Abstract
Background: Prostate Cancer (PCa) is defined as a major health problem faced by the male population.
Aim: We aimed to investigate the protective effects of Orange Peel Extract (OPE) and/or Selenium (Se) on chronic non-bacterial prostatitis in a rat model. Methods: Fifty-six adult male Wistar albino rats were castrated; after 5 days, they were divided randomly into eight groups (n= 7). The control group received saline treatment; while 17β-estradiol (E2) (0.25mg/kg) was injected subcutaneously in rats from Groups V, VI, VII, and VIII to induce chronic non-bacterial prostatitis. They were then treated with OPE (400mg/kg body weight; Groups II, IV, VI, and VIII) and/or sodium selenite (0.5mg/kg body weight; Groups III, IV, VII, and VIII) for 30 days. Interleukin-2 (IL2) and Prostate Cancer Antigen 3 (PCA3) mRNA expressions were determined using qPCR; Prostate-Specific Antigen (PSA) protein expression was determined immunohistochemically. Prostate tissue histology was examined by hematoxylin and eosin staining, and the levels of oxidative stress markers and antioxidant enzymes were measured. Results: E2 administration significantly increased IL2 and PCA3 mRNA expressions, and PSA protein expression. It also increased the prostate wet weight and body weight, and lipid peroxidation, nitric oxide, TNF-α, and IL-1β levels, decreased the glutathione and antioxidant enzyme levels and caused distinct histological alterations in the prostate gland. OPE and/or Se markedly improved all the studied parameters due to their antioxidant properties and anti-inflammatory effects. Conclusion: OPE and Se showed protective effects against 17β-estradiol-induced chronic non-bacterial prostatitis. These results suggest that protection of chronic non-bacterial prostatitis by OPE+Se combination involves anti-oxidation and anti-inflammation. Moreover, their synergistic mechanism was mostly achieved via the regulation of oxidative stress and inflammation processes.Keywords: Prostatitis, selenium, orange peel extract, 17β-estradiol, rats, prostate cancer.
Graphical Abstract
[1]
Obertova, Z.; Brown, C.; Holmes, M.; Lawrenson, R. Prostate cancer incidence and mortality in rural men--a systematic review of the literature. Rural Remote Health, 2012, 12(2), 2039.
[PMID: 22616627]
[PMID: 22616627]
[2]
Iadeluca, L.; Mardekian, J.; Chander, P.; Hopps, M.; Makinson, G.T. The burden of selected cancers in the US: Health behaviors and
health care resource utilization. Cancer Manag. Res., 2017, 9, 721-730.
[http://dx.doi.org/10.2147/CMAR.S143148] [PMID: 29238222]
[http://dx.doi.org/10.2147/CMAR.S143148] [PMID: 29238222]
[3]
Ibrahim, A.S.; Khaled, H.M.; Mikhail, N.N.; Baraka, H.; Kamel, H. Cancer incidence in Egypt: Results of the national populationbased
cancer registry program. J. Cancer Epidemiol., 2014, 2014, 437971.
[http://dx.doi.org/10.1155/2014/437971] [PMID: 25328522]
[http://dx.doi.org/10.1155/2014/437971] [PMID: 25328522]
[4]
Nguyen, K.; Sarkar, A.; Jain, A.K. Structure and context in prostatic gland segmentation and classification. In: Medical Image
Computing and Computer-Assisted Intervention ; Spinger: Berlin , 2012, pp. 115-123.
[5]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[6]
Pan, M.H.; Lai, C.S.; Ho, C.T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct., 2010, 1(1), 15-31.
[http://dx.doi.org/10.1039/c0fo00103a] [PMID: 21776454]
[http://dx.doi.org/10.1039/c0fo00103a] [PMID: 21776454]
[7]
Al-Quraishy, S.; Dkhil, M.A.; Abdel Moneim, A.E. Anti hyperglycemic activity of selenium nanoparticles in streptozotocin induced diabetic rats. Int. J. Nanomedicine, 2015, 10, 6741-6756.
[PMID: 26604749]
[PMID: 26604749]
[8]
Sharma, J.; Gray, K.P.; Harshman, L.C.; Evan, C.; Nakabayashi, M.; Fichorova, R.; Rider, J.; Mucci, L.; Kantoff, P.W.; Sweeney, C.J. Elevated IL-8, TNF-α, and MCP-1 in men with metastatic
prostate cancer starting Androgen-Deprivation Therapy (ADT) are
associated with shorter time to castration-resistance and overall
survival. Prostate, 2014, 74(8), 820-828.
[http://dx.doi.org/10.1002/pros.22788] [PMID: 24668612]
[http://dx.doi.org/10.1002/pros.22788] [PMID: 24668612]
[9]
Paulis, G. Inflammatory mechanisms and oxidative stress in prostatitis:
The possible role of antioxidant therapy. Res. Rep. Urol., 2018, 10, 75-87.
[http://dx.doi.org/10.2147/RRU.S170400] [PMID: 30271757]
[http://dx.doi.org/10.2147/RRU.S170400] [PMID: 30271757]
[10]
Al-Megrin, W.A.; Soliman, D.; Kassab, R.B.; Metwally, D.M.; Abdel Moneim, A.E.; El-Khadragy, M.F. Coenzyme Q10 activates the antioxidant machinery and inhibits the inflammatory and apoptotic cascades against lead acetate-induced renal injury in rats. Front. Physiol., 2020, 11, 64.
[11]
Almeer, R.S.; Aref, A.M.; Hussein, R.A.; Othman, M.S.; Abdel Moneim, A.E. Antitumor potential of berberine and cinnamic acid against solid ehrlich carcinoma in mice. Anticancer. Agents Med. Chem., 2019, 19(3), 356-364.
[PMID: 30451117]
[PMID: 30451117]
[12]
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1129-1150.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[13]
(a) Hakim, I.A.; Harris, R.B.; Ritenbaugh, C. Citrus peel use is
associated with reduced risk of squamous cell carcinoma of the
skin. Nutr. Cancer, 2000, 37(2), 161-168.
[http://dx.doi.org/10.1207/S15327914NC372_7] [PMID: 11142088]
(b) Ho, S.C.; Lin, C.C. Investigation of heat treating conditions for enhancing the anti-inflammatory activity of citrus fruit (Citrus reticulata) peels. J. Agric. Food Chem., 2008, 56(17), 7976-7982.
[http://dx.doi.org/10.1021/jf801434c] [PMID: 18683945]
[http://dx.doi.org/10.1207/S15327914NC372_7] [PMID: 11142088]
(b) Ho, S.C.; Lin, C.C. Investigation of heat treating conditions for enhancing the anti-inflammatory activity of citrus fruit (Citrus reticulata) peels. J. Agric. Food Chem., 2008, 56(17), 7976-7982.
[http://dx.doi.org/10.1021/jf801434c] [PMID: 18683945]
[14]
Assini, J.M.; Mulvihill, E.E.; Sutherland, B.G.; Telford, D.E.; Sawyez, C.G.; Felder, S.L.; Chhoker, S.; Edwards, J.Y.; Gros, R.; Huff, M.W. Naringenin prevents cholesterol-induced systemic inflammation,
metabolic dysregulation, and atherosclerosis in Ldlr-/-
mice. J. Lipid Res., 2013, 54(3), 711-724.
[http://dx.doi.org/10.1194/jlr.M032631] [PMID: 23269394]
[http://dx.doi.org/10.1194/jlr.M032631] [PMID: 23269394]
[15]
Romagnolo, D.F.; Selmin, O.I. Flavonoids and cancer prevention: a
review of the evidence. J. Nutr. Gerontol. Geriatr., 2012, 31(3), 206-238.
[http://dx.doi.org/10.1080/21551197.2012.702534] [PMID: 22888839]
[http://dx.doi.org/10.1080/21551197.2012.702534] [PMID: 22888839]
[16]
Mulvihill, E.E.; Huff, M.W. Citrus flavonoids and the prevention
of atherosclerosis. Cardiovasc. Hematol. Disord. Drug Targets , 2012, 12(2), 84-91.
[http://dx.doi.org/10.2174/1871529X11202020084] [PMID: 23030447]
[http://dx.doi.org/10.2174/1871529X11202020084] [PMID: 23030447]
[17]
Meiyanto, E.; Hermawan, A. Anindyajati. Natural products for
cancer-targeted therapy: Citrus flavonoids as potent chemopreventive
agents. Asian Pac. J. Cancer Prev., 2012, 13(2), 427-436.
[http://dx.doi.org/10.7314/APJCP.2012.13.2.427] [PMID: 22524801]
[http://dx.doi.org/10.7314/APJCP.2012.13.2.427] [PMID: 22524801]
[18]
Aruoma, O.I.; Landes, B.; Ramful-Baboolall, D.; Bourdon, E.; Neergheen-Bhujun, V.; Wagner, K.H.; Bahorun, T. Functional
benefits of citrus fruits in the management of diabetes. Prev. Med., 2012, 54(Suppl.), S12-S16.
[http://dx.doi.org/10.1016/j.ypmed.2012.02.012] [PMID: 22373887]
[http://dx.doi.org/10.1016/j.ypmed.2012.02.012] [PMID: 22373887]
[19]
Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective effects of
citrus flavonoids. J. Agric. Food Chem., 2012, 60(4), 877-885.
[http://dx.doi.org/10.1021/jf204452y] [PMID: 22224368]
[http://dx.doi.org/10.1021/jf204452y] [PMID: 22224368]
[20]
Dkhil, M.A.; Zrieq, R.; Al-Quraishy, S.; Abdel Moneim, A.E. Selenium nanoparticles attenuate oxidative stress and testicular
damage in streptozotocin-induced diabetic rats. Molecules, 2016, 21(11), E1517
[http://dx.doi.org/10.3390/molecules21111517] [PMID: 27869771]
[http://dx.doi.org/10.3390/molecules21111517] [PMID: 27869771]
[21]
(a) Lee, K.H.; Jeong, D. Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: The selenium paradox. (Review). Mol. Med. Rep., 2012, 5(2), 299-304.
[PMID: 22051937]
(b) Ahmed, H.H.; Abd El-Maksoud, M.D.; Abdel Moneim, A.E.; Aglan, H.A. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol. Trace Elem. Res., 2017, 177(2), 267-280.
[http://dx.doi.org/10.1007/s12011-016-0876-z] [PMID: 27785741]
[PMID: 22051937]
(b) Ahmed, H.H.; Abd El-Maksoud, M.D.; Abdel Moneim, A.E.; Aglan, H.A. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol. Trace Elem. Res., 2017, 177(2), 267-280.
[http://dx.doi.org/10.1007/s12011-016-0876-z] [PMID: 27785741]
[22]
(a) Kenfield, S.A.; Van Blarigan, E.L.; DuPre, N.; Stampfer, M.J.; Giovannucci, E.; Chan, J.M. Selenium supplementation and prostate
cancer mortality. J. Natl. Cancer Inst., 2014, 107(1), 360.
[http://dx.doi.org/10.1093/jnci/dju360] [PMID: 25505227]
(b) Nicastro, H.L.; Dunn, B.K. Selenium and prostate cancer prevention: Insights from the selenium and vitamin E cancer prevention trial (Select). Nutrients, 2013, 5(4), 1122-1148.
[http://dx.doi.org/10.3390/nu5041122] [PMID: 23552052]
[http://dx.doi.org/10.1093/jnci/dju360] [PMID: 25505227]
(b) Nicastro, H.L.; Dunn, B.K. Selenium and prostate cancer prevention: Insights from the selenium and vitamin E cancer prevention trial (Select). Nutrients, 2013, 5(4), 1122-1148.
[http://dx.doi.org/10.3390/nu5041122] [PMID: 23552052]
[23]
Ward, G.R.; Abdel-Rahman, A.A. Effect of testosterone replacement or duration of castration on baroreflex bradycardia in conscious rats. BMC Pharmacol., 2005, 5(1), 9.
[http://dx.doi.org/10.1186/1471-2210-5-9] [PMID: 15799780]
[http://dx.doi.org/10.1186/1471-2210-5-9] [PMID: 15799780]
[24]
Sugimoto, M.; Oka, M.; Tsunemori, H.; Yamashita, M.; Kakehi, Y. Effect of a phytotherapeutic agent, Eviprostat®, on prostatic and urinary cytokines/chemokines in a rat model of nonbacterial prostatitis. Prostate, 2011, 71(4), 438-444.
[http://dx.doi.org/10.1002/pros.21299] [PMID: 21254154]
[http://dx.doi.org/10.1002/pros.21299] [PMID: 21254154]
[25]
Pontual, M.L.; Tuji, F.M.; Barros, S.P.; Bóscolo, F.N.; Novaes, P.D.; de Almeida, S.M. Ultrastructural evaluation of the radioprotective effect of sodium selenite on submandibular glands in rats. J. Appl. Oral Sci., 2007, 15(3), 162-168.
[http://dx.doi.org/10.1590/S1678-77572007000300003] [PMID: 19089124]
[http://dx.doi.org/10.1590/S1678-77572007000300003] [PMID: 19089124]
[26]
Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 2001, 29(9), e45.
[http://dx.doi.org/10.1093/nar/29.9.e45] [PMID: 11328886]
[http://dx.doi.org/10.1093/nar/29.9.e45] [PMID: 11328886]
[27]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[28]
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[29]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[30]
Nishikimi, M.; Appaji, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854.
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3] [PMID: 4400444]
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3] [PMID: 4400444]
[31]
Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 1967, 70(1), 158-169.
[PMID: 6066618]
[PMID: 6066618]
[32]
Factor, V.M.; Kiss, A.; Woitach, J.T.; Wirth, P.J.; Thorgeirsson, S.S. Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis. J. Biol. Chem., 1998, 273(25), 15846-15853.
[http://dx.doi.org/10.1074/jbc.273.25.15846] [PMID: 9624185]
[http://dx.doi.org/10.1074/jbc.273.25.15846] [PMID: 9624185]
[33]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[34]
Mizoguchi, S.; Mori, K.; Wang, Z.; Liu, T.; Funahashi, Y.; Sato, F.; DeFranco, D.B.; Yoshimura, N.; Mimata, H. Effects of estrogen receptor β stimulation in a rat model of non-bacterial prostatic inflammation. Prostate, 2017, 77(7), 803-811.
[http://dx.doi.org/10.1002/pros.23320] [PMID: 28181685]
[http://dx.doi.org/10.1002/pros.23320] [PMID: 28181685]
[35]
Vykhovanets, E.V.; Resnick, M.I.; MacLennan, G.T.; Gupta, S. Experimental rodent models of prostatitis: Limitations and potential. Prostate Cancer Prostatic Dis., 2007, 10(1), 15-29.
[http://dx.doi.org/10.1038/sj.pcan.4500930] [PMID: 17199136]
[http://dx.doi.org/10.1038/sj.pcan.4500930] [PMID: 17199136]
[36]
Wang, W.; Naveed, M.; Baig, M.M.F.A.; Abbas, M.; Xiaohui, Z. Experimental rodent models of chronic prostatitis and evaluation criteria. Biomed. Pharmacother., 2018, 108, 1894-1901.
[http://dx.doi.org/10.1016/j.biopha.2018.10.010] [PMID: 30453450]
[http://dx.doi.org/10.1016/j.biopha.2018.10.010] [PMID: 30453450]
[37]
Palapattu, G.S.; Sutcliffe, S.; Bastian, P.J.; Platz, E.A.; De Marzo, A.M.; Isaacs, W.B.; Nelson, W.G. Prostate carcinogenesis and inflammation: Emerging insights. Carcinogenesis, 2005, 26(7), 1170-1181.
[http://dx.doi.org/10.1093/carcin/bgh317] [PMID: 15498784]
[http://dx.doi.org/10.1093/carcin/bgh317] [PMID: 15498784]
[38]
Amara, S.; Tiriveedhi, V. Inflammatory role of high salt level in tumor microenvironment. (Review). Int. J. Oncol., 2017, 50(5), 1477-1481.
[http://dx.doi.org/10.3892/ijo.2017.3936] [PMID: 28350105]
[http://dx.doi.org/10.3892/ijo.2017.3936] [PMID: 28350105]
[39]
Nelius, T.; Samathanam, C.; Martinez-Marin, D.; Gaines, N.; Stevens, J.; Hickson, J.; de Riese, W.; Filleur, S. Positive correlation between PEDF expression levels and macrophage density in the human prostate. Prostate, 2013, 73(5), 549-561.
[http://dx.doi.org/10.1002/pros.22595] [PMID: 23038613]
[http://dx.doi.org/10.1002/pros.22595] [PMID: 23038613]
[40]
Huang, T.R.; Wang, G.C.; Zhang, H.M.; Peng, B. Differential research of inflammatory and related mediators in BPH, histological prostatitis and PCa. Andrologia, 2018, 50(4), e12974.
[http://dx.doi.org/10.1111/and.12974] [PMID: 29441606]
[http://dx.doi.org/10.1111/and.12974] [PMID: 29441606]
[41]
Duan, Z.G.; Yang, W.M. Analysis of cytokines (IL-2, IL-8, IL-10) in the expressed prostatic secretions of chronic prostatitis. Zhonghua Nan Ke Xue, 2005, 11(3), 201-203.
[PMID: 15804113]
[PMID: 15804113]
[42]
(a) Mahapokai, W.; Van Sluijs, F.J.; Schalken, J.A. Models for
studying benign prostatic hyperplasia. Prostate Cancer Prostatic
Dis., 2000, 3(1), 28-33.
[http://dx.doi.org/10.1038/sj.pcan.4500391] [PMID: 12497158]
(b) Mercader, M.; Bodner, B.K.; Moser, M.T.; Kwon, P.S.; Park, E.S.; Manecke, R.G.; Ellis, T.M.; Wojcik, E.M.; Yang, D.; Flanigan, R.C.; Waters, W.B.; Kast, W.M.; Kwon, E.D. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl. Acad. Sci. USA, 2001, 98(25), 14565-14570.
[http://dx.doi.org/10.1073/pnas.251140998] [PMID: 11734652]
[http://dx.doi.org/10.1038/sj.pcan.4500391] [PMID: 12497158]
(b) Mercader, M.; Bodner, B.K.; Moser, M.T.; Kwon, P.S.; Park, E.S.; Manecke, R.G.; Ellis, T.M.; Wojcik, E.M.; Yang, D.; Flanigan, R.C.; Waters, W.B.; Kast, W.M.; Kwon, E.D. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl. Acad. Sci. USA, 2001, 98(25), 14565-14570.
[http://dx.doi.org/10.1073/pnas.251140998] [PMID: 11734652]
[43]
Harris, M.T.; Feldberg, R.S.; Lau, K.M.; Lazarus, N.H.; Cochrane, D.E. Expression of proinflammatory genes during estrogen-induced inflammation of the rat prostate. Prostate, 2000, 44(1), 19-25.
[http://dx.doi.org/10.1002/1097-0045(20000615)44:1<19::AID PROS3>3.0.CO;2-S] [PMID: 10861753]
[http://dx.doi.org/10.1002/1097-0045(20000615)44:1<19::AID PROS3>3.0.CO;2-S] [PMID: 10861753]
[44]
Kurita, M.; Yamaguchi, H.; Okamoto, K.; Kotera, T.; Oka, M. Chronic pelvic pain and prostate inflammation in rat experimental autoimmune prostatitis: Effect of a single treatment with phosphodiesterase 5 inhibitors on chronic pelvic pain. Prostate, 2018, 78(15), 1157-1165.
[http://dx.doi.org/10.1002/pros.23690] [PMID: 30009466]
[http://dx.doi.org/10.1002/pros.23690] [PMID: 30009466]
[45]
Nelson, M.A.; Reid, M.; Duffield-Lillico, A.J.; Marshall, J.R. Prostate cancer and selenium. Urol. Clin. North Am., 2002, 29(1), 67-70.
[http://dx.doi.org/10.1016/S0094-0143(02)00018-6] [PMID: 12109357]
[http://dx.doi.org/10.1016/S0094-0143(02)00018-6] [PMID: 12109357]
[46]
Platz, E.A.; De Marzo, A.M. Epidemiology of inflammation and prostate cancer. J. Urol., 2004, 171(2 Pt 2), S36-S40.
[PMID: 14713751]
[PMID: 14713751]
[47]
Abdelfattah, M.S.; Badr, S.E.A.; Lotfy, S.A.; Attia, G.H.; Aref, A.M.; Abdel Moneim, A.E.; Kassab, R.B. Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox. Res., 2020, 37(1), 77-92.
[http://dx.doi.org/10.1007/s12640-019-00086-y] [PMID: 31332714]
[http://dx.doi.org/10.1007/s12640-019-00086-y] [PMID: 31332714]
[48]
Albasher, G.; Albrahim, T.; Alsultan, N.; Alfaraj, S.; Alharthi, M.S.; Kassab, R.B.; Abdel Moneim, A.E. Red beetroot extract mitigates chlorpyrifos-induced reprotoxicity associated with oxidative stress, inflammation, and apoptosis in rats. Environ. Sci. Pollut. Res. Int., 2020, 27(4), 3979-3991.
[PMID: 31823260]
[PMID: 31823260]
[49]
Alshalalfa, M.; Verhaegh, G.W.; Gibb, E.A.; Santiago-Jiménez, M.; Erho, N.; Jordan, J.; Yousefi, K.; Lam, L.L.C.; Kolisnik, T.; Chelissery, J.; Seiler, R.; Ross, A.E.; Karnes, R.J.; Schaeffer, E.M.; Lotan, T.T.; Den, R.B.; Freedland, S.J.; Davicioni, E.; Klein, E.A.; Schalken, J.A. Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: Exploratory analysis from 12,076 patients. Oncotarget, 2017, 8(31), 50804-50813.
[http://dx.doi.org/10.18632/oncotarget.15133] [PMID: 28881605]
[http://dx.doi.org/10.18632/oncotarget.15133] [PMID: 28881605]
[50]
Hessels, D.; Schalken, J.A. The use of PCA3 in the diagnosis of prostate cancer. Nat. Rev. Urol., 2009, 6(5), 255-261.
[http://dx.doi.org/10.1038/nrurol.2009.40] [PMID: 19424173]
[http://dx.doi.org/10.1038/nrurol.2009.40] [PMID: 19424173]
[51]
Marks, L.S.; Bostwick, D.G. Prostate cancer specificity of PCA3 gene testing: Examples from clinical practice. Rev. Urol., 2008, 10(3), 175-181.
[PMID: 18836536]
[PMID: 18836536]
[52]
Alkasab, T.; Kulkarni, G.; Hamilton, R.; Zlotta, A.; Finelli, A.; Jewett, M.; Fleshner, N. MP86-16 fate of prostate cancer antigen 3 (PCA3) levels more than 100: Does inflammation play a role? J. Urol., 2015, 193(4s), e1081-e1082.
[http://dx.doi.org/10.1016/j.juro.2015.02.1925]
[http://dx.doi.org/10.1016/j.juro.2015.02.1925]
[53]
Pan, L.H.; Pang, S.T.; Fang, P.Y.; Chuang, C.K.; Yang, H.W. Label-free biochips for accurate detection of prostate cancer in the clinic: Dual biomarkers and circulating tumor cells. Theranostics, 2017, 7(17), 4289-4300.
[http://dx.doi.org/10.7150/thno.21092] [PMID: 29158826]
[http://dx.doi.org/10.7150/thno.21092] [PMID: 29158826]
[54]
Abrahamsson, P.A.; Lilja, H.; Falkmer, S.; Wadström, L.B. Immunohistochemical distribution of the three predominant secretory proteins in the parenchyma of hyperplastic and neoplastic prostate glands. Prostate, 1988, 12(1), 39-46.
[http://dx.doi.org/10.1002/pros.2990120106] [PMID: 2450341]
[http://dx.doi.org/10.1002/pros.2990120106] [PMID: 2450341]
[55]
Hsieh, T.C.; Wu, J.M. Grape-derived chemopreventive agent resveratrol decreases Prostate-Specific Antigen (PSA) expression in LNCaP cells by an Androgen Receptor (AR)-independent mechanism. Anticancer Res., 2000, 20(1A), 225-228.
[PMID: 10769659]
[PMID: 10769659]
[56]
Donovan, D.A.; Nicholas, P.K. Prostatitis: Diagnosis and treatment in primary care. Nurse Pract., 1997, 22(4), 149-156.
[http://dx.doi.org/10.1097/00006205-199704000-00009] [PMID: 9128883]
[http://dx.doi.org/10.1097/00006205-199704000-00009] [PMID: 9128883]
[57]
Maleki, J.; Nourbakhsh, M.; Shabani, M.; Korani, M.; Nourazarian, S.M.; Ostadali Dahaghi, M.R.; Moghadasi, M.H. 17β-estradiol stimulates generation of reactive species oxygen and nitric oxide in Ovarian Adenocarcinoma Cells (OVCAR 3). Iran. J. Cancer Prev., 2015, 8(3), e2332-e2332.
[http://dx.doi.org/10.17795/ijcp2332] [PMID: 26413252]
[http://dx.doi.org/10.17795/ijcp2332] [PMID: 26413252]
[58]
(a) Felty, Q.; Xiong, W.C.; Sun, D.; Sarkar, S.; Singh, K.P.; Parkash, J.; Roy, D. Estrogen-induced mitochondrial reactive oxygen
species as signal-transducing messengers. Biochemistry, 2005, 44(18), 6900-6909.
[http://dx.doi.org/10.1021/bi047629p] [PMID: 15865435]
(b) Patel, M.M.; Bhat, H.K. Differential oxidant potential of carcinogenic and weakly carcinogenic estrogens: Involvement of metabolic activation and cytochrome P450. J. Biochem. Mol. Toxicol., 2004, 18(1), 37-42.
[http://dx.doi.org/10.1002/jbt.20005] [PMID: 14994278]
[http://dx.doi.org/10.1021/bi047629p] [PMID: 15865435]
(b) Patel, M.M.; Bhat, H.K. Differential oxidant potential of carcinogenic and weakly carcinogenic estrogens: Involvement of metabolic activation and cytochrome P450. J. Biochem. Mol. Toxicol., 2004, 18(1), 37-42.
[http://dx.doi.org/10.1002/jbt.20005] [PMID: 14994278]
[59]
Al-Megrin, W.A.; Alkhuriji, A.F.; Yousef, A.O.S.; Metwally, D.M.; Habotta, O.A.; Kassab, R.B.; Abdel Moneim, A.E.; El-Khadragy, M.F. Antagonistic efficacy of luteolin against lead acetate exposure-associated with hepatotoxicity is mediated via antioxidant, anti-inflammatory, and anti-apoptotic activities. Antioxidants, 2019, 9(1), 10.
[http://dx.doi.org/10.3390/antiox9010010] [PMID: 31877779]
[http://dx.doi.org/10.3390/antiox9010010] [PMID: 31877779]
[60]
Thilagam, H.; Gopalakrishnan, S.; Qu, H.D.; Bo, J.; Wang, K.J. 17β estradiol induced ROS generation, DNA damage and enzymatic responses in the hepatic tissue of Japanese sea bass. Ecotoxicology, 2010, 19(7), 1258-1267.
[http://dx.doi.org/10.1007/s10646-010-0510-3] [PMID: 20552394]
[http://dx.doi.org/10.1007/s10646-010-0510-3] [PMID: 20552394]
[61]
Zeng, H.; Wu, M.; Botnen, J.H. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes. J. Nutr., 2009, 139(9), 1613-1618.
[http://dx.doi.org/10.3945/jn.109.110320] [PMID: 19625696]
[http://dx.doi.org/10.3945/jn.109.110320] [PMID: 19625696]
[62]
Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signal., 2007, 9(7), 775-806.
[http://dx.doi.org/10.1089/ars.2007.1528] [PMID: 17508906]
[http://dx.doi.org/10.1089/ars.2007.1528] [PMID: 17508906]
[63]
Van Hemelrijck, M.; Sollie, S.; Nelson, W.G.; Yager, J.D.; Kanarek, N.F.; Dobs, A.; Platz, E.A.; Rohrmann, S. Selenium and sex steroid hormones in a US nationally representative sample of men: A role for the link between selenium and estradiol in prostate carcinogenesis? Cancer Epidemiol. Biomarkers Prev., 2019, 8(3), 578-583.
[PMID: 30482876]
[PMID: 30482876]
[64]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[65]
Dkhil, M.A.; Abdel Moneim, A.E.; Bauomy, A.A.; Khalil, M.; Al-Shaebi, E.M.; Al-Quraishy, S. Chlorogenic acid prevents hepatotoxicity in arsenic-treated mice: Role of oxidative stress and apoptosis. Mol. Biol. Rep., 2020, 47(2), 1161-1171.
[http://dx.doi.org/10.1007/s11033-019-05217-4] [PMID: 31820315]
[http://dx.doi.org/10.1007/s11033-019-05217-4] [PMID: 31820315]
[66]
Wang, Z.; Li, S.; Ferguson, S.; Goodnow, R.; Ho, C.T. Validated reversed phase LC method for quantitative analysis of polymethoxyflavones in citrus peel extracts. J. Sep. Sci., 2008, 31(1), 30-37.
[http://dx.doi.org/10.1002/jssc.200700331]] [PMID: 18095294]
[http://dx.doi.org/10.1002/jssc.200700331]] [PMID: 18095294]
[67]
Kara, S.; Gencer, B.; Karaca, T.; Tufan, H.A.; Arikan, S.; Ersan, I.; Karaboga, I.; Hanci, V. Protective effect of hesperetin and naringenin against apoptosis in ischemia/reperfusion-induced retinal injury in rats. ScientificWorldJournal, 2014, 2014, , 797824.
[http://dx.doi.org/10.1155/2014/797824] [PMID: 24616645]
[http://dx.doi.org/10.1155/2014/797824] [PMID: 24616645]
[68]
Lakshmi, A.; Subramanian, S. Chemotherapeutic effect of tangeretin, a polymethoxylated flavone studied in 7, 12-dimethylbenz(a)anthracene induced mammary carcinoma in experimental rats. Biochimie, 2014, 99, 96-109.
[http://dx.doi.org/10.1016/j.biochi.2013.11.017] [PMID: 24299963]
[http://dx.doi.org/10.1016/j.biochi.2013.11.017] [PMID: 24299963]
[69]
Tang, M.; Ogawa, K.; Asamoto, M.; Hokaiwado, N.; Seeni, A.; Suzuki, S.; Takahashi, S.; Tanaka, T.; Ichikawa, K.; Shirai, T. Protective effects of citrus nobiletin and auraptene in transgenic rats developing adenocarcinoma of the prostate (TRAP) and human prostate carcinoma cells. Cancer Sci., 2007, 98(4), 471-477.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00417.x] [PMID: 17284254]
[http://dx.doi.org/10.1111/j.1349-7006.2007.00417.x] [PMID: 17284254]