Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Systematic Review Article

Role of Organic and Inorganic Nanoparticles in the Drug Delivery System for Hypertension Treatment: A Systematic Review

Author(s): Nasrollah Moradifar, Ali Asghar Kiani, Atefe Veiskaramian and Kimia Karami*

Volume 18, Issue 1, 2022

Published on: 11 June, 2021

Article ID: e110621194025 Pages: 12

DOI: 10.2174/1573403X17666210611115823

Price: $65

Abstract

Background: The present investigation was designed to systematically review the antihypertensive effects of all the organic and inorganic nanoparticles in the in vitro, in vivo, and clinical trials.

Methods: The current study was carried out using 06-PRISMA guideline and registered in the CAMARADES- NC3Rs Preclinical Systematic Review and Meta-analysis Facility (SyRF) database. The search was performed on five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar, without time limitation for publications worldwide related to the anti-hypertensive effects of all the organic and inorganic nanoparticles without date limitation, so as to identify all the published articles (in vitro, in vivo, clinical, and case-control). Studies in any language were entered in the search step if they had an English abstract.

Results: Out of 3602 papers, 60 including 25 werein vitro (41.7%), 17 in vitro / in vivo (28.3%), 16 in vivo (26.7%), and 2 in vitro / ex vivo (3.3%) up to 2020 met the inclusion criteria for discussion in this systematic review. The most widely used nanoparticles were organic nanoparticles such as polylactic acid, poly lactic-co-glycolic acid (PLGA), lipid, chitosan, etc., followed by inorganic nanoparticles such as silver and palladium nanoparticles.

Conclusion: This review demonstrated the anti-hypertensive effects of some organic and inorganic nanoparticles alone or in combination with the available anti-hypertensives. We found that organic nanoparticles such as PGLA and chitosan can be considered as preferred options in nanomedicine for treating high blood pressure. The results also showed these nanoparticles displayed antihypertensive effects through some mechanisms such as sustained release forms via increasing bioavailability, increasing oral bioavailability and improving oral and non-oral absorption, counteracting excessive superoxide, decreasing blood pressure, etc. However, further investigations are required to prove these effects, particularly in clinical settings, as well as their accurate possible mechanisms and toxicity.

Keywords: Hypertension, blood pressure, polymeric nanoparticles, lipid nanoparticles, metal nanoparticles, PGLA.

Graphical Abstract

[1]
Leng GC, Lee AJ, Fowkes FG, et al. Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population. Int J Epidemiol 1996; 25(6): 1172-81.
[http://dx.doi.org/10.1093/ije/25.6.1172] [PMID: 9027521]
[2]
WHO. New data highlight increases in hypertension, diabetes incidence. WHO 2013.
[3]
Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood- pressure-related disease, 2001. Lancet 2008; 371(9623): 1513-8.
[http://dx.doi.org/10.1016/S0140-6736(08)60655-8] [PMID: 18456100]
[4]
Neal B, MacMahon S, Chapman N, et al. Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Blood Pressure Lowering Treatment Trialists’ Collaboration. Lancet 2000; 356(9246): 1955-64.
[http://dx.doi.org/10.1016/S0140-6736(00)03307-9] [PMID: 11130523]
[5]
Brook RD, Appel LJ, Rubenfire M, et al. Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the american heart association. Hypertension 2013; 61(6): 1360-83.
[http://dx.doi.org/10.1161/HYP.0b013e318293645f] [PMID: 23608661]
[6]
Sarafidis PA, Li S, Chen SC, et al. Hypertension awareness, treatment, and control in chronic kidney disease. Am J Med 2008; 121(4): 332-40.
[http://dx.doi.org/10.1016/j.amjmed.2007.11.025] [PMID: 18374693]
[7]
Appel LJ, Champagne CM, Harsha DW, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA 2003; 289(16): 2083-93.
[PMID: 12709466]
[8]
Snyder FJ, Dundas ML, Kirkpatrick C, Neill KS. Use and safety perceptions regarding herbal supplements: a study of older persons in southeast Idaho. J Nutr Elder 2009; 28(1): 81-95.
[http://dx.doi.org/10.1080/01639360802634043] [PMID: 19234997]
[9]
Cicha I, Unterweger H, Lyer S, et al. Nanomedicine for cardiovascular disorders. 2019; (23): 3007-12. Available from: www.futuremedicine.com [cited 2020 May 3]
[http://dx.doi.org/10.2217/nnm-2019-0391]
[10]
Albalawi AE, Khalaf AK, Alyousif MS, et al. Fe3O4@ piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Biomedicine & Pharmacotherapy. 2021;139:111566.
[11]
Patra JK, Das G, Fernandes Fraceto L, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol 2018. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-018-0392-8
[12]
Dove Press published. 2014. IJN-56092-the-preparation-and-in-vitro-in-vivo-characterization-of-ent. 2014 [cited 2020 Apr 25]
[13]
Chiang P-C, Wahlstrom JL, Selbo JG, et al. 3-Dicyclohexyl urea nanosuspension for intravenous steady-state delivery in rats-Dicyclohexyl urea nanosuspension for intravenous steady-state delivery in rats 1,3-Dicyclohexyl urea nanosuspension for intravenous steady-state delivery in rats. J Exp Nanosci 2007; 2(3): 239-50. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=tjen20 [Cited 2020 Apr 30]
[14]
Ghosh S, Chiang PC, Wahlstrom JL, Fujiwara H, Selbo JG, Roberds SL. Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats. Basic Clin Pharmacol Toxicol 2008; 102(5): 453-8. Available from: http://doi.wiley.com/10.1111/j.1742-7843.2008.00213.x [cited 2020 Apr 30]
[15]
Carvedilol nano lipid carriers: formulation, characterization and in-vivo evaluation. Drug Deliv 2016; 23(4): 1486-94. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L609640419 [Cited 2020 Apr 30]
[16]
Lal Pal S, Kumar Manna P, Mohanta P. Preparation and physico- chemical characterization of carvedilol-poly (lactide-co-glycolic acid) loaded nanoparticles.
[17]
Nag P, Rajput R, Dhaliwal S, Kumar S, Prajapat D, Singh M. Formulation and characterization of propranolol nanoparticles for transmucosal nasal drug delivery.Macromolecular Symposia. Wiley-VCH Verlag 2015; pp. 32-8. Internet [cited 2020 Apr 28] Available from: http://doi.wiley.com/10.1002/masy.201400051
[18]
Auwal S, Zarei M, Tan C, Basri M, Saari N. Improved in vivo efficacy of anti-hypertensive biopeptides encapsulated in chitosan nanoparticles fabricated by ionotropic gelation on spontaneously hypertensive rats. Nanomaterials 2017; 7(12): 421. Available from: http://www.mdpi.com/2079-4991/7/12/421 [Cited 2020 Apr 26]
[http://dx.doi.org/10.3390/nano7120421]
[19]
Singh A, Deep A. Formulation and evaluation of nanoparticles containing losartan potassium. International journal of pharmacy research and technology 2011; 1: 17-20.
[20]
Sharma M, Sharma R, Jain DK. Preparation, characterization and evaluation of nebivolol loaded chitosan nanoparticles. J Drug Deliv Ther 2018; 8(2): 118-22.
[http://dx.doi.org/10.22270/jddt.v8i2.1730]
[21]
Niaz T, Shabbir S, Manzoor S, Rehman A, Rahman A, Nasir H, et al. Antihypertensive nano-ceuticales based on chitosan biopolymer: Physico-chemical evaluation and release kinetics. Carbohydr Polym 2016; 142: 268-74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014486171630011X [Cited 2020 Apr 26]
[22]
de Azevedo M de BM, Tasic L, Fattori J, et al. New formulation of an old drug in hypertension treatment: the sustained release of captopril from cyclodextrin nanoparticles. Int J Nanomedicine 2011; 6: 1005-16.
[PMID: 21720512]
[23]
Shekhawat P, Bagul M, Edwankar D, Pokharkar V. Enhanced dissolution/caco-2 permeability, pharmacokinetic and pharmacodynamic performance of re-dispersible eprosartan mesylate nanopowder. Eur J Pharm Sci 2019; 132: 72-85. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928098719300806 [Cited 2020 Apr 29]
[24]
Jana U, Kumar A, Manna K, Mohanta P. Preparation and in vitro characterization of felodipine loaded eudragit® rs100 nanoparticles. Int J Pharm Pharmace Sci 2014; 6(4): 564-7.
[25]
Li J, Chen B, Yu T, Guo M, Zhao S, Zhang Y, et al. An efficient controlled release strategy for hypertension therapy: Folate-mediated lipid nanoparticles for oral peptide delivery. Pharmacol Res 2020; 157: 104796. Available from: https://linkinghub.elsevier.com/retrieve/pii/S104366182031104X [Cited 2020 Apr 26]
[26]
Yuan LF, Sheng J, Lu P, Wang YQ, Jin T, Du Q. Nanoparticle-mediated RNA interference of angiotensinogen decreases blood pressure and improves myocardial remodeling in spontaneously hypertensive rats. Mol Med Rep 2015; 12(3): 4657-63. Available from: https://www.spandidos-publications.com/10.3892/mmr.2015.3909 [Cited 2020 Apr 27]
[http://dx.doi.org/10.3892/mmr.2015.3909]
[27]
Vaculikova E, Cernikova A, Placha D, et al. Preparation of hydrochlorothiazide nanoparticles for solubility enhancement†. Molecules 2016; 21(8): 1-8.
[http://dx.doi.org/10.3390/molecules21081005] [PMID: 27490530]
[28]
Adeli E. The use of supercritical anti-solvent (SAS) technique for preparation of Irbesartan-Pluronic® F-127 nanoparticles to improve the drug dissolution. Powder Technol 2016; 298: 65-72. Available from: https://linkinghub.elsevier.com/retrieve/pii/S003259101630225X [Cited 2020 Apr 28]
[29]
Venugopal V, Kumar KJ, Muralidharan S, Parasuraman S, Raj PV, Kumar KV. Optimization and in-vivo evaluation of isradipine nanoparticles using Box-Behnken design surface response methodology. OpenNano [Internet] 2016; 1: 1-15.
[http://dx.doi.org/10.1016/j.onano.2016.03.002]
[30]
Chadha R, Bhandari S, Kataria D, Gupta S, Jain DS. Exploring the potential of lecithin/chitosan nanoparticles in enhancement of antihypertensive efficacy of hydrochlorothiazide. J Microencapsul 2012; 29(8): 805-12. Available from: http://www.tandfonline.com/doi/full/10.3109/02652048.2012.692399 [cited 2020 Apr 25]
[31]
Chadha R, Bhandari S, Kataria D, Gupta S. Exploring lecithin/chitosan nanoparticles of ramipril for improved antihypertensive efficacy. J Nanopharm Drug Deliv 2013; 1(2): 173-81.
[http://dx.doi.org/10.1166/jnd.2013.1014]
[32]
Zhao S, Li J, Zhou Y, et al. Lipid Nanoparticles-Encapsulated YF4: A Potential Therapeutic Oral Peptide Delivery System for Hypertension Treatment. Front Pharmacol 2019; 10: 102.
[http://dx.doi.org/10.3389/fphar.2019.00102] [PMID: 30873021]
[33]
Patil P, Khairnar G, Naik J. Preparation and statistical optimization of Losartan Potassium loaded nanoparticles using Box Behnken factorial design: Microreactor precipitation. Chem Eng Res Des 2015; 104: 98-109. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0263876215002774 [Cited 2020 Apr 28]
[34]
Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z. Sustained release of prindopril erbumine from its chitosan- coated magnetic nanoparticles for biomedical applications. Int J Mol Sci 2013; 14(12): 23639-53.
[http://dx.doi.org/10.3390/ijms141223639] [PMID: 24300098]
[35]
Antal I, Kubovcikova M, Zavisova V, Koneracka M, Pechanova O, Barta A, et al. Magnetic poly(D,L-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment. J Magn Magn Mater 2015; 380: 280-4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304885314010014 [Cited 2020 Apr 26]
[36]
Doadrio AL, Sánchez-Montero JM, Doadrio JC, Salinas AJ, Vallet-Regí M. Mesoporous silica nanoparticles as a new carrier methodology in the controlled release of the active components in a polypill. Eur J Pharm Sci 2017; 97: 1-8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092809871630481X [Cited 2020 Apr 27]
[http://dx.doi.org/10.1016/j.ejps.2016.11.002]
[37]
Biswas N. Modified mesoporous silica nanoparticles for enhancing oral bioavailability and antihypertensive activity of poorly water soluble valsartan. Eur J Pharm Sci 2017; 99: 152-60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928098716305553 [Cited 2020 Apr 25]
[http://dx.doi.org/10.1016/j.ejps.2016.12.015]
[38]
Michalowski CB, Arbo MD, Altknecht L, Anciuti AN, Abreu ASG, Alencar LMR, et al. Oral treatment of spontaneously hypertensive rats with captopril-surface functionalized furosemide-loaded multi-wall lipid-core nanocapsules. Pharmaceutics 2020; 12: 80. Available from: www.mdpi.com/journal/pharmaceutics [Cited 2020 Apr 30]
[39]
Kazemi Korayem A, Ghamami S, Bahrami Z. Fractal properties and morphological investigation of Nano hydrochlorothiazide is used to treat hypertension. BMC Pharmacol Toxicol 2018; 19(1): 70.
[http://dx.doi.org/10.1186/s40360-018-0259-5] [PMID: 30413182]
[40]
Savalia K, Manickam DS, Rosenbaugh EG, et al. Neuronal uptake of nanoformulated superoxide dismutase and attenuation of angiotensin II-dependent hypertension after central administration. Free Radic Biol Med 2014; 73: 299-307.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.001] [PMID: 24924945]
[41]
Kumar Gaur P, Mishra S, Purohit S. Nanovesicles of nitrendipine with lipid complex for transdermal delivery: pharmacokinetic and pharmacodynamic studies. Artif Cells Nanomed Biotechnol 2016; 44(7): 1684-93.
[http://dx.doi.org/10.3109/21691401.2015.1080170] [PMID: 26375758]
[42]
Jana U, Mohanty AK, Manna PK, Mohanta GP. Preparation and characterization of nebivolol nanoparticles using Eudragit® RS100. Colloids surfaces b biointerfaces 2014; 113: 269-75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776513005687 [Cited 2020 Apr 25]
[43]
P.B. D, A.K. G, A. D, G.V. S, P. M, K. A. A novel nanoproliposomes of lercanidipine: Development, in vitro and preclinical studies to support its effectiveness in hypertension therapy. Life Sci 2016; 162: 125-37. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L611982568 [Cited 2020 Apr 30]
[44]
Beg S, Swain S, Singh HP, Patra CN, Rao MB. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech 2012; 13(4): 1416-27. Available from: http://link.springer.com/10.1208/s12249-012-9865-5 [Cited 2020 Apr 30]
[http://dx.doi.org/10.1208/s12249-012-9865-5]
[45]
Gorain B, Choudhury H, Kundu A, Sarkar L, Karmakar S, Jaisankar P, et al. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surfaces B Biointerfaces 2014; 115: 286-94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776513007649 [Cited 2020 Apr 30]
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.016]
[46]
Tamayo-Esquivel D, Ganem-Quintanar A, Martínez AL, Navarrete-Rodríguez M, Rodríguez-Romo S, Quintanar-Guerrero D. Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J Nanosci Nanotechnol 2006; 3134-8. Available from: http://www.ingentaconnect.com/content/10.1166/jnn.2006.474 [Cited 2020 Apr 30]
[http://dx.doi.org/10.1166/jnn.2006.474]
[47]
Sefid-Sefidehkhan Y, Nekoueian K, Amiri M, Sillanpaa M, Eskandari H. Palladium nanoparticles in electrochemical sensing of trace terazosin in human serum and pharmaceutical preparations. Mater Sci Eng C 2017; 75: 368-74.
[http://dx.doi.org/10.1016/j.msec.2017.02.061] [PMID: 28415474]
[48]
Jana U, Mohanty AK, Pal SL, Mohanta GP. Felodipine loaded PLGA nanoparticles: preparation, physicochemical characterization and in vivo toxicity study. 2014; 1(31): 1-10. Available from: http://www.nanoconvergencejournal.com/content/1/1/31 [Cited 2020 Apr 26]
[49]
Öztürk AA, Martin Banderas L, Cayero Otero MD, Yenilmez E, Yazan Y. New approach to hypertension treatment: Carvediol-loaded PLGA nanoparticles, preparation, in vitro characterization and gastrointestinal stability. Lat Am J Pharm 2018; 37(9): 1730-41.
[50]
Ingalls GG. Targeted PLGA nanoparticles for the sustained release of hypertensive drugs. 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42004071 [Cited 2020 Apr 27]
[51]
Kecel-Gündüz S, Budama-Kilinc Y, Cakir Koc R, et al. Computational design of Phe-Tyr dipeptide and preparation, characterization, cytotoxicity studies of Phe-Tyr dipeptide loaded PLGA nanoparticles for the treatment of hypertension. J Biomol Struct Dyn 2018; 36(11): 2893-907.
[http://dx.doi.org/10.1080/07391102.2017.1371644] [PMID: 28835169]
[52]
Castro PM, Baptista P, Madureira AR, Sarmento B, Pintado ME. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int J Pharm 2018; 547(1–2): 593-601. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517318303612 [Cited 2020 May 1]
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.051]
[53]
Si S, Li H, Han X. Sustained release olmesartan medoxomil loaded PLGA nanoparticles with improved oral bioavailability to treat hypertension. J Drug Deliv Sci Technol 2020; 55: 101422.
[http://dx.doi.org/10.1016/j.jddst.2019.101422]
[54]
Yu T, Zhao S, Li Z, Wang Y, Xu B, Fang D, et al. Enhanced and extended anti-hypertensive effect of VP5 nanoparticles. Int J Mol Sci 2016; 17(12): 1977. Available from: http://www.mdpi.com/1422-0067/17/12/1977 [Cited 2020 Apr 26]
[55]
Le Verger ML, Fluckiger L, Kim Y Il, Hoffman M, Maincent P. Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur J Pharm Biopharm 1998; 46(2): 137-43. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939641198000150 [Cited 2020 Apr 25]
[56]
Dorniani D, Umar Kura A, Zobir Bin Hussein M, Fakurazi S, Halim Shaari A, Ahmad Z. Controlled-release formulation of perindopril erbumine loaded PEG-coated magnetite nanoparticles for biomedical applications. J Mater Sci 2014; 49: 8487-97.
[http://dx.doi.org/10.1007/s10853-014-8559-7]
[57]
Kim Y Il, Fluckiger L, Hoffman M, Lartaud-Idjouadiene I, Atkinson J, Maincent T. The antihypertensive effect of orally administered nifedipine-loaded nanoparticles in spontaneously hypertensive rats. Br J Pharmacol 1997; 20(3): 399-404. Available from: http://doi.wiley.com/10.1038/sj.bjp.0700910 [Cited 2020 Apr 25]
[58]
Niaz T, Nasir H, Shabbir S, Rehman A, Imran M. Polyionic hybrid nano-engineered systems comprising alginate and chitosan for antihypertensive therapeutics. Int J Biol Macromol 2016; 91: 180-7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813016304664 [Cited 2020 Apr 28]
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.055]
[59]
Basu T, Pal B, Singh S. Fabrication of core–shell PLGA/PLA–pNIPAM nanocomposites for improved entrapment and release kinetics of antihypertensive drugs. Particuology 2018; 40: 169-76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1674200117301979 [Cited 2020 May 1]
[60]
Chinh NT, Trang NTT, Mai TT, Thanh DTM, Trung TH, Trung TH, et al. Polylactic acid/chitosan nanoparticles loading nifedipine: Characterization findings and in vivo investigation in animal. J Nanosci Nanotechnol 2017; 18(4): 2294-303. Available from: http://www.ingentaconnect.com/content/10.1166/jnn.2018.14537 [Cited 2020 Apr 28]
[61]
Shah U, Joshi G, Sawant K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater Sci Eng C 2014; 35(1): 153-63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493113006097 [Cited 2020 Apr 25]
[http://dx.doi.org/10.1016/j.msec.2013.10.038]
[62]
Pechanova O, Barta A, Koneracka M, Zavisova V, Kubovcikova M, Klimentova J, et al. Protective effects of nanoparticle-loaded aliskiren on cardiovascular system in spontaneously hypertensive rats. Molecules 2019; 24(15): 2710. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31349653 [Cited 2020 Apr 29]
[http://dx.doi.org/10.3390/molecules24152710]
[63]
Yadav P, Singh MN, Saraf SA, Katiyar N, Singh AK, Yadav I. Formulation and Evaluation of Novel Sericin Nanoparticles for Buccal Delivery of Antihypertensive Drug. Int J Appl Pharm Sci Res 2017; 3(01): 1-11.
[http://dx.doi.org/10.21477/ijapsr.v3i01.10421]
[64]
Iordanidou D, Zarganes-Tzitzikas T, Neochoritis CG, Dömling A, Lykakis IN. Application of silver nanoparticles in the multicomponent reaction domain: a combined catalytic reduction methodology to efficiently access potential hypertension or inflammation inhibitors. ACS Omega 2018; 3(11): 16005-13.
[http://dx.doi.org/10.1021/acsomega.8b02749] [PMID: 30533584]
[65]
Wu J, Ma H, Bu X, Ma C, Zhu L, Hao B, et al. SERS determination of the antihypertensive drugs prazosin and losartan by using silver nanoparticles coated with β-cyclodextrin. Microchim Acta 2019; 186(12): 801. Available from: http://link.springer.com/10.1007/s00604-019-3946-z [Cited 2020 Apr 26]
[http://dx.doi.org/10.1007/s00604-019-3946-z]
[66]
Dudhipala N, Veerabrahma K. Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design. Drug Dev Ind Pharm 2015; 41(12): 1968-77.
[http://dx.doi.org/10.3109/03639045.2015.1024685] [PMID: 25830370]
[67]
Thirupathi G, Swetha E, Narendar D. Role of isradipine loaded solid lipid nanoparticles on the pharmacodynamic effect in rats. Drug Res 2017; 67(3): 163-9. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0042-119947 [Cited 2020 Apr 27]
[68]
Havanoor SM, Manjunath K, Tippanna Bhagawati S, Veerapur VP. Isradipine loaded solid lipid nanoparticles for better treatment of hypertension-preparation, characterization and in vivo evaluation. Int J Biopharmaceut 2014; 5(3): 218-4.
[69]
Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv 2016; 23(2): 395-404.
[http://dx.doi.org/10.3109/10717544.2014.914986] [PMID: 24865287]
[70]
Zhang Z, Gao F, Bu H, Xiao J, Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: In vitro characteristics and absorption mechanism in rats. Nanomedicine Nanotechnology, Biol Med 2012; 8(5): 740-7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1549963411003534 [Cited 2020 Apr 27]
[71]
Kumar V, Chaudhary H, Kamboj A. Development and evaluation of isradipine via rutin-loaded coated solid-lipid nanoparticles. Interv Med Appl Sci 2018; 10(4): 236-46.
[http://dx.doi.org/10.1556/1646.10.2018.45] [PMID: 30792921]
[72]
Niazi M, Yari F, Shakarami A. A review of medicinal herbs in the lamiaceae family used to treat arterial hypertension. Entomol appl sci lett 2019; 6(1): 22-7.
[73]
Alanazi AD, Baharvand P, Moghaddam A, Mahmoudvand H. Chitosan-based nanomaterials as valuable sources of anti-leishmanial agents: a systematic review. Nanomaterials 2021, 11, 689.
[74]
Albalawi AE, Alanazi AD, Baharvand P, Sepahvand M, Mahmoudvand H. High potency of organic and inorganic nanoparticles to treat cystic echinococcosis: an evidence-based review. Nanomaterials. 2020; 10(12): 2538.
[75]
Recent Developments in the Application of Polymeric Nanoparticles as Drug Carriers PubMed - NCBI Available from: https://www.ncbi.nlm.nih.gov/pubmed/26768624 [Cited 2020 May 3]
[76]
Ganesan P, Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery.Sustainable Chemistry and Pharmacy. Elsevier B.V. 2017; 6: pp. 37-56.
[77]
Albalawi AE, Abdel-Shafy S, Khudair Khalaf A, Alanazi AD, Baharvand P, Ebrahimi K, Mahmoudvand H. Therapeutic potential of green synthesized copper nanoparticles alone or combined with meglumine antimoniate (glucantime®) in cutaneous leishmaniasis. Nanomaterials. 2021; 11(4): 891.
[78]
Fancher IS, Rubinstein I, Levitan I. Potential strategies to reduce blood pressure in treatment-resistant hypertension using food and drug administration-approved nanodrug delivery platforms. Hypertension 2019; 73(2): 250-7.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12005] [PMID: 30624988]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy