General Review Article

Epigenetic Modifications in Acute Lymphoblastic Leukemia: From Cellular Mechanisms to Therapeutics

Author(s): Ezzatollah Fathi, Raheleh Farahzadi*, Soheila Montazersaheb* and Yasin Bagheri

Volume 21, Issue 1, 2021

Published on: 11 November, 2020

Page: [60 - 71] Pages: 12

DOI: 10.2174/1566523220999201111194554

Price: $65

Abstract

Background: Epigenetic modification pattern is considered as a characteristic feature in blood malignancies. Modifications in the DNA methylation modulators are recurrent in lymphoma and leukemia, so that the distinct methylation pattern defines different types of leukemia. Generally, the role of epigenetics is less understood, and most investigations are focused on genetic abnormalities and cytogenic studies to develop novel treatments for patients with hematologic disorders. Recently, understanding the underlying mechanism of acute lymphoblastic leukemia (ALL), especially epigenetic alterations as a driving force in the development of ALL opens a new era of investigation for developing promising strategy, beyond available conventional therapy.

Objective: This review will focus on a better understanding of the epigenetic mechanisms in cancer development and progression, with an emphasis on epigenetic alterations in ALL including, DNA methylation, histone modification, and microRNA alterations. Other topics that will be discussed include the use of epigenetic alterations as a promising therapeutic target in order to develop novel, well-suited approaches against ALL.

Conclusion: According to the literature review, leukemogenesis of ALL is extensively influenced by epigenetic modifications, particularly DNA hyper-methylation, histone modification, and miRNA alteration.

Keywords: Epigenetic modification, acute lymphoblastic leukemia, DNA methylation, histone modification, MicroRNA alterations, therapeutic target.

Graphical Abstract

[1]
Rytting M. Acute lymphoblastic leukemia (ALL) in children and adolescents. In: Acute Leukemias Springer. 2020; pp. 185-92.
[2]
Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med 2015; 373(16): 1541-52.
[http://dx.doi.org/10.1056/NEJMra1400972] [PMID: 26465987]
[3]
Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol 2017; 35(9): 975-83.
[http://dx.doi.org/10.1200/JCO.2016.70.7836] [PMID: 28297628]
[4]
Paul S, Kantarjian H, Jabbour EJ. Adult acute lymphoblastic leukemia. Mayo Clin Proc 2016; 91(11): 1645-66.
[http://dx.doi.org/10.1016/j.mayocp.2016.09.010] [PMID: 27814839]
[5]
Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: Insights and treatment implications. Nat Rev Clin Oncol 2015; 12(6): 344-57.
[http://dx.doi.org/10.1038/nrclinonc.2015.38] [PMID: 25781572]
[6]
Tosello V, Ferrando AA. The NOTCH signaling pathway: Role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 2013; 4(3): 199-210.
[http://dx.doi.org/10.1177/2040620712471368] [PMID: 23730497]
[7]
Paulsson K, Forestier E, Lilljebjörn H, et al. Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2010; 107(50): 21719-24.
[http://dx.doi.org/10.1073/pnas.1006981107] [PMID: 21098271]
[8]
Wiemels J. Perspectives on the causes of childhood leukemia. Chem Biol Interact 2012; 196(3): 59-67.
[http://dx.doi.org/10.1016/j.cbi.2012.01.007] [PMID: 22326931]
[9]
He B, Hlavka-Zhang JC, Lock RB, Jing D. Epigenetic Landscape in Leukemia and Its Impact on Antileukemia Therapeutics. Germ Line Mutations Associated Leukemia 2019.
[http://dx.doi.org/10.5772/intechopen.84184]
[10]
Mullighan CG. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematology 2014, the American Society of Hematology Education Program Book 2014; 2014(1): 174-80.
[http://dx.doi.org/10.1182/asheducation-2014.1.174]
[11]
Dimopoulos K, Grønbaek K. Epigenetic therapy in hematological cancers. APMIS 2019; 127(5): 316-28.
[http://dx.doi.org/10.1111/apm.12906] [PMID: 30859683]
[12]
Eyvazi S, Khamaneh AM, Tarhriz V, et al. CpG islands methylation analysis of CDH11, EphA5, and HS3ST2 genes in gastric adenocarcinoma patients. J Gastrointest Cancer 2020; 51(2): 579-83.
[http://dx.doi.org/10.1007/s12029-019-00290-1] [PMID: 31407253]
[13]
Ebrahimi V, Soleimanian A, Ebrahimi T, et al. Epigenetic modifications in gastric cancer: Focus on DNA methylation. Gene 2020; 742
[http://dx.doi.org/10.1016/j.gene.2020.144577] [PMID: 32171825]
[14]
Shargh SA, Sakizli M, Farajnia S, Montazer-Saheb S. Evaluation of methylation pattern in promoter region of E-cadherin gene and its relation to tumor grade and stage in breast cancer. Afr J Biotechnol 2011; 10(10): 1745-51.
[http://dx.doi.org/10.5897/AJB10.1378]
[15]
Burke MJ, Bhatla T. Epigenetic modifications in pediatric acute lymphoblastic leukemia. Front Pediatr 2014; 2: 42-9.
[http://dx.doi.org/10.3389/fped.2014.00042] [PMID: 24860797]
[16]
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7(1): 23-42.
[http://dx.doi.org/10.1186/s40364-019-0174-y] [PMID: 31695915]
[17]
Bates SE. Epigenetic therapies for cancer. N Engl J Med 2020; 383(7): 650-63.
[http://dx.doi.org/10.1056/NEJMra1805035] [PMID: 32786190]
[18]
Ziller MJ, Edri R, Yaffe Y, et al. Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 2015; 518(7539): 355-9.
[http://dx.doi.org/10.1038/nature13990] [PMID: 25533951]
[19]
De Jager PL, Srivastava G, Lunnon K, et al. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 2014; 17(9): 1156-63.
[http://dx.doi.org/10.1038/nn.3786] [PMID: 25129075]
[20]
Jing D, Huang Y, Liu X, Sia KC, Zhang JC, Tai X, et al. Lymphocyte-specific chromatin accessibility pre-determines glucocorticoid resistance in acute lymphoblastic leukemia Cancer cell 2018; 34(6): 906-21.
[http://dx.doi.org/10.1016/j.ccell.2018.11.002]
[21]
Razi Soofiyani S, Lotfipour F, Kazemi T, Mohammad Hoseini A, Shanehbandi D, Mohammadnejad L, et al. Combined Interleukin 12 and Granulocyte-macrophage Colony-stimulating Factor Gene Therapy Synergistically Suppresses Tumor Growth in the Murine Fibrosarcoma. Int J Can Man 2017; 10(10): e8462.
[http://dx.doi.org/10.5812/ijcm.8462]
[22]
Figueroa ME, Chen S-C, Andersson AK, et al. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. J Clin Invest 2013; 123(7): 3099-111.
[http://dx.doi.org/10.1172/JCI66203] [PMID: 23921123]
[23]
Geng H, Brennan S, Milne TA, et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov 2012; 2(11): 1004-23.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0208] [PMID: 23107779]
[24]
Meyer LK, Hermiston ML. The epigenome in pediatric acute lymphoblastic leukemia: Drug resistance and therapeutic opportunities. Cancer Drug Resist 2019; 2: 313-25.
[http://dx.doi.org/10.20517/cdr.2019.11]
[25]
Nordlund J, Syvänen A-C. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 2018; 51: 129-38.
[http://dx.doi.org/10.1016/j.semcancer.2017.09.001] [PMID: 28887175]
[26]
Ghasemian Sorbeni F, Montazersaheb S, Ansarin A, Esfahani A, Rezamand A, Sakhinia E. Molecular analysis of more than 140 gene fusion variants and aberrant activation of EVI1 and TLX1 in hematological malignancies. Ann Hematol 2017; 96(10): 1605-23.
[http://dx.doi.org/10.1007/s00277-017-3075-x] [PMID: 28779353]
[27]
Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet 2016; 17(10): 630-41.
[http://dx.doi.org/10.1038/nrg.2016.93] [PMID: 27629931]
[28]
Guillamot M, Cimmino L, Aifantis I. The impact of DNA methylation in hematopoietic malignancies. Trends Cancer 2016; 2(2): 70-83.
[http://dx.doi.org/10.1016/j.trecan.2015.12.006] [PMID: 27019871]
[29]
Milani L, Lundmark A, Kiialainen A, et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 2010; 115(6): 1214-25.
[http://dx.doi.org/10.1182/blood-2009-04-214668] [PMID: 19965625]
[30]
Jeong M, Goodell MA. New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells. Exp Hematol 2014; 42(8): 609-17.
[http://dx.doi.org/10.1016/j.exphem.2014.04.008] [PMID: 24993071]
[31]
Bahari G, Hashemi M, Naderi M, Taheri M. TET2 promoter DNA methylation and expression in childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev 2016; 17(8): 3959-62.
[PMID: 27644645]
[32]
Portha B, Fournier A, Kioon MD, Mezger V, Movassat J. Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility. Biochimie 2014; 97: 1-15.
[http://dx.doi.org/10.1016/j.biochi.2013.10.003] [PMID: 24139903]
[33]
Rahmani M, Talebi M, Hagh MF, Feizi AAH, Solali S. Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia. Biomed Pharmacother 2018; 97: 1493-500.
[http://dx.doi.org/10.1016/j.biopha.2017.11.033] [PMID: 29793312]
[34]
Hatzimichael E, Dasoula A, Benetatos L, et al. The absence of CDKN1C (p57KIP2) promoter methylation in myeloid malignancies also characterizes plasma cell neoplasms. Br J Haematol 2008; 141(4): 557-8.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07034.x] [PMID: 18371112]
[35]
Sato H, Oka T, Shinnou Y, et al. Multi-step aberrant CpG island hyper-methylation is associated with the progression of adult T--cell leukemia/lymphoma. Am J Pathol 2010; 176(1): 402-15.
[http://dx.doi.org/10.2353/ajpath.2010.090236] [PMID: 20019193]
[36]
Jiang D, Hong Q, Shen Y, et al. The diagnostic value of DNA methylation in leukemia: A systematic review and meta-analysis. PLoS One 2014; 9(5): e96822.
[http://dx.doi.org/10.1371/journal.pone.0096822] [PMID: 24810788]
[37]
Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N, Kaur J. Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol Biol Rep 2012; 39(9): 9145-57.
[http://dx.doi.org/10.1007/s11033-012-1787-5] [PMID: 22729911]
[38]
Pei J-H, Luo S-Q, Zhong Y, Chen J-H, Xiao H-W, Hu W-X. The association between non-Hodgkin lymphoma and methylation of p73. Tumour Biol 2011; 32(6): 1133-8.
[http://dx.doi.org/10.1007/s13277-011-0215-0] [PMID: 21811875]
[39]
Song D, Yue L, Wu G, et al. Evaluation of promoter hypomethylation and expression of p73 as a diagnostic and prognostic biomarker in Wilms’ tumour. J Clin Pathol 2016; 69(1): 12-8.
[http://dx.doi.org/10.1136/jclinpath-2015-203150] [PMID: 26184366]
[40]
Chen X, Zhang H, Li P, Yang Z, Qin L, Mo W. Gene expression of WWOX, FHIT and p73 in acute lymphoblastic leukemia. Oncol Lett 2013; 6(4): 963-9.
[http://dx.doi.org/10.3892/ol.2013.1514] [PMID: 24137446]
[41]
Zhou J-D, Wang Y-X, Zhang T-J, et al. Epigenetic inactivation of DLX4 is associated with disease progression in chronic myeloid leukemia. Biochem Biophys Res Commun 2015; 463(4): 1250-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.095] [PMID: 26086097]
[42]
Campo Dell’Orto M, Banelli B, Giarin E, et al. Down-regulation of DLX3 expression in MLL-AF4 childhood lymphoblastic leukemias is mediated by promoter region hypermethylation. Oncol Rep 2007; 18(2): 417-23.
[http://dx.doi.org/10.3892/or.18.2.417] [PMID: 17611665]
[43]
Zhou JD, Zhang TJ, Wang YX, et al. DLX4 hypermethylation is a prognostically adverse indicator in de novo acute myeloid leukemia. Tumour Biol 2016; 37(7): 8951-60.
[http://dx.doi.org/10.1007/s13277-015-4364-4] [PMID: 26753961]
[44]
Zhou X, Yang X-Y, Popescu NC. Preclinical evaluation of combined antineoplastic effect of DLC1 tumor suppressor protein and suberoylanilide hydroxamic acid on prostate cancer cells. Biochem Biophys Res Commun 2012; 420(2): 325-30.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.158] [PMID: 22425986]
[45]
Chung YR, Schatoff E, Abdel-Wahab O. Epigenetic alterations in hematopoietic malignancies. Int J Hematol 2012; 96(4): 413-27.
[http://dx.doi.org/10.1007/s12185-012-1181-z] [PMID: 23015417]
[46]
Quivoron C, Couronné L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011; 20(1): 25-38.
[http://dx.doi.org/10.1016/j.ccr.2011.06.003] [PMID: 21723201]
[47]
Bock C, Beerman I, Lien W-H, et al. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell 2012; 47(4): 633-47.
[http://dx.doi.org/10.1016/j.molcel.2012.06.019] [PMID: 22841485]
[48]
Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998; 19(3): 219-20.
[http://dx.doi.org/10.1038/890] [PMID: 9662389]
[49]
Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer 2015; 15(3): 152-65.
[http://dx.doi.org/10.1038/nrc3895] [PMID: 25693834]
[50]
Gowher H, Loutchanwoot P, Vorobjeva O, et al. Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. J Mol Biol 2006; 357(3): 928-41.
[http://dx.doi.org/10.1016/j.jmb.2006.01.035] [PMID: 16472822]
[51]
Roman-Gomez J, Castillejo JA, Jimenez A, Barrios M, Heiniger A, Torres A. The role of DNA hypermethylation in the pathogenesis and prognosis of acute lymphoblastic leukemia. Leuk Lymphoma 2003; 44(11): 1855-64.
[http://dx.doi.org/10.1080/1042819031000116689] [PMID: 14738136]
[52]
Panahi Y, Fattahi A, Nejabati HR, et al. DNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard. Environ Toxicol Pharmacol 2018; 58: 230-6.
[http://dx.doi.org/10.1016/j.etap.2018.01.012] [PMID: 29428683]
[53]
Nordlund J, Bäcklin CL, Wahlberg P, et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 2013; 14(9): r105.
[http://dx.doi.org/10.1186/gb-2013-14-9-r105] [PMID: 24063430]
[54]
Deneberg S, Guardiola P, Lennartsson A, et al. Prognostic DNA methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell chromatin marks. Blood 2011; 118(20): 5573-82.
[http://dx.doi.org/10.1182/blood-2011-01-332353] [PMID: 21960591]
[55]
Ammerpohl O, Haake A, Pellissery S, et al. Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia 2012; 26(1): 185-8.
[http://dx.doi.org/10.1038/leu.2011.194] [PMID: 21818115]
[56]
Stumpel DJ, Schneider P, van Roon EH, et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009; 114(27): 5490-8.
[http://dx.doi.org/10.1182/blood-2009-06-227660] [PMID: 19855078]
[57]
Schafer E, Irizarry R, Negi S, et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 2010; 115(23): 4798-809.
[http://dx.doi.org/10.1182/blood-2009-09-243634] [PMID: 20215641]
[58]
Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532): 1074-80.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[59]
Wang Z, Zang C, Rosenfeld JA, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008; 40(7): 897-903.
[http://dx.doi.org/10.1038/ng.154] [PMID: 18552846]
[60]
Rea S, Eisenhaber F, O’Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000; 406(6796): 593-9.
[http://dx.doi.org/10.1038/35020506] [PMID: 10949293]
[61]
Hanna J, Hossain GS, Kocerha J. The potential for microRNAs in clinical research. Front Genet 2019; 10: 478-84.
[http://dx.doi.org/10.3389/fgene.2019.00478] [PMID: 31156715]
[62]
Malumbres M. miRNAs and cancer: An epigenetics view. Mol Aspects Med 2013; 34(4): 863-74.
[http://dx.doi.org/10.1016/j.mam.2012.06.005] [PMID: 22771542]
[63]
Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharm Res 2014; 37(1): 4-15.
[http://dx.doi.org/10.1007/s12272-013-0276-2] [PMID: 24272889]
[64]
Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 2007; 6(9): 1001-5.
[http://dx.doi.org/10.4161/cc.6.9.4209] [PMID: 17457051]
[65]
Schotte D, Chau JC, Sylvester G, et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23(2): 313-22.
[http://dx.doi.org/10.1038/leu.2008.286] [PMID: 18923441]
[66]
Suzuki H, Maruyama R, Yamamoto E, Kai M. Epigenetic alteration and microRNA dysregulation in cancer. Front Genet 2013; 4: 258-66.
[http://dx.doi.org/10.3389/fgene.2013.00258] [PMID: 24348513]
[67]
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10(10): 704-14.
[http://dx.doi.org/10.1038/nrg2634] [PMID: 19763153]
[68]
Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 2019; 30(2): 114-27.
[PMID: 31263388]
[69]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[70]
Roman-Gomez J, Agirre X, Jiménez-Velasco A, et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 2009; 27(8): 1316-22.
[http://dx.doi.org/10.1200/JCO.2008.19.3441] [PMID: 19164206]
[71]
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA dysregulation in childhood hematological cancer. Int J Mol Sci 2018; 19(9): 2688-718.
[http://dx.doi.org/10.3390/ijms19092688] [PMID: 30201877]
[72]
de Oliveira JC, Scrideli CA, Brassesco MS, et al. Differential miRNA expression in childhood acute lymphoblastic leukemia and association with clinical and biological features. Leuk Res 2012; 36(3): 293-8.
[http://dx.doi.org/10.1016/j.leukres.2011.10.005] [PMID: 22099053]
[73]
de Oliveira JC, Scrideli CA, Brassesco MS, Yunes JA, Brandalise SR, Tone LG. MiR-708-5p is differentially expressed in childhood acute lymphoblastic leukemia but not strongly associated to clinical features. Pediatr Blood Cancer 2015; 62(1): 177-8.
[http://dx.doi.org/10.1002/pbc.25222] [PMID: 25214155]
[74]
Panagal M, Senthil KSR, Sivakurunathan P, et al. MicroRNA21 and the various types of myeloid leukemia. Cancer Gene Ther 2018; 25(7-8): 161-6.
[http://dx.doi.org/10.1038/s41417-018-0025-2] [PMID: 29795410]
[75]
Mosakhani N, Missiry ME, Vakkila E, Knuutila S, Vakkila J. Low expression of miR-18a as a characteristic of pediatric acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2017; 39(8): 585-8.
[http://dx.doi.org/10.1097/MPH.0000000000000921] [PMID: 29068867]
[76]
Nabhan M, Louka ML, Khairy E, Tash F, Ali-Labib R, El-Habashy S. MicroRNA-181a and its target Smad 7 as potential biomarkers for tracking child acute lymphoblastic leukemia. Gene 2017; 628: 253-8.
[http://dx.doi.org/10.1016/j.gene.2017.07.052] [PMID: 28732737]
[77]
Ghodousi ES, Rahgozar S. MicroRNA-326 and microRNA-200c: Two novel biomarkers for diagnosis and prognosis of pediatric acute lymphoblastic leukemia. J Cell Biochem 2018; 119(7): 6024-32.
[http://dx.doi.org/10.1002/jcb.26800] [PMID: 29630744]
[78]
Labib HA, Elantouny NG, Ibrahim NF, Alnagar AA. Upregulation of microRNA-21 is a poor prognostic marker in patients with childhood B cell acute lymphoblastic leukemia. Hematology 2017; 22(7): 392-7.
[http://dx.doi.org/10.1080/10245332.2017.1292204] [PMID: 28253825]
[79]
Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122(10): 3398-406.
[http://dx.doi.org/10.1172/JCI61269] [PMID: 23023710]
[80]
Bongiovanni D, Saccomani V, Piovan E. Aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Int J Mol Sci 2017; 18(9): 1904-33.
[http://dx.doi.org/10.3390/ijms18091904] [PMID: 28872614]
[81]
Mavrakis KJ, Wolfe AL, Oricchio E, et al. Genome-wide RNA--mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 2010; 12(4): 372-9.
[http://dx.doi.org/10.1038/ncb2037] [PMID: 20190740]
[82]
Gusscott S, Kuchenbauer F, Humphries RK, Weng AP. Notch-mediated repression of miR-223 contributes to IGF1R regulation in T-ALL. Leuk Res 2012; 36(7): 905-11.
[http://dx.doi.org/10.1016/j.leukres.2012.02.013] [PMID: 22424712]
[83]
Kumar V, Palermo R, Talora C, et al. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia 2014; 28(12): 2324-35.
[http://dx.doi.org/10.1038/leu.2014.133] [PMID: 24727676]
[84]
He Z, Liao Z, Chen S, et al. Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 2018; 14(5): e259-65.
[http://dx.doi.org/10.1111/ajco.12979] [PMID: 29749698]
[85]
Lu M, Kong X, Wang H, Huang G, Ye C, He Z. A novel microRNAs expression signature for hepatocellular carcinoma diagnosis and prognosis. Oncotarget 2017; 8(5): 8775-84.
[http://dx.doi.org/10.18632/oncotarget.14452] [PMID: 28060739]
[86]
Cao L, Wang N, Pan J, et al. Clinical significance of microRNA-34b expression in pediatric acute leukemia. Mol Med Rep 2016; 13(3): 2777-84.
[http://dx.doi.org/10.3892/mmr.2016.4876] [PMID: 26861642]
[87]
Nemes K, Csóka M, Nagy N, et al. Expression of certain leukemia/lymphoma related microRNAs and its correlation with prognosis in childhood acute lymphoblastic leukemia. Pathol Oncol Res 2015; 21(3): 597-604.
[http://dx.doi.org/10.1007/s12253-014-9861-z] [PMID: 25388103]
[88]
Jing D, Bhadri VA, Beck D, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood 2015; 125(2): 273-83.
[http://dx.doi.org/10.1182/blood-2014-05-576470] [PMID: 25336632]
[89]
Martelli AM, Lonetti A, Buontempo F, et al. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells. Adv Biol Regul 2014; 56: 6-21.
[http://dx.doi.org/10.1016/j.jbior.2014.04.004] [PMID: 24819383]
[90]
Uckun FM, Qazi S. Spleen tyrosine kinase as a molecular target for treatment of leukemias and lymphomas. Expert Rev Anticancer Ther 2010; 10(9): 1407-18.
[http://dx.doi.org/10.1586/era.10.112] [PMID: 20836676]
[91]
Phelan KW, Advani AS. Novel therapies in acute lymphoblastic leukemia. Curr Hematol Malig Rep 2018; 13(4): 289-99.
[http://dx.doi.org/10.1007/s11899-018-0457-7] [PMID: 30078158]
[92]
Kelly AD, Issa JJ. The promise of epigenetic therapy: Reprogramming the cancer epigenome. Curr Opin Genet Dev 2017; 42: 68-77.
[http://dx.doi.org/10.1016/j.gde.2017.03.015] [PMID: 28412585]
[93]
Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I. Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol 2013; 117: 1-38.
[http://dx.doi.org/10.1016/B978-0-12-410524-9.00001-3] [PMID: 23611284]
[94]
Chiappinelli KB, Zahnow CA, Ahuja N, Baylin SB. Combining epigenetic and immunotherapy to combat cancer. Cancer Res 2016; 76(7): 1683-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2125] [PMID: 26988985]
[95]
Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 2018; 837: 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.021] [PMID: 30125562]
[96]
Xu Y, Vakoc CR. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb Perspect Med 2017; 7(7): a026674.
[http://dx.doi.org/10.1101/cshperspect.a026674] [PMID: 28213432]
[97]
Bardini M, Trentin L, Rizzo F, et al. Antileukemic efficacy of BET inhibitor in a preclinical mouse model of MLL-AF4+ infant ALL. Mol Cancer Ther 2018; 17(8): 1705-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1123] [PMID: 29748211]
[98]
Gan L, Yang Y, Li Q, Feng Y, Liu T, Guo W. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark Res 2018; 6(1): 10.
[http://dx.doi.org/10.1186/s40364-018-0122-2] [PMID: 29556394]
[99]
Kurmasheva RT, Sammons M, Favours E, et al. Initial testing (stage 1) of tazemetostat (EPZ-6438), a novel EZH2 inhibitor, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2017; 64(3)
[http://dx.doi.org/10.1002/pbc.26218] [PMID: 27555605]
[100]
Kari V, Raul SK, Henck JM, et al. The histone methyltransferase DOT1L is required for proper DNA damage response, DNA repair, and modulates chemotherapy responsiveness. Clin Epigenetics 2019; 11(1): 4-18.
[http://dx.doi.org/10.1186/s13148-018-0601-1] [PMID: 30616689]
[101]
Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121(2): 167-78.
[http://dx.doi.org/10.1016/j.cell.2005.02.020] [PMID: 15851025]
[102]
Krivtsov AV, Feng Z, Lemieux ME, et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14(5): 355-68.
[http://dx.doi.org/10.1016/j.ccr.2008.10.001] [PMID: 18977325]
[103]
Bernt KM, Zhu N, Sinha AU, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011; 20(1): 66-78.
[http://dx.doi.org/10.1016/j.ccr.2011.06.010] [PMID: 21741597]
[104]
Daigle SR, Olhava EJ, Therkelsen CA, et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 2013; 122(6): 1017-25.
[http://dx.doi.org/10.1182/blood-2013-04-497644] [PMID: 23801631]
[105]
Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 2011; 11(10): 726-34.
[http://dx.doi.org/10.1038/nrc3130] [PMID: 21941284]
[106]
Liyanage C, Wathupola A, Muraleetharan S, Perera K, Punyadeera C, Udagama P. Promoter Hypermethylation of Tumor--Suppressor Genes p16INK4a,RASSF1A,TIMP3, and PCQAP/MED15 in Salivary DNA as a Quadruple Biomarker Panel for Early Detection of Oral and Oropharyngeal Cancers. Biomolecules 2019; 9(4): 148-67.
[http://dx.doi.org/10.3390/biom9040148] [PMID: 31013839]
[107]
Sheaffer KL, Elliott EN, Kaestner KH. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res (Phila) 2016; 9(7): 534-46.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0349] [PMID: 26883721]
[108]
Zahnow CA. The epigenomic impact of methylation in metabolic dysfunction and cancer Nutritional Epigenomics. 2019; pp. 67-83.
[http://dx.doi.org/10.1016/B978-0-12-816843-1.00005-9]
[109]
Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 2016; 8(9): a019505.
[http://dx.doi.org/10.1101/cshperspect.a019505] [PMID: 27194046]
[110]
Van der Meulen J, Van Roy N, Van Vlierberghe P, Speleman F. The epigenetic landscape of T-cell acute lymphoblastic leukemia. Int J Biochem Cell Biol 2014; 53: 547-57.
[http://dx.doi.org/10.1016/j.biocel.2014.04.015] [PMID: 24786297]
[111]
Lopez AT, Bates S, Geskin L. Current status of HDAC inhibitors in cutaneous T-cell lymphoma. Am J Clin Dermatol 2018; 19(6): 805-19.
[http://dx.doi.org/10.1007/s40257-018-0380-7] [PMID: 30173294]
[112]
Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014; 13(9): 673-91.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]
[113]
Vilas-Zornoza A, Agirre X, Abizanda G, et al. Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia 2012; 26(7): 1517-26.
[http://dx.doi.org/10.1038/leu.2012.31] [PMID: 22307227]
[114]
Zhang C, Zhong JF, Stucky A, Chen X-L, Press MF, Zhang X. Histone acetylation: novel target for the treatment of acute lymphoblastic leukemia. Clin Epigenetics 2015; 7(1): 117.
[http://dx.doi.org/10.1186/s13148-015-0151-8] [PMID: 26543507]
[115]
Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 2017; 18(7): 1414-39.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[116]
Mazzone R, Zwergel C, Mai A, Valente S. Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin Epigenetics 2017; 9(1): 59.
[http://dx.doi.org/10.1186/s13148-017-0358-y] [PMID: 28572863]
[117]
Bhatla T, Wang J, Morrison DJ, et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 2012; 119(22): 5201-10.
[http://dx.doi.org/10.1182/blood-2012-01-401687] [PMID: 22496163]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy