Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Ferroptosis: A Trusted Ally in Combating Drug Resistance in Cancer

Author(s): Erva Ozkan and Filiz Bakar-Ates*

Volume 29, Issue 1, 2022

Published on: 10 August, 2021

Page: [41 - 55] Pages: 15

DOI: 10.2174/0929867328666210810115812

Price: $65

Abstract

Ferroptosis, which is an iron-dependent, non-apoptotic cell death mechanism, has recently been proposed as a novel approach in cancer treatment. Bearing distinctive features and its exclusive mechanism have put forward the potential therapeutic benefit of triggering this newly discovered form of cell death. Numerous studies have indicated that apoptotic pathways are often deactivated in resistant cells, leading to a failure in therapy. Hence, alternative strategies to promote cell death are required. Mounting evidence suggests that drug-resistant cancer cells are particularly sensitive to ferroptosis. Given that cancer cells consume a higher amount of iron than healthy ones, ferroptosis not only stands as an excellent alternative to trigger cell death and reverse drug-resistance, but also provides selectivity in therapy. This review focuses specifically on overcoming drugresistance in cancer through activating ferroptotic pathways and brings together the relevant chemotherapeutics-based and nanotherapeutics-based studies to offer a perspective for researchers regarding the potential use of this mechanism in developing novel therapeutic strategies.

Keywords: Ferroptosis, erastin, cancer, resistance, cisplatin, nanotherapeutics.

[1]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[2]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S. III, B.M.; Stockwell, B.R. Ferroptosis: An iron-dependent form of non-apoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[3]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296.
[http://dx.doi.org/10.1038/s41571-020-00462-0] [PMID: 33514910]
[4]
Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[5]
Torti, S.V.; Torti, F.M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[http://dx.doi.org/10.1038/nrc3495] [PMID: 23594855]
[6]
Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol., 2020, 16(3), 302-309.
[http://dx.doi.org/10.1038/s41589-020-0472-6] [PMID: 32080622]
[7]
Bebber, C.M.; Müller, F.; Prieto Clemente, L.; Weber, J.; von Karstedt, S. Ferroptosis in cancer cell biology. Cancers (Basel), 2020, 12(1), E164.
[http://dx.doi.org/10.3390/cancers12010164] [PMID: 31936571]
[8]
Zuo, S.; Yu, J.; Pan, H.; Lu, L. Novel insights on targeting ferroptosis in cancer therapy. Biomark. Res., 2020, 8(1), 50.
[http://dx.doi.org/10.1186/s40364-020-00229-w] [PMID: 33024562]
[9]
Do Van, B.; Gouel, F.; Jonneaux, A.; Timmerman, K.; Gelé, P.; Pétrault, M.; Bastide, M.; Laloux, C.; Moreau, C.; Bordet, R.; Devos, D.; Devedjian, J.C. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol. Dis., 2016, 94, 169-178.
[http://dx.doi.org/10.1016/j.nbd.2016.05.011] [PMID: 27189756]
[10]
Gao, X.; Guo, N.; Xu, H.; Pan, T.; Lei, H.; Yan, A.; Mi, Y.; Xu, L. Ibuprofen induces ferroptosis of glioblastoma cells via downregulation of nuclear factor erythroid 2-related factor 2 signaling pathway. Anticancer Drugs, 2020, 31(1), 27-34.
[http://dx.doi.org/10.1097/CAD.0000000000000825] [PMID: 31490283]
[11]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[12]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35(Suppl.), S78-S103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001] [PMID: 25936818]
[13]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[14]
Shaili, E. Platinum anticancer drugs and photochemotherapeutic agents: recent advances and future developments. Sci. Prog., 2014, 97(Pt 1), 20-40.
[http://dx.doi.org/10.3184/003685014X13904811808460] [PMID: 24800467]
[15]
Jung, Y.; Lippard, S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev., 2007, 107(5), 1387-1407.
[http://dx.doi.org/10.1021/cr068207j] [PMID: 17455916]
[16]
Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460.
[http://dx.doi.org/10.4143/crt.2016.572] [PMID: 28494534]
[17]
Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis., 2014, 5, e1257.
[http://dx.doi.org/10.1038/cddis.2013.428] [PMID: 24874729]
[18]
Roh, J.L.; Kim, E.H.; Jang, H.J.; Park, J.Y.; Shin, D. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett., 2016, 381(1), 96-103.
[http://dx.doi.org/10.1016/j.canlet.2016.07.035] [PMID: 27477897]
[19]
Dondorp, A.; Nosten, F.; Stepniewska, K.; Day, N.; White, N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet, 2005, 366(9487), 717-725.
[http://dx.doi.org/10.1016/S0140-6736(05)67176-0] [PMID: 16125588]
[20]
Jeong, D.E.; Song, H.J.; Lim, S.; Lee, S.J.; Lim, J.E.; Nam, D.H.; Joo, K.M.; Jeong, B.C.; Jeon, S.S.; Choi, H.Y.; Lee, H.W. Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget, 2015, 6(32), 33046-33064.
[http://dx.doi.org/10.18632/oncotarget.5422] [PMID: 26426994]
[21]
Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532.
[http://dx.doi.org/10.18632/oncoscience.160] [PMID: 26097885]
[22]
Fan, Z.; Wirth, A-K.; Chen, D.; Wruck, C.J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis, 2017, 6(8)
[http://dx.doi.org/10.1038/oncsis.2017.65] [PMID: 28805788]
[23]
Roh, J.L.; Kim, E.H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol., 2017, 11(11), 254-262.
[http://dx.doi.org/10.1016/j.redox.2016.12.010] [PMID: 28012440]
[24]
Shin, D.; Kim, E.H.; Lee, J.; Roh, J.L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med., 2018, 129, 454-462.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.426] [PMID: 30339884]
[25]
Okuno, S.; Sato, H.; Kuriyama-Matsumura, K.; Tamba, M.; Wang, H.; Sohda, S.; Hamada, H.; Yoshikawa, H.; Kondo, T.; Bannai, S. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br. J. Cancer, 2003, 88(6), 951-956.
[http://dx.doi.org/10.1038/sj.bjc.6600786] [PMID: 12644836]
[26]
Sato, M.; Kusumi, R.; Hamashima, S.; Kobayashi, S.; Sasaki, S.; Komiyama, Y.; Izumikawa, T.; Conrad, M.; Bannai, S.; Sato, H. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci. Rep., 2018, 8(1), 968.
[http://dx.doi.org/10.1038/s41598-018-19213-4] [PMID: 29343855]
[27]
Hashemi, V.; Ahmadi, A.; Malakotikhah, F.; Chaleshtari, M.G.; Baghi Moornani, M.; Masjedi, A.; Sojoodi, M.; Atyabi, F.; Nikkhoo, A.; Rostami, N.; Baradaran, B.; Azizi, G.; Yousefi, B.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Silencing of p68 and STAT3 synergistically diminishes cancer progression. Life Sci., 2020, 249(249), 117499.
[http://dx.doi.org/10.1016/j.lfs.2020.117499] [PMID: 32142763]
[28]
Wang, Y.; Zhao, W.; Zhang, S. STAT3-induced upregulation of circCCDC66 facilitates the progression of non-small cell lung cancer by targeting miR-33a-5p/KPNA4 axis. Biomed. Pharmacother., 2020, 126(1), 110019.
[http://dx.doi.org/10.1016/j.biopha.2020.110019] [PMID: 32151944]
[29]
Liu, Q.; Wang, K. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol. Int., 2019, 43(11), 1245-1256.
[http://dx.doi.org/10.1002/cbin.11121] [PMID: 30811078]
[30]
Li, Y.; Yan, H.; Xu, X.; Liu, H.; Wu, C.; Zhao, L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol. Lett., 2020, 19(1), 323-333.
[http://dx.doi.org/10.3892/ol.2019.11066] [PMID: 31897145]
[31]
Zhang, X.; Sui, S.; Wang, L.; Li, H.; Zhang, L.; Xu, S.; Zheng, X. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J. Cell. Physiol., 2020, 235(4), 3425-3437.
[http://dx.doi.org/10.1002/jcp.29232] [PMID: 31556117]
[32]
Drabløs, F.; Feyzi, E.; Aas, P.A.; Vaagbø, C.B.; Kavli, B.; Bratlie, M.S.; Peña-Diaz, J.; Otterlei, M.; Slupphaug, G.; Krokan, H.E. Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair (Amst.), 2004, 3(11), 1389-1407.
[http://dx.doi.org/10.1016/j.dnarep.2004.05.004] [PMID: 15380096]
[33]
Chio, C.C.; Chen, K.Y.; Chang, C.K.; Chuang, J.Y.; Liu, C.C.; Liu, S.H.; Chen, R.M. Improved effects of honokiol on temozolomide-induced autophagy and apoptosis of drug-sensitive and -tolerant glioma cells. BMC Cancer, 2018, 18(1), 379.
[http://dx.doi.org/10.1186/s12885-018-4267-z] [PMID: 29614990]
[34]
Yin, H.; Zhou, Y.; Wen, C.; Zhou, C.; Zhang, W.; Hu, X.; Wang, L.; You, C.; Shao, J. Curcumin sensitizes glioblastoma to temozolomide by simultaneously generating ROS and disrupting AKT/mTOR signaling. Oncol. Rep., 2014, 32(4), 1610-1616.
[http://dx.doi.org/10.3892/or.2014.3342] [PMID: 25050915]
[35]
Chen, L.; Li, X.; Liu, L.; Yu, B.; Xue, Y.; Liu, Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol. Rep., 2015, 33(3), 1465-1474.
[http://dx.doi.org/10.3892/or.2015.3712] [PMID: 25585997]
[36]
Sehm, T.; Rauh, M.; Wiendieck, K.; Buchfelder, M.; Eyüpoglu, I.Y., Ii; Savaskan, N.E. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget, 2016, 7(46), 74630-74647.
[http://dx.doi.org/10.18632/oncotarget.11858] [PMID: 27612422]
[37]
Yang, W.B.; Chuang, J.Y.; Ko, C.Y.; Chang, W.C.; Hsu, T.I. Dehydroepiandrosterone Induces temozolomide resistance through modulating phosphorylation and acetylation of Sp1 in glioblastoma. Mol. Neurobiol., 2019, 56(4), 2301-2313.
[http://dx.doi.org/10.1007/s12035-018-1221-7] [PMID: 30022431]
[38]
Narayanan, R.; Dalton, J.T. Androgen receptor: A complex therapeutic target for breast cancer. Cancers (Basel), 2016, 8(12), 1-17.
[http://dx.doi.org/10.3390/cancers8120108] [PMID: 27918430]
[39]
Mizushima, T.; Miyamoto, H. The role of androgen receptor signaling in ovarian cancer. Cells, 2019, 8(2), 176.
[http://dx.doi.org/10.3390/cells8020176] [PMID: 30791431]
[40]
Li, P.; Chen, J.; Miyamoto, H. Androgen receptor signaling in bladder cancer. Cancers (Basel), 2017, 9(2), 1-14.
[http://dx.doi.org/10.3390/cancers9020020] [PMID: 28241422]
[41]
Chen, T.C.; Chuang, J.Y.; Ko, C.Y.; Kao, T.J.; Yang, P.Y.; Yu, C.H.; Liu, M.S.; Hu, S.L.; Tsai, Y.T.; Chan, H.; Chang, W.C.; Hsu, T.I. AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol., 2020, 30(30), 101413.
[http://dx.doi.org/10.1016/j.redox.2019.101413] [PMID: 31896509]
[42]
Katsumata, N. Docetaxel: an alternative taxane in ovarian cancer. Br. J. Cancer, 2003, 89(Suppl. 3), S9-S15.
[http://dx.doi.org/10.1038/sj.bjc.6601495] [PMID: 14661041]
[43]
Lu, X.; Meng, T. Depletion of tumor-associated macrophages enhances the anti-tumor effect of docetaxel in a murine epithelial ovarian cancer. Immunobiology, 2019, 224(3), 355-361.
[http://dx.doi.org/10.1016/j.imbio.2019.03.002] [PMID: 30926154]
[44]
An, Q.; Shi, C.X.; Guo, H.; Xie, S.M.; Yang, Y.Y.; Liu, Y.N.; Liu, Z.H.; Zhou, C.Z.; Niu, F.J. Development and characterization of octreotide-modified curcumin plus docetaxel micelles for potential treatment of non-small-cell lung cancer. Pharm. Dev. Technol., 2019, 24(9), 1164-1174.
[http://dx.doi.org/10.1080/10837450.2019.1647236] [PMID: 31340709]
[45]
Woods, B.S.; Sideris, E.; Sydes, M.R.; Gannon, M.R.; Parmar, M.K.B.; Alzouebi, M.; Attard, G.; Birtle, A.J.; Brock, S.; Cathomas, R.; Chakraborti, P.R.; Cook, A.; Cross, W.R.; Dearnaley, D.P.; Gale, J.; Gibbs, S.; Graham, J.D.; Hughes, R.; Jones, R.J.; Laing, R.; Mason, M.D.; Matheson, D.; McLaren, D.B.; Millman, R.; O’Sullivan, J.M.; Parikh, O.; Parker, C.C.; Peedell, C.; Protheroe, A.; Ritchie, A.W.S.; Robinson, A.; Russell, J.M.; Simms, M.S.; Srihari, N.N.; Srinivasan, R.; Staffurth, J.N.; Sundar, S.; Thalmann, G.N.; Tolan, S.; Tran, A.T.H.; Tsang, D.; Wagstaff, J.; James, N.D.; Sculpher, M.J. Addition of docetaxel to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Modelling to estimate long-term survival, quality-adjusted survival, and cost-effectiveness. Eur Urol Oncol, 2018, 1(6), 449-458.
[http://dx.doi.org/10.1016/j.euo.2018.06.004] [PMID: 31158087]
[46]
Alonso-González, C.; Menéndez-Menéndez, J.; González-González, A.; González, A.; Cos, S.; Martínez-Campa, C. Melatonin enhances the apoptotic effects and modulates the changes in gene expression induced by docetaxel in MCF-7 human breast cancer cells. Int. J. Oncol., 2018, 52(2), 560-570.
[http://dx.doi.org/10.3892/ijo.2017.4213] [PMID: 29207126]
[47]
Seborova, K.; Vaclavikova, R.; Soucek, P.; Elsnerova, K.; Bartakova, A.; Cernaj, P.; Bouda, J.; Rob, L.; Hruda, M.; Dvorak, P. Association of ABC gene profiles with time to progression and resistance in ovarian cancer revealed by bioinformatics analyses. Cancer Med., 2019, 8(2), 606-616.
[http://dx.doi.org/10.1002/cam4.1964] [PMID: 30672151]
[48]
Zhou, H.H.; Chen, X.; Cai, L.Y.; Nan, X.W.; Chen, J.H.; Chen, X.X.; Yang, Y.; Xing, Z.H.; Wei, M.N.; Li, Y.; Wang, S.T.; Liu, K.; Shi, Z.; Yan, X.J. Erastin reverses ABCB1-mediated docetaxel resistance in ovarian cancer. Front. Oncol., 2019, 9, 1398.
[http://dx.doi.org/10.3389/fonc.2019.01398] [PMID: 31921655]
[49]
Ingram, L.M.; Finnerty, M.C.; Mansoura, M.; Chou, C.W.; Cummings, B.S. Identification of lipidomic profiles associated with drug-resistant prostate cancer cells. Lipids Health Dis., 2021, 20(1), 15.
[http://dx.doi.org/10.1186/s12944-021-01437-5] [PMID: 33596934]
[50]
Pan, H.; Jansson, K.H.; Beshiri, M.L.; Yin, J.; Fang, L.; Agarwal, S.; Nguyen, H.; Corey, E.; Zhang, Y.; Liu, J.; Fan, H.; Lin, H.; Kelly, K. Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer. Oncotarget, 2017, 8(44), 77181-77194.
[http://dx.doi.org/10.18632/oncotarget.20424] [PMID: 29100379]
[51]
Li, N.; Jiang, W.; Wang, W.; Xiong, R.; Wu, X.; Geng, Q. Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol. Res., 2021, 166(166), 105466.
[http://dx.doi.org/10.1016/j.phrs.2021.105466] [PMID: 33548489]
[52]
Morris, G.; Berk, M.; Carvalho, A.F.; Maes, M.; Walker, A.J.; Puri, B.K. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav. Brain Res., 2018, 341(341), 154-175.
[http://dx.doi.org/10.1016/j.bbr.2017.12.036] [PMID: 29289598]
[53]
Ikeda, Y.; Hamano, H.; Horinouchi, Y.; Miyamoto, L.; Hirayama, T.; Nagasawa, H.; Tamaki, T.; Tsuchiya, K. Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice. J. Trace Elem. Med. Biol., 2021, 67, 126798.
[http://dx.doi.org/10.1016/j.jtemb.2021.126798] [PMID: 34087581]
[54]
Asghari, F.; Khademi, R.; Esmaeili Ranjbar, F.; Veisi Malekshahi, Z.; Faridi Majidi, R. Application of nanotechnology in targeting of cancer stem cells: A review. Int. J. Stem Cells, 2019, 12(2), 227-239.
[http://dx.doi.org/10.15283/ijsc19006] [PMID: 31242721]
[55]
Luo, C.; Sun, J.; Sun, B.; He, Z. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol. Sci., 2014, 35(11), 556-566.
[http://dx.doi.org/10.1016/j.tips.2014.09.008] [PMID: 25441774]
[56]
Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392.
[http://dx.doi.org/10.1021/acsnano.8b06399] [PMID: 30495919]
[57]
Liu, T.; Liu, W.; Zhang, M.; Yu, W.; Gao, F.; Li, C.; Wang, S.B.; Feng, J.; Zhang, X.Z. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano, 2018, 12(12), 12181-12192.
[http://dx.doi.org/10.1021/acsnano.8b05860] [PMID: 30458111]
[58]
Shan, X.; Li, S.; Sun, B.; Chen, Q.; Sun, J.; He, Z.; Luo, C. Ferroptosis-driven nanotherapeutics for cancer treatment. J. Control. Release, 2020, 319(103), 322-332.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.008] [PMID: 31917296]
[59]
Sang, M.; Luo, R.; Bai, Y.; Dou, J.; Zhang, Z.; Liu, F.; Feng, F.; Xu, J.; Liu, W. Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer. Theranostics, 2019, 9(21), 6209-6223.
[http://dx.doi.org/10.7150/thno.36283] [PMID: 31534546]
[60]
Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y.Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457.
[http://dx.doi.org/10.1038/nature23007] [PMID: 28678785]
[61]
Sato, R.; Semba, T.; Saya, H.; Arima, Y. Concise review: Stem cells and epithelial-mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells, 2016, 34(8), 1997-2007.
[http://dx.doi.org/10.1002/stem.2406] [PMID: 27251010]
[62]
Zhao, Y.; Alakhova, D.Y.; Kabanov, A.V. Can nanomedicines kill cancer stem cells? Adv. Drug Deliv. Rev., 2013, 65(13-14), 1763-1783.
[http://dx.doi.org/10.1016/j.addr.2013.09.016] [PMID: 24120657]
[63]
Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; McCormick, F.; McManus, M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679), 247-250.
[http://dx.doi.org/10.1038/nature24297] [PMID: 29088702]
[64]
Gao, M.; Deng, J.; Liu, F.; Fan, A.; Wang, Y.; Wu, H.; Ding, D.; Kong, D.; Wang, Z.; Peer, D.; Zhao, Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials, 2019, 223, 119486.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119486] [PMID: 31520887]
[65]
Torchilin, V.P. Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[66]
Shafiei-Irannejad, V.; Samadi, N.; Yousefi, B.; Salehi, R.; Velaei, K.; Zarghami, N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem. Biol. Drug Des., 2018, 91(1), 269-276.
[http://dx.doi.org/10.1111/cbdd.13078] [PMID: 28782285]
[67]
Guo, Y.; Zhang, X.; Sun, W.; Jia, H.R.; Zhu, Y.X.; Zhang, X.; Zhou, N.; Wu, F.G. Metal-phenolic network-based nanocomplexes that evoke ferroptosis by apoptosis: promoted nuclear drug influx and reversed drug resistance of cancer. Chem. Mater., 2019, 31(24), 10071-10084.
[http://dx.doi.org/10.1021/acs.chemmater.9b03042]
[68]
Zheng, D.W.; Lei, Q.; Zhu, J.Y.; Fan, J.X.; Li, C.X.; Li, C.; Xu, Z.; Cheng, S.X.; Zhang, X.Z. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett., 2017, 17(1), 284-291.
[http://dx.doi.org/10.1021/acs.nanolett.6b04060] [PMID: 28027643]
[69]
Waldmann, T.; Schneider, R. Targeting histone modifications-epigenetics in cancer. Curr. Opin. Cell Biol., 2013, 25(2), 184-189.
[http://dx.doi.org/10.1016/j.ceb.2013.01.001] [PMID: 23347561]
[70]
Gallagher, S.J.; Gunatilake, D.; Beaumont, K.A.; Sharp, D.M.; Tiffen, J.C.; Heinemann, A.; Weninger, W.; Haass, N.K.; Wilmott, J.S.; Madore, J.; Ferguson, P.M.; Rizos, H.; Hersey, P. HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int. J. Cancer, 2018, 142(9), 1926-1937.
[http://dx.doi.org/10.1002/ijc.31199] [PMID: 29210065]
[71]
Sampson, E.R.; Amin, V.; Schwarz, E.M.; O’Keefe, R.J.; Rosier, R.N. The histone deacetylase inhibitor vorinostat selectively sensitizes fibrosarcoma cells to chemotherapy. J. Orthop. Res., 2011, 29(4), 623-632.
[http://dx.doi.org/10.1002/jor.21274] [PMID: 20957741]
[72]
Wang, L.; Leite de Oliveira, R.; Huijberts, S.; Bosdriesz, E.; Pencheva, N.; Brunen, D.; Bosma, A.; Song, J.Y.; Zevenhoven, J.; Los-de Vries, G.T.; Horlings, H.; Nuijen, B.; Beijnen, J.H.; Schellens, J.H.M.; Bernards, R. An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell, 2018, 173(6), 1413-1425.e14.
[http://dx.doi.org/10.1016/j.cell.2018.04.012] [PMID: 29754815]
[73]
Park, S.E.; Kim, H.G.; Kim, D.E.; Jung, Y.J.; Kim, Y.; Jeong, S.Y.; Choi, E.K.; Hwang, J.J.; Kim, C.S. Combination treatment with docetaxel and histone deacetylase inhibitors downregulates androgen receptor signaling in castration-resistant prostate cancer. Invest. New Drugs, 2018, 36(2), 195-205.
[http://dx.doi.org/10.1007/s10637-017-0529-x] [PMID: 29110173]
[74]
Liu, S.; Zhang, K.; Zhu, Q.; Shen, Q.; Zhang, Q.; Yu, J.; Chen, Y.; Lu, W. Synthesis and biological evaluation of paclitaxel and vorinostat co-prodrugs for overcoming drug resistance in cancer therapy in vitro. Bioorg. Med. Chem., 2019, 27(7), 1405-1413.
[http://dx.doi.org/10.1016/j.bmc.2019.02.046] [PMID: 30819618]
[75]
Wu, C.; Xu, L.; Shi, L.; Gao, X.; Li, J.; Zhu, X.; Zhang, C. Supramolecularly self-assembled nano-twin drug for reversing multidrug resistance. Biomater. Sci., 2018, 6(8), 2261-2269.
[http://dx.doi.org/10.1039/C8BM00437D] [PMID: 29999073]
[76]
Emami Nejad, A.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Haghjooy Javanmard, S.; Taherian, M.; Ahmadlou, M.; Salehi, R.; Sadeghi, B.; Manian, M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int., 2021, 21(1), 62.
[http://dx.doi.org/10.1186/s12935-020-01719-5] [PMID: 33472628]
[77]
Jain, R.K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell, 2014, 26(5), 605-622.
[http://dx.doi.org/10.1016/j.ccell.2014.10.006] [PMID: 25517747]
[78]
Fu, J.; Li, T.; Yang, Y.; Jiang, L.; Wang, W.; Fu, L.; Zhu, Y.; Hao, Y. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials, 2021, 268(268), 120537.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120537] [PMID: 33260096]
[79]
Chen, J.; Ding, Z.; Peng, Y.; Pan, F.; Li, J.; Zou, L.; Zhang, Y.; Liang, H. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein. PLoS One, 2014, 9(6), e98882.
[http://dx.doi.org/10.1371/journal.pone.0098882] [PMID: 24901645]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy