Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Innovations in Nano Container-Based Self-Healing Coatings in the Construction Industry

Author(s): Abhinay Thakur, Savas Kaya and Ashish Kumar*

Volume 18, Issue 2, 2022

Published on: 16 February, 2021

Page: [203 - 216] Pages: 14

DOI: 10.2174/1573413717666210216120741

Price: $65

Abstract

Globally, the maintenance and repair of infrastructure cost billions of dollars and impact the day-to-day life of people. Corrosion of infrastructure and metals used in the manufacture of goods and supplies is a major cause of deterioration in the construction industry. Nanocontainerbased self-healing coatings attract enormous scientific attention as they offer a wide range of applications in conjunction with long-lasting inhibition performance. These coatings prevent the rate of crack progression by releasing active agents from micro/nanocontainers in a controllable manner and heal crack, thereby mitigating corrosion. The potential of such coatings to heal local damage induced by climatic causes or by mechanical damage is a significant contributing factor to their desirability. This review is a comprehensive analysis of nanocontainers used to manufacture self-healing anticorrosive coatings as well as explains their self-healing mechanism. The technique used to develop nanocontainers such as layer-by-layer assembly of layered double hydroxide has been clarified. An attempt has also been made to cover the latest developments in the manufacture of nanocontainermediated self-healing corrosion coatings used in several construction industries.

Keywords: Protective coating, controlled release, self-healing coating, corrosion protection, inhibitors, nanocontainer.

Graphical Abstract

[1]
Shchukin, D.G.; Lamaka, S.V.; Yasakau, K.A.; Zheludkevich, M.L.; Ferreira, M.G.S.; Möhwald, H. Active anticorrosion coatings with halloysite nanocontainers. J. Phys. Chem. C, 2008, 112(4), 958-964.
[http://dx.doi.org/10.1021/jp076188r]
[2]
Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I-M.; Kumar, A. Corrosion inhibition performance of acarbose on mild steel corrosion in acidic medium: an experimental and computational study. Arab. J. Sci. Eng., 2020, 1-11.
[http://dx.doi.org/10.1007/s13369-020-04514-6]
[3]
Vimalanandan, A.; Lv, L.P.; Tran, T.H.; Landfester, K.; Crespy, D.; Rohwerder, M. Redox-responsive self-healing for corrosion protection. Adv. Mater., 2013, 25(48), 6980-6984.
[http://dx.doi.org/10.1002/adma.201302989] [PMID: 24108578]
[4]
Stankiewicz, A.; Szczygieł, I.; Szczygieł, B. Self-healing coatings in anti-corrosion applications. J. Mater. Sci., 2013, 48(23), 8041-8051.
[http://dx.doi.org/10.1007/s10853-013-7616-y]
[5]
Wei, H.; Wang, Y.; Guo, J.; Shen, N.Z.; Jiang, D.; Zhang, X.; Yan, X.; Zhu, J.; Wang, Q.; Shao, L.; Lin, H.; Wei, S.; Guo, Z. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(2), 469-480.
[http://dx.doi.org/10.1039/C4TA04791E]
[6]
Vijayan, P.; AlMaadeed, M.A. ‘containers’ for self-healing epoxy composites and coating: trends and advances. Express Polym. Lett., 2016, 10(6), 506-524.
[http://dx.doi.org/10.3144/expresspolymlett.2016.48]
[7]
Aliofkhazraei, M.; Makhlouf, A.S.H. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques; Handb. Nanoelectrochemistry Electrochem. Synth. Methods, Prop. Charact. Tech, 2016, pp. 1-1451.
[8]
Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I.M.; Kumar, A. Corrosion inhibition efficiency of bronopol on aluminium in 0.5 M HCl solution: insights from experimental and quantum chemical studies. Surf. Interfaces, 2020, 20, 100542.
[http://dx.doi.org/10.1016/j.surfin.2020.100542]
[9]
Liang, Y.; Wang, M.; Wang, C.; Feng, J.; Li, J.; Wang, L.; Fu, J. Facile synthesis of smart nanocontainers as key components for construction of self-healing coating with superhydrophobic surfaces. Nanoscale Res. Lett., 2016, 11(1), 231.
[http://dx.doi.org/10.1186/s11671-016-1444-3] [PMID: 27121439]
[10]
Turkyilmazoglu, M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Programs Biomed., 2019, 179, 104997.
[http://dx.doi.org/10.1016/j.cmpb.2019.104997] [PMID: 31443853]
[11]
Turkyilmazoglu, M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput. Methods Programs Biomed., 2020, 187, 105171.
[http://dx.doi.org/10.1016/j.cmpb.2019.105171] [PMID: 31785535]
[12]
Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus, 2020, 135(10), 1-13.
[http://dx.doi.org/10.1140/epjp/s13360-020-00812-y]
[13]
Qian, B.; Song, Z.; Hao, L.; Wang, W.; Kong, D. Self-healing epoxy coatings based on nanocontainers for corrosion protection of mild steel. J. Electrochem. Soc., 2017, 164(2), C54-C60.
[http://dx.doi.org/10.1149/2.1251702jes]
[14]
Huang, Y.; Deng, L.; Ju, P.; Huang, L.; Qian, H.; Zhang, D.; Li, X.; Terryn, H.A.; Mol, J.M.C. Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres. ACS Appl. Mater. Interfaces, 2018, 10(27), 23369-23379.
[http://dx.doi.org/10.1021/acsami.8b06985] [PMID: 29926725]
[15]
Nguyen-Tri, P.; Nguyen, T.A.; Carriere, P.; Ngo Xuan, C. Nanocomposite coatings: preparation, characterization, properties, and applications. Int. J. Corros., 2018, 2, 1-19.
[http://dx.doi.org/10.1155/2018/4749501]
[16]
Bashir, S.; Lgaz, H.; Chung, I.M.; Kumar, A. Effective green corrosion inhibition of aluminium using analgin in acidic medium: an experimental and theoretical study. Chem. Eng. Commun., 2020, 1, 100542.
[http://dx.doi.org/10.1080/00986445.2020.1752680]
[17]
Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Self-healing mechanisms in smart protective coatings: a review. Corros. Sci., 2018, 144, 74-88.
[http://dx.doi.org/10.1016/j.corsci.2018.08.005]
[18]
Rule, J.D.; Sottos, N.R.; White, S.R. effect of microcapsule size on the performance of self-healing polymers. Polymer (Guildf.), 2007, 48(12), 3520-3529.
[http://dx.doi.org/10.1016/j.polymer.2007.04.008]
[19]
Kirkby, E.L.; Rule, J.D.; Michaud, V.J.; Sottos, N.R.; White, S.R.; Månson, J.A.E. Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv. Funct. Mater., 2008, 18(15), 2253-2260.
[http://dx.doi.org/10.1002/adfm.200701208]
[20]
Guadagno, L.; Raimondo, M.; Naddeo, C.; Longo, P.; Mariconda, A.; Binder, W.H. Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater. Struct., 2014, 23(4), 045001.
[http://dx.doi.org/10.1088/0964-1726/23/4/045001]
[21]
Jong, K.L.; Sun, J.H.; Liu, X.; Sung, H.Y. Characterization of dicyclopentadiene and 5-ethylidene-2-norbornene as self-healing agents for polymer composite and its microcapsules. Macromol. Res., 2004, 12(5), 478-483.
[http://dx.doi.org/10.1007/BF03218430]
[22]
Patel, A.J.; Sottos, N.R.; Wetzel, E.D.; White, S.R. Autonomic healing of low-velocity impact damage in fiber-reinforced composites, Composites Part A. In: Applied Science and Manufacturing, 2010, 41(3), 360-368.
[http://dx.doi.org/10.1016/j.compositesa.2009.11.002]
[23]
Jin, H.; Mangun, C.L.; Stradley, D.S.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer (Guildf.), 2012, 53(2), 581-587.
[http://dx.doi.org/10.1016/j.polymer.2011.12.005]
[24]
Coope, T.S.; Mayer, U.F.J.; Wass, D.F.; Trask, R.S.; Bond, I.P. Self-healing of an epoxy resin using Scandium(III) Triflate as a catalytic curing agent. Adv. Funct. Mater., 2011, 21(24), 4624-4631.
[http://dx.doi.org/10.1002/adfm.201101660]
[25]
Yadav, J.S.; Kumar, V.N.; Rao, R.S.; Priyadarshini, A.D.; Rao, P.P.; Reddy, B.V.S.; Nagaiah, K. Sc(OTf)3 catalyzed highly rapid and efficient synthesis of β-Enamino compounds under solvent-free conditions. J. Mol. Catal. Chem., 2006, 256(1-2), 234-237.
[http://dx.doi.org/10.1016/j.molcata.2006.04.065]
[26]
Xiao, D.S.; Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. Self-healing epoxy based on cationic chain polymerization. Polymer (Guildf.), 2009, 50(13), 2967-2975.
[http://dx.doi.org/10.1016/j.polymer.2009.04.029]
[27]
Madara, S.R.; Sarath Raj, N.S.; Selvan, C.P. Review of research and developments in self healing composite materials. IOP Conf. Ser. Mater. Sci. Eng., 2018, 346(1), 012011.
[http://dx.doi.org/10.1088/1757-899X/346/1/012011]
[28]
Benito, S.M. Functionalized polymer nanocontainers for targeted drug delivery. (Doctoral dissertation, University_of_Basel). 2006.
[29]
Abulmagd, S.; Etman, Z.A. Nanotechnology in repair and protection of structures state-of-the-art. J. Civ. Environ. Eng., 2018, 8, 2.
[http://dx.doi.org/10.4172/2165-784X.1000306]
[30]
Stankiewicz, A. Self-Healing Nanocoatings for Protection against Steel Corrosion; Elsevier Ltd, 2019, pp. 303-335.
[http://dx.doi.org/10.1016/B978-0-08-102641-0.00014-1]
[31]
Lim, A.T.O.; Cui, C.; Jang, H.D.; Huang, J. Self-healing microcapsule-thickened oil barrier coatings. Research (Wash DC), 2019, 2019, 3517816.
[http://dx.doi.org/10.34133/2019/3517816] [PMID: 31549058]
[32]
Grigoriev, D.O.; Haase, M.F.; Fandrich, N.; Latnikova, A.; Shchukin, D.G. Emulsion route in fabrication of micro and nanocontainers for biomimetic self-healing and self-protecting functional coatings. Bioinspired. Biomim. Nanobiomaterials, 2012, 1(2), 101-116.
[http://dx.doi.org/10.1680/bbn.11.00017]
[33]
Shchukina, E.; Shchukin, D.G. Nanocontainer-based active systems: from self-healing coatings to thermal energy storage. Langmuir, 2019, 35(26), 8603-8611.
[http://dx.doi.org/10.1021/acs.langmuir.9b00151] [PMID: 30810043]
[34]
Bashir, S.; Lgaz, H.; Chung, I.I.I.M.; Kumar, A. Potential of venlafaxine in the inhibition of mild steel corrosion in HCl: insights from experimental and computational studies. Chem. Pap., 2019, 73(9), 2255-2264.
[http://dx.doi.org/10.1007/s11696-019-00775-0]
[35]
Shchukina, E.; Wang, H.; Shchukin, D.G. Nanocontainer-based self-healing coatings: current progress and future perspectives. Chem. Commun. (Camb.), 2019, 55(27), 3859-3867.
[http://dx.doi.org/10.1039/C8CC09982K] [PMID: 30895976]
[36]
Liu, C.; Zhao, H.; Hou, P.; Qian, B.; Wang, X.; Guo, C.; Wang, L. Efficient Graphene/Cyclodextrin-based nanocontainer: synthesis and host-guest inclusion for self-healing anticorrosion application. ACS Appl. Mater. Interfaces, 2018, 10(42), 36229-36239.
[http://dx.doi.org/10.1021/acsami.8b11108] [PMID: 30260207]
[37]
Habib, S.; Khan, A.; Nawaz, M.; Sliem, M.H.; Shakoor, R.A.; Kahraman, R.; Abdullah, A.M.; Zekri, A. Self-healing performance of multifunctional polymeric smart coatings. Polymers (Basel), 2019, 11(9), 1519.
[http://dx.doi.org/10.3390/polym11091519] [PMID: 31540527]
[38]
Wang, T.; Du, J.; Ye, S.; Tan, L.; Fu, J. Triple-stimuli-responsive smart nanocontainers enhanced self-healing anticorrosion coatings for protection of aluminum alloy. ACS Appl. Mater. Interfaces, 2019, 11(4), 4425-4438.
[http://dx.doi.org/10.1021/acsami.8b19950] [PMID: 30608123]
[39]
Farag, A.A. Applications of nanomaterials in corrosion protection coatings and inhibitors. Corros. Rev., 2020, 38(1), 67-86.
[http://dx.doi.org/10.1515/corrrev-2019-0011]
[40]
Kim, D.M.; Song, I.H.; Choi, J.Y.; Jin, S.W.; Nam, K.N.; Chung, C.M. Self-healing coatings based on linseed-oil-loaded microcapsules for protection of cementitious materials. Coatings, 2018, 8(11), 404.
[http://dx.doi.org/10.3390/coatings8110404]
[41]
Kumar, S.S.; Kakooei, S. Container-Based Smart Nanocoatings for Corrosion Protection; Elsevier Inc., 2020, pp. 403-421.
[42]
Bashir, S.; Sharma, V.; Singh, G.; Lgaz, H.; Salghi, R.; Singh, A.; Kumar, A. Electrochemical behavior and computational analysis of phenylephrine for corrosion inhibition of aluminum in acidic medium. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2019, 50(1), 468-479.
[http://dx.doi.org/10.1007/s11661-018-4957-9]
[43]
Kim, D.M.; Lee, J.; Choi, J.Y.; Jin, S.W.; Nam, K.N.; Park, H.J.; Lee, S.H.; Chung, C.M. Healing performance of a self-healing protective coating according to damage width. Coatings, 2020, 10(6), 543.
[http://dx.doi.org/10.3390/coatings10060543]
[44]
Weiss, J.; Takhistov, P.; McClements, D.J. Functional materials in food nanotechnology. J. Food Sci., 2006, 71(9), 107-116.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00195.x]
[45]
Chau, C.F.; Wu, S.H.; Yen, G.C. The development of regulations for food nanotechnology. Trends Food Sci. Technol., 2007, 18(5), 269-280.
[http://dx.doi.org/10.1016/j.tifs.2007.01.007]
[46]
Wiek, A.; Gasser, L.; Siegrist, M. Systemic scenarios of nanotechnology: sustainable governance of emerging technologies. Futures, 2009, 41(5), 284-300.
[http://dx.doi.org/10.1016/j.futures.2008.11.016]
[47]
Imran, M.; Revol-Junelles, A.M.; Martyn, A.; Tehrany, E.A.; Jacquot, M.; Linder, M.; Desobry, S. Active food packaging evolution: transformation from micro- to nanotechnology. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 799-821.
[http://dx.doi.org/10.1080/10408398.2010.503694] [PMID: 20924864]
[48]
Dasgupta, N.; Ranjan, S.; Ramalingam, C. Applications of nanotechnology in agriculture and water quality management. Environ. Chem. Lett., 2017, 15(4), 591-605.
[http://dx.doi.org/10.1007/s10311-017-0648-9]
[49]
Dhaundiyal, P.; Bashir, S.; Sharma, V.; Kumar, A. An investigation on mitigation of corrosion of mildsteel by origanum vulgare in acidic medium. J. Chem. Inf. Model., 2019, 33(1), 159-168.
[http://dx.doi.org/10.1017/CBO9781107415324.004] [PMID: 30422654]
[50]
Rossi, M.; Cubadda, F.; Dini, L.; Terranova, M.L.; Aureli, F.; Sorbo, A.; Passeri, D. Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci. Technol., 2014, 40(2), 127-148.
[http://dx.doi.org/10.1016/j.tifs.2014.09.004]
[51]
Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol., 2012, 5(3), 854-867.
[http://dx.doi.org/10.1007/s11947-011-0683-7]
[52]
Parveen, G.; Bashir, S.; Thakur, A.; Saha, S.K.; Banerjee, P.; Kumar, A. Experimental and computational studies of imidazolium based ionic liquid 1-Methyl- 3-propylimidazolium iodide on mild steel corrosion in acidic solution experimental and computational studies of imidazolium based ionic liquid 1-methyl- 3-propylimidazolium. Mater. Res. Express, 2020, 7(1), 016510.
[http://dx.doi.org/10.1088/2053-1591/ab5c6a]
[53]
Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I-M.; Kumar, A. Computational and experimental studies on phenylephrine as anti-corrosion substance of mild steel in acidic medium. J. Mol. Liq., 2019, 293, 111539.
[http://dx.doi.org/10.1016/j.molliq.2019.111539]
[54]
Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B. Designing a novel targeted-release nano-container based on the silanized graphene oxide decorated with cerium acetylacetonate loaded Beta-Cyclodextrin (β-CD-CeA-MGO) for epoxy anti-corrosion coating. Elsevier B.V., 2020, 400, 125860.
[http://dx.doi.org/10.1016/j.cej.2020.125860]
[55]
Besomi, D. Roy Harrod and the Oxford Economists’ Research Group’s inquiry on prices and interest, 1936-39. Oxf. Econ. Pap., 1998, 50(4), 534-562.
[http://dx.doi.org/10.1093/oep/50.4.534]
[56]
Wang, J.P.; Song, X.; Wang, J.K.; Cui, X.; Zhou, Q.; Qi, T.; Li, G.L. Smart-sensing polymer coatings with autonomously reporting corrosion dynamics of self-healing systems. Adv. Mater. Interfaces, 2019, 6(10), 1-8.
[http://dx.doi.org/10.1002/admi.201900055]
[57]
Chaudhry, Q.; Watkins, R.; Castle, L. Nanotechnologies in the Food Arena: New Opportunities; New Questions, New Concerns, 2010, pp. 1-17.
[http://dx.doi.org/10.1039/9781847559883]
[58]
Can, E.; Kizak, V.; Kayim, M.; Can, S.S.; Kutlu, B.; Ates, M.; Kocabas, M.; Demirtas, N. Nanotechnological applications in aquaculture-seafood industries and adverse effects of nanoparticles on environment. J. Mar. Sci. Eng., 2011, 5, 605-609.
[59]
Hayatdavoudi, H.; Rahsepar, M. Smart inhibition action of layered double hydroxide nanocontainers in zinc-rich epoxy coating for active corrosion protection of carbon steel substrate. J. Alloys Compd., 2017, 711, 560-567.
[http://dx.doi.org/10.1016/j.jallcom.2017.04.044]
[60]
Njoku, D.I.; Cui, M.; Xiao, H.; Shang, B.; Li, Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Sci. Rep., 2017, 7(1), 15597.
[http://dx.doi.org/10.1038/s41598-017-15845-0] [PMID: 29142312]
[61]
Singh, A.; Soni, N.; Deyuan, Y.; Kumar, A. A combined electrochemical and theoretical analysis of environmentally benign polymer for corrosion protection of N80 steel in sweet corrosive environment. Results Phys., 2019, 13, 102116.
[http://dx.doi.org/10.1016/j.rinp.2019.02.052]
[62]
Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Ferreira, M.G.S. Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors. Electrochem. Commun., 2005, 7(8), 836-840.
[http://dx.doi.org/10.1016/j.elecom.2005.04.039]
[63]
Li, D.; Chen, S.; Zhao, S.; Ma, H. The corrosion inhibition of the self-assembled au, and ag nanoparticles films on the surface of copper. Colloids Surf. A Physicochem. Eng. Asp., 2006, 273(1-3), 16-23.
[http://dx.doi.org/10.1016/j.colsurfa.2005.08.003]
[64]
Montemor, M.F.; Ferreira, M.G.S. Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanised steel substrates. Electrochim. Acta, 2007, 52(24), 6976-6987.
[http://dx.doi.org/10.1016/j.electacta.2007.05.022]
[65]
Sonawane, S.H.; Bhanvase, B.A.; Jamali, A.A.; Dubey, S.K.; Kale, S.S.; Pinjari, D.V.; Kulkarni, R.D.; Gogate, P.R.; Pandit, A.B. Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole. Chem. Eng. J., 2012, 189–190, 464-472.
[http://dx.doi.org/10.1016/j.cej.2012.02.076]
[66]
Montemor, M.F.; Ferreira, M.G.S. Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates. Prog. Org. Coat., 2008, 63(3), 330-337.
[http://dx.doi.org/10.1016/j.porgcoat.2007.11.008]
[67]
Borisova, D.; Möhwald, H.; Shchukin, D.G. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano, 2011, 5(3), 1939-1946.
[http://dx.doi.org/10.1021/nn102871v] [PMID: 21344888]
[68]
Zaharescu, M.; Predoana, L.; Barau, A.; Raps, D.; Gammel, F.; Rosero-Navarro, N.C.; Castro, Y.; Durán, A.; Aparicio, M. SiO2 based hybrid inorganic-organic films doped with TiO2-CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corros. Sci., 2009, 51(9), 1998-2005.
[http://dx.doi.org/10.1016/j.corsci.2009.05.022]
[69]
Montemor, M.F.; Pinto, R.; Ferreira, M.G.S. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochim. Acta, 2009, 54(22), 5179-5189.
[http://dx.doi.org/10.1016/j.electacta.2009.01.053]
[70]
Tavandashti, N.P.; Sanjabi, S. Progress in organic coatings corrosion study of hybrid sol – gel coatings containing boehmite nanoparticles loaded with cerium nitrate Corrosion inhibitor. Prog. Org. Coat., 2010, 69(4), 384-391.
[http://dx.doi.org/10.1016/j.porgcoat.2010.07.012]
[71]
Bashir, S.; Singh, G.; Kumar, A. An investigation on mitigation of corrosion of aluminium by origanum vulgare in acidic medium. Prot. Met. Phys. Chem. Surf., 2018, 54(1), 148-152.
[http://dx.doi.org/10.1134/S2070205118010185]
[72]
Poggi, G.; Baglioni, P.; Giorgi, R. Alkaline earth hydroxide nanoparticles for the inhibition of metal gall ink corrosion. Restaurator (Copenh.), 2011, 32(3), 247-273.
[http://dx.doi.org/10.1515/rest.2011.012]
[73]
Bashir, S.; Sharma, V.; Lgaz, H.; Chung, I-M.; Singh, A.; Kumar, A. The inhibition action of analgin on the corrosion of mild steel in acidic medium: a combined theoretical and experimental approach. J. Mol. Liq., 2018, 263, 454-462.
[http://dx.doi.org/10.1016/j.molliq.2018.04.143]
[74]
Jabeen, H.; Chandra, V.; Jung, S.; Lee, J.W.; Kim, K.S.; Kim, S.B. Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale, 2011, 3(9), 3583-3585.
[http://dx.doi.org/10.1039/c1nr10549c] [PMID: 21814702]
[75]
Sharma, V.; Kumar, S.; Bashir, S.; Ghelichkhah, Z.; Obot, I.B.K.A. Use of sapindus (Reetha) as corrosion inhibitor of aluminium in acidic medium. Mater. Res. Express, 2018, 5(7), 076510.
[http://dx.doi.org/10.1088/2053-1591/aacf76]
[76]
Shchukin, D.G.; Grigoriev, D.O.; Möhwald, H. Application of smart organic nanocontainers in feedback active coatings. Soft Matter, 2010, 6(4), 720-725.
[http://dx.doi.org/10.1039/B918437F]
[77]
Choi, H.; Song, Y.K.; Kim, K.Y.; Park, J.M. Encapsulation of triethanolamine as organic corrosion inhibitor into nanoparticles and its active corrosion protection for steel sheets. Surf. Coat. Tech., 2012, 206(8-9), 2354-2362.
[http://dx.doi.org/10.1016/j.surfcoat.2011.10.030]
[78]
Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A. Corrosion inhibition efficiency of modified silver nanoparticles for carbon steel in 1 M HCL. Int. J. Electrochem. Sci., 2013, 8(4), 4873-4885.
[79]
Sharmila, R.; Selvakumar, N.; Jeyasubramanian, K. Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles. Mater. Lett., 2013, 91, 78-80.
[http://dx.doi.org/10.1016/j.matlet.2012.09.051]
[80]
Atta, A.M.; Allohedan, H.A.; El-Mahdy, G.A.; Ezzat, A.R.O. Application of stabilized silver nanoparticles as thin films as corrosion inhibitors for carbon steel alloy in 1M hydrochloric acid. J. Nanomater., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/580607]
[81]
Rathish, R.J.; Dorothy, R.; Joany, R.M.; Pandiarajan, M.; Rajendran, S. Corrosion resistance of nanoparticle - incorporated nano coatings. Eur. Chem. Bull., 2013, 2(12), 965-970.
[http://dx.doi.org/10.17628/ECB.2013.2.965]
[82]
Azzam, E.M.S.; Abd El-Aal, A.A. Corrosion inhibition efficiency of synthesized poly 12-(3-Amino Phenoxy) Dodecane-1-thiol surfactant assembled on silver nanoparticles. Egypt. J. Pet., 2013, 22(2), 293-303.
[http://dx.doi.org/10.1016/j.ejpe.2013.06.008]
[83]
Zand, R.Z.; Verbeken, K.; Adriaens, A. Evaluation of the corrosion inhibition performance of silane coatings filled with cerium salt-activated nanoparticles on. Int. J. Electrochem. Sci., 2013, 8, 4924-4940.
[84]
Fu, J.; Chen, T.; Wang, M.; Yang, N.; Li, S.; Wang, Y.; Liu, X. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano, 2013, 7(12), 11397-11408.
[http://dx.doi.org/10.1021/nn4053233] [PMID: 24261631]
[85]
Ashassi-Sorkhabi, H.; Es’haghi, M. Corrosion resistance enhancement of electroless Ni-P coating by incorporation of ultrasonically dispersed diamond nanoparticles. Corros. Sci., 2013, 77, 185-193.
[http://dx.doi.org/10.1016/j.corsci.2013.07.046]
[86]
Obot, I.B.; Umoren, S.A.; Johnson, A.S. Sunlight-mediated synthesis of silver nanoparticles using honey and its promising anticorrosion potentials for mild steel in acidic environments. J. Mater. Environ. Sci., 2013, 4(6), 1013-1018.
[87]
Kumar, A.; Thakur, A. Encapsulated Nanoparticles in Organic Polymers for Corrosion Inhibition; Elsevier Inc., 2020.
[http://dx.doi.org/10.1016/B978-0-12-819359-4.00018-0]
[88]
Zhou, C.; Lu, X.; Xin, Z.; Liu, J.; Zhang, Y. Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel. Corros. Sci., 2014, 80, 269-275.
[http://dx.doi.org/10.1016/j.corsci.2013.11.042]
[89]
Kaya, S.; Kaya, C. A new method for calculation of molecular hardness: a theoretical study. Comput. Theor. Chem., 2015, 1060, 66-70.
[http://dx.doi.org/10.1016/j.comptc.2015.03.004]
[90]
Kaya, S.; Kaya, C. A new equation for calculation of chemical hardness of groups and molecules. Mol. Phys., 2015, 113(11), 1311-1319.
[http://dx.doi.org/10.1080/00268976.2014.991771]
[91]
Kaya, S.; Kaya, C.; Islam, N. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds. Physica B, 2016, 485, 60-66.
[http://dx.doi.org/10.1016/j.physb.2016.01.010]
[92]
Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[93]
Pan, S.; Solà, M.; Chattaraj, P.K. On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J. Phys. Chem. A, 2013, 117(8), 1843-1852.
[http://dx.doi.org/10.1021/jp312750n] [PMID: 23373511]
[94]
Erdoğan, Ş.; Safi, Z.S.; Kaya, S.; Işın, D.Ö.; Guo, L.; Kaya, C. A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J. Mol. Struct., 2017, 1134, 751-761.
[http://dx.doi.org/10.1016/j.molstruc.2017.01.037]
[95]
Falcón, J.M.; Batista, F.F.; Aoki, I.V. Encapsulation of dodecylamine corrosion inhibitor on silica nanoparticles. Electrochim. Acta, 2014, 124, 109-118.
[http://dx.doi.org/10.1016/j.electacta.2013.06.114]
[96]
Fedel, M.; Ahniyaz, A.; Ecco, L.G.; Deflorian, F. Electrochemical investigation of the inhibition effect of CeO2 nanoparticles on the corrosion of mild steel. Electrochim. Acta, 2014, 131, 71-78.
[http://dx.doi.org/10.1016/j.electacta.2013.11.164]
[97]
Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A.; Al Hussain, S.A. Corrosion inhibition of nanocomposite based on acrylamide copolymers/magnetite for steel. Dig. J. Nanomater. Biostruct., 2014, 9(2), 627-639.
[98]
Bhanvase, B.A.; Patel, M.A.; Sonawane, S.H. Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition. Corros. Sci., 2014, 88, 170-177.
[http://dx.doi.org/10.1016/j.corsci.2014.07.022]
[99]
Rostami, M.; Rasouli, S.; Ramezanzadeh, B.; Askari, A. electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating. Corros. Sci., 2014, 88, 387-399.
[http://dx.doi.org/10.1016/j.corsci.2014.07.056]
[100]
Johnson, A.S.; Obot, I.B.; Ukpong, U.S. Green synthesis of silver nanoparticles using Artemisia Annua and sida acuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials. J. Mater. Environ. Sci., 2014, 5(3), 899-906.
[101]
Balan, P.; Shelton, M.J.; Ching, D.O.L.; Han, G.C.; Palniandy, L.K. Modified silane films for corrosion protection of mild steel. Procedia Mater. Sci., 2014, 6, 244-248.
[http://dx.doi.org/10.1016/j.mspro.2014.07.030]
[102]
Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A.; Al-Hussain, S.A. Corrosion inhibition of mild steel in acidic medium by magnetite myrrh nanocomposite. Int. J. Electrochem. Sci., 2014, 9(12), 8446-8457.
[103]
Bashir, S.; Singh, G.; Kumar, A. Shatavari (Asparagus Racemosus) as green corrosion inhibitor of aluminium in acidic medium. J. Mater. Environ. Sci., 2017, 8(12), 4284-4291.
[http://dx.doi.org/10.26872/jmes.2017.8.12.451]
[104]
John, S.; Joseph, A.; Jose, A.J.; Narayana, B. Enhancement of corrosion protection of mild steel by chitosan/ZnO nanoparticle composite membranes. Prog. Org. Coat., 2015, 84, 28-34.
[http://dx.doi.org/10.1016/j.porgcoat.2015.02.005]
[105]
Palanisamy, K.L.; Devabharathi, V.; Meenakshi Sundaram, N. Corrosion inhibition studies of mild steel with carrier oil stabilized of iron oxide nanoparticles incorporated into a paint. Int. J. Chemtech Res., 2015, 7(4), 1661-1664.
[106]
Ates, M.; Özyilmaz, A.T. The application of polycarbazole, polycarbazole/nanoclay and polycarbazole/Zn-nanoparticles as a corrosion inhibition for SS304 in saltwater. Prog. Org. Coat., 2015, 84, 50-58.
[http://dx.doi.org/10.1016/j.porgcoat.2015.02.013]
[107]
Solomon, M.M.; Umoren, S.A. Performance assessment of poly (Methacrylic Acid)/silver nanoparticles composite as corrosion inhibitor for aluminium in acidic environment. J. Adhes. Sci. Technol., 2015, 29(21), 2311-2333.
[http://dx.doi.org/10.1080/01694243.2015.1066235]
[108]
Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B. A study on the corrosion inhibition properties of silane-modified Fe2O3 nanoparticle on mild steel and its effect on the anticorrosion properties of the polyurethane coating. J. Coat. Technol. Res., 2015, 12(2), 277-292.
[http://dx.doi.org/10.1007/s11998-014-9631-6]
[109]
Sasikumar, Y.; Kumar, A.M.; Gasem, Z.M.; Ebenso, E.E. Hybrid nanocomposite from aniline and CeO2 nanoparticles: surface protective performance on mild steel in acidic environment. Appl. Surf. Sci., 2015, 330, 207-215.
[http://dx.doi.org/10.1016/j.apsusc.2015.01.002]
[110]
Umoren, S.A.; Madhankumar, A. Effect of addition of CeO2 nanoparticles to pectin as inhibitor of X60 steel corrosion in HCl medium. J. Mol. Liq., 2016, 224, 72-82.
[http://dx.doi.org/10.1016/j.molliq.2016.09.082]
[111]
Kumar, A.; Bashir, S. Ethambutol: a new and effective corrosion inhibitor of mildsteel in acidic medium. Russ. J. Appl. Chem., 2016, 89(7), 1158-1163.
[http://dx.doi.org/10.1134/S1070427216070168]
[112]
Singh, A.; Kumar, A.; Pramanik, T. A theoretical approach to the study of some plant extracts as green corrosion inhibitor for mild steel in HCl solution. Orient. J. Chem., 2013, 29(1), 1-7.
[http://dx.doi.org/10.13005/ojc/290144]
[113]
Singh, A.; Pramanik, T.; Kumar, A.; Gupta, M. phenobarbital: a new and effective corrosion inhibitor for mild steel in 1 M HCl solution. Asian J. Chem., 2013, 25(17), 9808-9812.
[http://dx.doi.org/10.14233/ajchem.2013.15414]
[114]
Solomon, M.M.; Umoren, S.A. In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution. J. Colloid Interface Sci., 2016, 462, 29-41.
[http://dx.doi.org/10.1016/j.jcis.2015.09.057] [PMID: 26433475]
[115]
Javidparvar, A.A.; Ramezanzadeh, B.; Ghasemi, E. The effect of surface morphology and treatment of Fe3O4 nanoparticles on the corrosion resistance of epoxy coating. J. Taiwan Inst. Chem. Eng., 2016, 61, 356-366.
[http://dx.doi.org/10.1016/j.jtice.2016.01.001]
[116]
Rix, M.V.; Baker, M.; Whiting, M.J.; Durman, R.P.; Shatwell, R.A. An Improved Silicon Carbide Monofilament for the Reinforcement of Metal Matrix Composites, In: Meyers M. et al, (eds). Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. pp.317-324.
[http://dx.doi.org/10.1007/978-3-319-52132-9_31]
[117]
Ma, X.; Xu, L.; Wang, W.; Lin, Z.; Li, X. Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy. Corros. Sci., 2017, 120, 139-147.
[http://dx.doi.org/10.1016/j.corsci.2017.02.004]
[118]
Solomon, M.M.; Gerengi, H.; Kaya, T.; Umoren, S.A. Enhanced corrosion inhibition effect of chitosan for St37 in 15% H2SO4 environment by silver nanoparticles. Int. J. Biol. Macromol., 2017. 104(Pt A), 638-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.072] [PMID: 28625837]
[119]
Yang, F.; Li, X.; Dai, Z.; Liu, T.; Zheng, W.; Zhao, H.; Wang, L. Corrosion inhibition of polydopamine nanoparticles on mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci., 2017, 12(8), 7469-7480.
[http://dx.doi.org/10.20964/2017.08.52]
[120]
Asaad, M.A.; Ismail, M.; Tahir, M.M.; Huseien, G.F.; Raja, P.B.; Asmara, Y.P. Enhanced corrosion resistance of reinforced concrete: role of emerging eco-friendly Elaeis guineensis/silver nanoparticles inhibitor. Constr. Build. Mater., 2018, 188, 555-568.
[http://dx.doi.org/10.1016/j.conbuildmat.2018.08.140]
[121]
Abd-Elaal, A.A.; Elbasiony, N.M.; Shaban, S.M.; Zaki, E.G. Studying the corrosion inhibition of some prepared nonionic surfactants based on 3-(4-hydroxyphenyl) propanoic acid and estimating the influence of silver nanoparticles on the surface parameters. J. Mol. Liq., 2018, 249, 304-317.
[http://dx.doi.org/10.1016/j.molliq.2017.11.052]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy