acetylation of Sp1 in glioblastoma. Mol. Neurobiol., 2019, 56(4), 2301-2313.
[http://dx.doi.org/10.1007/s12035-018-1221-7] [PMID: 30022431]
[38]
Narayanan, R.; Dalton, J.T. Androgen receptor: A complex therapeutic target for breast cancer. Cancers (Basel), 2016, 8(12), 1-17.
[http://dx.doi.org/10.3390/cancers8120108] [PMID: 27918430]
[39]
Mizushima, T.; Miyamoto, H. The role of androgen receptor signaling in ovarian cancer. Cells, 2019, 8(2), 176.
[http://dx.doi.org/10.3390/cells8020176] [PMID: 30791431]
[40]
Li, P.; Chen, J.; Miyamoto, H. Androgen receptor signaling in bladder cancer. Cancers (Basel), 2017, 9(2), 1-14.
[http://dx.doi.org/10.3390/cancers9020020] [PMID: 28241422]
[41]
Chen, T.C.; Chuang, J.Y.; Ko, C.Y.; Kao, T.J.; Yang, P.Y.; Yu, C.H.; Liu, M.S.; Hu, S.L.; Tsai, Y.T.; Chan, H.; Chang, W.C.; Hsu, T.I. AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol., 2020, 30(30), 101413.
[http://dx.doi.org/10.1016/j.redox.2019.101413] [PMID: 31896509]
[42]
Katsumata, N. Docetaxel: an alternative taxane in ovarian cancer. Br. J. Cancer, 2003, 89(Suppl. 3), S9-S15.
[http://dx.doi.org/10.1038/sj.bjc.6601495] [PMID: 14661041]
[43]
Lu, X.; Meng, T. Depletion of tumor-associated macrophages enhances the anti-tumor effect of docetaxel in a murine epithelial ovarian cancer. Immunobiology, 2019, 224(3), 355-361.
[http://dx.doi.org/10.1016/j.imbio.2019.03.002] [PMID: 30926154]
[44]
An, Q.; Shi, C.X.; Guo, H.; Xie, S.M.; Yang, Y.Y.; Liu, Y.N.; Liu, Z.H.; Zhou, C.Z.; Niu, F.J. Development and characterization of octreotide-modified curcumin plus docetaxel micelles for potential treatment of non-small-cell lung cancer. Pharm. Dev. Technol., 2019, 24(9), 1164-1174.
[http://dx.doi.org/10.1080/10837450.2019.1647236] [PMID: 31340709]
[45]
Woods, B.S.; Sideris, E.; Sydes, M.R.; Gannon, M.R.; Parmar, M.K.B.; Alzouebi, M.; Attard, G.; Birtle, A.J.; Brock, S.; Cathomas, R.; Chakraborti, P.R.; Cook, A.; Cross, W.R.; Dearnaley, D.P.; Gale, J.; Gibbs, S.; Graham, J.D.; Hughes, R.; Jones, R.J.; Laing, R.; Mason, M.D.; Matheson, D.; McLaren, D.B.; Millman, R.; O’Sullivan, J.M.; Parikh, O.; Parker, C.C.; Peedell, C.; Protheroe, A.; Ritchie, A.W.S.; Robinson, A.; Russell, J.M.; Simms, M.S.; Srihari, N.N.; Srinivasan, R.; Staffurth, J.N.; Sundar, S.; Thalmann, G.N.; Tolan, S.; Tran, A.T.H.; Tsang, D.; Wagstaff, J.; James, N.D.; Sculpher, M.J. Addition of docetaxel to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Modelling to estimate long-term survival, quality-adjusted survival, and cost-effectiveness. Eur Urol Oncol, 2018, 1(6), 449-458.
[http://dx.doi.org/10.1016/j.euo.2018.06.004] [PMID: 31158087]
[46]
Alonso-González, C.; Menéndez-Menéndez, J.; González-González, A.; González, A.; Cos, S.; Martínez-Campa, C. Melatonin enhances the apoptotic effects and modulates the changes in gene expression induced by docetaxel in MCF-7 human breast cancer cells. Int. J. Oncol., 2018, 52(2), 560-570.
[http://dx.doi.org/10.3892/ijo.2017.4213] [PMID: 29207126]
[47]
Seborova, K.; Vaclavikova, R.; Soucek, P.; Elsnerova, K.; Bartakova, A.; Cernaj, P.; Bouda, J.; Rob, L.; Hruda, M.; Dvorak, P. Association of ABC gene profiles with time to progression and resistance in ovarian cancer revealed by bioinformatics analyses. Cancer Med., 2019, 8(2), 606-616.
[http://dx.doi.org/10.1002/cam4.1964] [PMID: 30672151]
[48]
Zhou, H.H.; Chen, X.; Cai, L.Y.; Nan, X.W.; Chen, J.H.; Chen, X.X.; Yang, Y.; Xing, Z.H.; Wei, M.N.; Li, Y.; Wang, S.T.; Liu, K.; Shi, Z.; Yan, X.J. Erastin reverses ABCB1-mediated docetaxel resistance in ovarian cancer. Front. Oncol., 2019, 9, 1398.
[http://dx.doi.org/10.3389/fonc.2019.01398] [PMID: 31921655]
[49]
Ingram, L.M.; Finnerty, M.C.; Mansoura, M.; Chou, C.W.; Cummings, B.S. Identification of lipidomic profiles associated with drug-resistant prostate cancer cells. Lipids Health Dis., 2021, 20(1), 15.
[http://dx.doi.org/10.1186/s12944-021-01437-5] [PMID: 33596934]
[50]
Pan, H.; Jansson, K.H.; Beshiri, M.L.; Yin, J.; Fang, L.; Agarwal, S.; Nguyen, H.; Corey, E.; Zhang, Y.; Liu, J.; Fan, H.; Lin, H.; Kelly, K. Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer. Oncotarget, 2017, 8(44), 77181-77194.
[http://dx.doi.org/10.18632/oncotarget.20424] [PMID: 29100379]
[51]
Li, N.; Jiang, W.; Wang, W.; Xiong, R.; Wu, X.; Geng, Q. Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol. Res., 2021, 166(166), 105466.
[http://dx.doi.org/10.1016/j.phrs.2021.105466] [PMID: 33548489]
[52]
Morris, G.; Berk, M.; Carvalho, A.F.; Maes, M.; Walker, A.J.; Puri, B.K. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav. Brain Res., 2018, 341(341), 154-175.
[http://dx.doi.org/10.1016/j.bbr.2017.12.036] [PMID: 29289598]
[53]
Ikeda, Y.; Hamano, H.; Horinouchi, Y.; Miyamoto, L.; Hirayama, T.; Nagasawa, H.; Tamaki, T.; Tsuchiya, K. Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice. J. Trace Elem. Med. Biol., 2021, 67, 126798.
[http://dx.doi.org/10.1016/j.jtemb.2021.126798] [PMID: 34087581]
[54]
Asghari, F.; Khademi, R.; Esmaeili Ranjbar, F.; Veisi Malekshahi, Z.; Faridi Majidi, R. Application of nanotechnology in targeting of cancer stem cells: A review. Int. J. Stem Cells, 2019, 12(2), 227-239.
[http://dx.doi.org/10.15283/ijsc19006] [PMID: 31242721]
[55]
Luo, C.; Sun, J.; Sun, B.; He, Z. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol. Sci., 2014, 35(11), 556-566.
[http://dx.doi.org/10.1016/j.tips.2014.09.008] [PMID: 25441774]
[56]
Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392.
[http://dx.doi.org/10.1021/acsnano.8b06399] [PMID: 30495919]
[57]
Liu, T.; Liu, W.; Zhang, M.; Yu, W.; Gao, F.; Li, C.; Wang, S.B.; Feng, J.; Zhang, X.Z. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano, 2018, 12(12), 12181-12192.
[http://dx.doi.org/10.1021/acsnano.8b05860] [PMID: 30458111]
[58]
Shan, X.; Li, S.; Sun, B.; Chen, Q.; Sun, J.; He, Z.; Luo, C. Ferroptosis-driven nanotherapeutics for cancer treatment. J. Control. Release, 2020, 319(103), 322-332.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.008] [PMID: 31917296]
[59]
Sang, M.; Luo, R.; Bai, Y.; Dou, J.; Zhang, Z.; Liu, F.; Feng, F.; Xu, J.; Liu, W. Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer. Theranostics, 2019, 9(21), 6209-6223.
[http://dx.doi.org/10.7150/thno.36283] [PMID: 31534546]
[60]
Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y.Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457.
[http://dx.doi.org/10.1038/nature23007] [PMID: 28678785]
[61]
Sato, R.; Semba, T.; Saya, H.; Arima, Y. Concise review: Stem cells and epithelial-mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells, 2016, 34(8), 1997-2007.
[http://dx.doi.org/10.1002/stem.2406] [PMID: 27251010]
[62]
Zhao, Y.; Alakhova, D.Y.; Kabanov, A.V. Can nanomedicines kill cancer stem cells? Adv. Drug Deliv. Rev., 2013, 65(13-14), 1763-1783.
[http://dx.doi.org/10.1016/j.addr.2013.09.016] [PMID: 24120657]
[63]
Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; McCormick, F.; McManus, M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679), 247-250.
[http://dx.doi.org/10.1038/nature24297] [PMID: 29088702]
[64]
Gao, M.; Deng, J.; Liu, F.; Fan, A.; Wang, Y.; Wu, H.; Ding, D.; Kong, D.; Wang, Z.; Peer, D.; Zhao, Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials, 2019, 223, 119486.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119486] [PMID: 31520887]
[65]
Torchilin, V.P. Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[66]
Shafiei-Irannejad, V.; Samadi, N.; Yousefi, B.; Salehi, R.; Velaei, K.; Zarghami, N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem. Biol. Drug Des., 2018, 91(1), 269-276.
[http://dx.doi.org/10.1111/cbdd.13078] [PMID: 28782285]
[67]
Guo, Y.; Zhang, X.; Sun, W.; Jia, H.R.; Zhu, Y.X.; Zhang, X.; Zhou, N.; Wu, F.G. Metal-phenolic network-based nanocomplexes that evoke ferroptosis by apoptosis: promoted nuclear drug influx and reversed drug resistance of cancer. Chem. Mater., 2019, 31(24), 10071-10084.
[http://dx.doi.org/10.1021/acs.chemmater.9b03042]
[68]
Zheng, D.W.; Lei, Q.; Zhu, J.Y.; Fan, J.X.; Li, C.X.; Li, C.; Xu, Z.; Cheng, S.X.; Zhang, X.Z. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett., 2017, 17(1), 284-291.
[http://dx.doi.org/10.1021/acs.nanolett.6b04060] [PMID: 28027643]
[69]
Waldmann, T.; Schneider, R. Targeting histone modifications-epigenetics in cancer. Curr. Opin. Cell Biol., 2013, 25(2), 184-189.
[http://dx.doi.org/10.1016/j.ceb.2013.01.001] [PMID: 23347561]
[70]
Gallagher, S.J.; Gunatilake, D.; Beaumont, K.A.; Sharp, D.M.; Tiffen, J.C.; Heinemann, A.; Weninger, W.; Haass, N.K.; Wilmott, J.S.; Madore, J.; Ferguson, P.M.; Rizos, H.; Hersey, P. HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int. J. Cancer, 2018, 142(9), 1926-1937.
[http://dx.doi.org/10.1002/ijc.31199] [PMID: 29210065]
[71]
Sampson, E.R.; Amin, V.; Schwarz, E.M.; O’Keefe, R.J.; Rosier, R.N. The histone deacetylase inhibitor vorinostat selectively sensitizes fibrosarcoma cells to chemotherapy. J. Orthop. Res., 2011, 29(4), 623-632.
[http://dx.doi.org/10.1002/jor.21274] [PMID: 20957741]
[72]
Wang, L.; Leite de Oliveira, R.; Huijberts, S.; Bosdriesz, E.; Pencheva, N.; Brunen, D.; Bosma, A.; Song, J.Y.; Zevenhoven, J.; Los-de Vries, G.T.; Horlings, H.; Nuijen, B.; Beijnen, J.H.; Schellens, J.H.M.; Bernards, R. An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell, 2018, 173(6), 1413-1425.e14.
[http://dx.doi.org/10.1016/j.cell.2018.04.012] [PMID: 29754815]
[73]
Park, S.E.; Kim, H.G.; Kim, D.E.; Jung, Y.J.; Kim, Y.; Jeong, S.Y.; Choi, E.K.; Hwang, J.J.; Kim, C.S. Combination treatment with docetaxel and histone deacetylase inhibitors downregulates androgen receptor signaling in castration-resistant prostate cancer. Invest. New Drugs, 2018, 36(2), 195-205.
[http://dx.doi.org/10.1007/s10637-017-0529-x] [PMID: 29110173]
[74]
Liu, S.; Zhang, K.; Zhu, Q.; Shen, Q.; Zhang, Q.; Yu, J.; Chen, Y.; Lu, W. Synthesis and biological evaluation of paclitaxel and vorinostat co-prodrugs for overcoming drug resistance in cancer therapy in vitro. Bioorg. Med. Chem., 2019, 27(7), 1405-1413.
[http://dx.doi.org/10.1016/j.bmc.2019.02.046] [PMID: 30819618]
[75]
Wu, C.; Xu, L.; Shi, L.; Gao, X.; Li, J.; Zhu, X.; Zhang, C. Supramolecularly self-assembled nano-twin drug for reversing multidrug resistance. Biomater. Sci., 2018, 6(8), 2261-2269.
[http://dx.doi.org/10.1039/C8BM00437D] [PMID: 29999073]
[76]
Emami Nejad, A.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Haghjooy Javanmard, S.; Taherian, M.; Ahmadlou, M.; Salehi, R.; Sadeghi, B.; Manian, M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int., 2021, 21(1), 62.
[http://dx.doi.org/10.1186/s12935-020-01719-5] [PMID: 33472628]
[77]
Jain, R.K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell, 2014, 26(5), 605-622.
[http://dx.doi.org/10.1016/j.ccell.2014.10.006] [PMID: 25517747]
[78]
Fu, J.; Li, T.; Yang, Y.; Jiang, L.; Wang, W.; Fu, L.; Zhu, Y.; Hao, Y. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials, 2021, 268(268), 120537.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120537] [PMID: 33260096]
[79]
Chen, J.; Ding, Z.; Peng, Y.; Pan, F.; Li, J.; Zou, L.; Zhang, Y.; Liang, H. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein. PLoS One, 2014, 9(6), e98882.
[http://dx.doi.org/10.1371/journal.pone.0098882] [PMID: 24901645]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy