Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Silicon Quantum Dots: Chemical, Physical Synthesis, and Applications in Fluorescence Detection, Solar Cell, Photocatalyst, and Composite

Author(s): Wanzhe Tong, Qinhong Yin, Dong Fang*, Taofang Zeng and Jianhong Yi

Volume 18, Issue 2, 2022

Published on: 12 April, 2021

Page: [182 - 202] Pages: 21

DOI: 10.2174/1573413717666210412152255

Price: $65

Abstract

Silicon quantum dots (Si QDs) with unique properties of light, electricity, magnetism, and heat possess the advantages of non-toxicity, environmental protection, and serving as abundant reserves. They are widely used in various fields and have great potential for development. Till now, numerous researchers have reported the research progress of Si QDs or elaborated the behavior mechanism. However, a few comparisons are made on the properties of a quantum dot in different fields and different preparation methods. Besides, the parameters of Si QDs vary greatly in different application fields, which are worthy of comparison. During the current work, we review the research progress and synthesis methods in recent years. The main influencing factors of Si QDs in different preparation methods (physical and chemical) and different application properties (fluorescence detection, solar cell, photocatalyst, and composite) are compared and discussed in detail. Therefore, this paper aims to find promising preparation methods for different application fields and provide a clear direction for researchers to study Si QDs in different directions.

Keywords: silicon, quantum dot, synthesis, battery, fluorescence detection, photocatalyst, composite, preparation methods, parameters.

Graphical Abstract

[1]
Timmerman, D.; Valenta, J.; Dohnalová, K.; de Boer, W.D.; Gregorkiewicz, T. Step-like enhancement of luminescence quantum yield of silicon nanocrystals. Nat. Nanotechnol., 2011, 6(11), 710-713.
[http://dx.doi.org/10.1038/nnano.2011.167] [PMID: 21984044]
[2]
Aslfattahi, N.; Samylingam, L.; Abdelrazik, A.S.; Arifutzzaman, A.; Saidur, R. Mxene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector. Sol. Energy Mater. Sol. Cells, 2020, 211, 110526.
[http://dx.doi.org/10.1016/j.solmat.2020.110526]
[3]
Parashar, N.; Aslfattahi, N.; Yahya, S.M.; Saidur, R. An artificial neural network approach for the prediction of dynamic viscosity of MXene-palm oil nanofluid using experimental data. J. Therm. Anal. Calorim., 2020.
[http://dx.doi.org/10.1007/s10973-020-09638-3]
[4]
Yang, C. Tan, Q.; Li, Q.; Zhou, J.; Lv, K. 2d/2d Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient co2 reduction photocatalyst: dual effects of urea. Appl. Catal. B, 2020, 268, 118738.
[http://dx.doi.org/10.1016/j.apcatb.2020.118738]
[5]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–nickel nanoparticles decorated on functionalized-mwcnt for high precision non-enzymatic glucose sensing-sciencedirect. Mater. Chem. Phys., 2020, 250, 123042.
[6]
Abdullah, N.; Saidur, R.; Zainoodin, A.M.; Aslfattahi, N. Optimization of electrocatalyst performance of platinum–ruthenium induced with mxene by response surface methodology for clean energy application. J. Clean. Prod., 2020, 277, 123395.
[7]
Ariga, K.; Vinu, A.; Yamauchi, Y.; Ji, Q.; Hill, J.P. Cheminform abstract: nanoarchitectonics for mesoporous materials. ChemInform, 2012, 43(17)
[http://dx.doi.org/10.1002/chin.201217224]
[8]
Ciurea, M.L.; Lepadatu, A.M. Tuning the properties of Ge and Si nanocrystals based structures by tailoring the preparation conditions review. Dig. J. Nanomater. Biostruct., 2015, 10(1), 59-87.
[9]
Kourkoutis, L.F.; Hao, X.; Huang, S.; Puthen-Veettil, B.; Conibeer, G.; Green, M.A.; Perez-Wurfl, I. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells. Nanoscale, 2013, 5(16), 7499-7504.
[http://dx.doi.org/10.1039/c3nr01998e] [PMID: 23832085]
[10]
Cheng, X.; Lowe, S.B.; Reece, P.J.; Gooding, J.J. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev., 2014, 43(8), 2680-2700.
[http://dx.doi.org/10.1039/C3CS60353A] [PMID: 24395024]
[11]
Cheng, X.; Guan, B. Optical biosensing and bioimaging with porous silicon and silicon quantum dots (Invited Review). Prog. Electromagnetics Res., 2017, 160, 103-121.
[http://dx.doi.org/10.2528/PIER17120504]
[12]
Ji, X.; Wang, H.; Song, B.; Chu, B.; He, Y. Silicon nanomaterials for biosensing and bioimaging analysis. Front Chem., 2018, 6, 38.
[http://dx.doi.org/10.3389/fchem.2018.00038] [PMID: 29541633]
[13]
Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 3970-3990.
[http://dx.doi.org/10.1039/C5TA09011C]
[14]
Chen, X.; Yang, P. Preparation and photovoltaic properties of silicon quantum dots embedded in a dielectric matrix: a review. J. Mater. Sci. Mater. Electron., 2015, 26, 4604-4617.
[http://dx.doi.org/10.1007/s10854-015-3147-4]
[15]
Hill, S.K.; Connell, R.; Peterson, C.; Hollinger, J.; Hillmyer, M.A.; Kortshagen, U.; Ferry, V.E. Silicon quantum dot–poly (methyl methacrylate) nanocomposites with reduced light scattering for luminescent solar concentrators. ACS Photonics, 2018, 6(1), 170-180.
[http://dx.doi.org/10.1021/acsphotonics.8b01346]
[16]
Liu, X.; Zhao, S.; Gu, W.; Zhang, Y.; Qiao, X.; Ni, Z.; Pi, X.; Yang, D. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands. ACS Appl. Mater. Interfaces, 2018, 10(6), 5959-5966.
[http://dx.doi.org/10.1021/acsami.7b16980] [PMID: 29345903]
[17]
Tilley, R.D.; Yamamoto, K. The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv. Mater., 2006, 18(15), 2053-2056.
[http://dx.doi.org/10.1002/adma.200600118]
[18]
Takagahara, T.; Takeda, K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B Condens. Matter, 1992, 46(23), 15578-15581.
[http://dx.doi.org/10.1103/PhysRevB.46.15578] [PMID: 10003694]
[19]
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol., 2001, 19(4), 316-317.
[http://dx.doi.org/10.1038/86684] [PMID: 11283581]
[20]
Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 1961, 32(3), 510-519.
[http://dx.doi.org/10.1063/1.1736034]
[21]
Kelzenberg, M.D.; Boettcher, S.W.; Petykiewicz, J.A.; Turner-Evans, D.B.; Putnam, M.C.; Warren, E.L.; Spurgeon, J.M.; Briggs, R.M.; Lewis, N.S.; Atwater, H.A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater., 2010, 9(3), 239-244.
[http://dx.doi.org/10.1038/nmat2635] [PMID: 20154692]
[22]
Weickert, J.; Dunbar, R.B.; Hesse, H.C.; Wiedemann, W.; Schmidt-Mende, L. Nanostructured organic and hybrid solar cells. Adv. Mater., 2011, 23(16), 1810-1828.
[http://dx.doi.org/10.1002/adma.201003991] [PMID: 21509826]
[23]
Beard, M.C.; Knutsen, K.P.; Yu, P.; Luther, J.M.; Song, Q.; Metzger, W.K.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett., 2007, 7(8), 2506-2512.
[http://dx.doi.org/10.1021/nl071486l] [PMID: 17645368]
[24]
Morozova, S.; Alikina, M.; Vinogradov, A.; Pagliaro, M. Silicon Quantum Dots: Synthesis, Encapsulation, and Application in Light-Emitting Diodes. Front Chem., 2020, 8, 191.
[http://dx.doi.org/10.3389/fchem.2020.00191] [PMID: 32318540]
[25]
Dohnalova, K. Gregorkiewicz, T.; Kůsova, K. Silicon quantum dots: surface matters. J. Phys. Condens. Matter, 2014, 26(17)
[26]
Balberg, I. Electrical transport mechanisms in three dimensional ensembles of silicon quantum dots. J. Appl. Phys., 2011, 110(6)
[http://dx.doi.org/10.1063/1.3637636]
[27]
Montalti, M.; Cantelli, A.; Battistelli, G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev., 2015, 44(14), 4853-4921.
[http://dx.doi.org/10.1039/C4CS00486H] [PMID: 26051500]
[28]
Wang, H.; He, Y. Recent advances in silicon nanomaterial-based fluorescent sensors. Sensors (Basel), 2017, 17(2), 268.
[http://dx.doi.org/10.3390/s17020268] [PMID: 28165357]
[29]
Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett., 1990, 57(10), 1046-1048.
[http://dx.doi.org/10.1063/1.103561]
[30]
Heintz, A.S.; Fink, M.J.; Mitchell, B.S. Mechanochemical synthesis of blue luminescent alkyl/alkenyl‐passivated silicon nanoparticles. Adv. Mater., 2007, 19(22), 3984-3988.
[http://dx.doi.org/10.1002/adma.200602752]
[31]
Niederhauser, T.L.; Lua, Y.Y.; Sun, Y.; Jiang, G.; Strossman, G.S.; Pianetta, P.; Linford, M.R. Formation of (functionalized) monolayers and simultaneous surface patterning by scribing silicon in the presence of alkyl halides. Chem. Mater., 2002, 14(1), 27-29.
[http://dx.doi.org/10.1021/cm0108536]
[32]
Jiang, G.; Niederhauser, T.L.; Fleming, S.A.; Asplund, M.C.; Linford, M.R. Evidence for a radical mechanism in monolayer formation on silicon ground (or scribed) in the presence of alkyl halides. Langmuir, 2004, 20(5), 1772-1774.
[http://dx.doi.org/10.1021/la035662r]
[33]
Huang, S.M.; Qian, B.; Shen, R.X.; Xie, Y.L. Nonlinear Doping, Chemical Passivation and Photoluminescence Mechanism in Water-Soluble Silicon Quantum Dots by Mechanochemical Synthesis. Chin. Phys. Lett., 2018, 35(3), 036801.
[http://dx.doi.org/10.1088/0256-307X/35/3/036801]
[34]
Gresback, R.; Nozaki, T.; Okazaki, K. Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma. Nanotechnology, 2011, 22(30), 305605.
[http://dx.doi.org/10.1088/0957-4484/22/30/305605] [PMID: 21709349]
[35]
Ding, Y.; Yamada, R.; Gresback, R.; Zhou, S.; Pi, X.; Nozaki, T. A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor. J. Phys. D Appl. Phys., 2014, 47(48), 485202.
[http://dx.doi.org/10.1088/0022-3727/47/48/485202]
[36]
Yasar-Inceoglu, O.; Lopez, T.; Farshihagro, E.; Mangolini, L. Silicon nanocrystal production through non-thermal plasma synthesis: a comparative study between silicon tetrachloride and silane precursors. Nanotechnology, 2012, 23(25), 255604.
[http://dx.doi.org/10.1088/0957-4484/23/25/255604] [PMID: 22653183]
[37]
Liu, X.; Zhang, Y.; Yu, T.; Qiao, X.; Gresback, R.; Pi, X.; Yang, D. Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots. Part. Part. Syst. Charact., 2016, 33(1), 44-52.
[http://dx.doi.org/10.1002/ppsc.201500148]
[38]
Tan, D.; Ma, Z.; Xu, B.; Dai, Y.; Ma, G.; He, M.; Jin, Z.; Qiu, J. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Phys. Chem. Chem. Phys., 2011, 13(45), 20255-20261.
[http://dx.doi.org/10.1039/c1cp21366k] [PMID: 21993573]
[39]
García-Calzada, R.; Rodio, M.; Bagga, K.; Intartaglia, R.; Bianchini, P.; Chirvony, V.S.; Martínez-Pastor, J.P. Facile laser-assisted synthesis of inorganic nanoparticles covered by a carbon shell with tunable luminescence. RSC Advances, 2015, 5(62), 50604-50610.
[http://dx.doi.org/10.1039/C5RA07319G]
[40]
Xin, Y.; Nishio, K.; Saitow, K.I. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode. Appl. Phys. Lett., 2015, 106(20), 201102.
[http://dx.doi.org/10.1063/1.4921415]
[41]
Kajiya, D.; Saitow, K. Si-nanocrystal/P3HT hybrid films with a 50- and 12-fold enhancement of hole mobility and density: films prepared by successive drop casting. Nanoscale, 2015, 7(38), 15780-15788.
[http://dx.doi.org/10.1039/C5NR02361K] [PMID: 26355280]
[42]
Saitow, K. Silicon nanoclusters selectively generated by laser ablation in supercritical fluid. J. Phys. Chem. B, 2005, 109(9), 3731-3733.
[http://dx.doi.org/10.1021/jp0442551] [PMID: 16851418]
[43]
Saitow, K.I.; Yamamura, T. Effective cooling generates efficient emission: blue, green, and red light-emitting Si nanocrystals. J. Phys. Chem. C, 2009, 113(19), 8465-8470.
[http://dx.doi.org/10.1021/jp900067s]
[44]
Wei, S.; Yamamura, T.; Kajiya, D.; Saitow, K.I. White-light-emitting silicon nanocrystal generated by pulsed laser ablation in supercritical fluid: investigation of spectral components as a function of excitation wavelengths and aging time. J. Phys. Chem. C, 2012, 116(6), 3928-3934.
[http://dx.doi.org/10.1021/jp210080k]
[45]
Gongalsky, M.B.; Osminkina, L.A.; Pereira, A.; Manankov, A.A.; Fedorenko, A.A.; Vasiliev, A.N.; Solovyev, V.V.; Kudryavtsev, A.A.; Sentis, M.; Kabashin, A.V.; Timoshenko, V.Y. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging. Sci. Rep., 2016, 6, 24732.
[http://dx.doi.org/10.1038/srep24732] [PMID: 27102695]
[46]
Okada, R.; Iijima, S. Oxidation property of silicon small particles. Appl. Phys. Lett., 1991, 58(15), 1662-1663.
[http://dx.doi.org/10.1063/1.105129]
[47]
Werwa, E.; Seraphin, A.A.; Chiu, L.A.; Zhou, C.; Kolenbrander, K.D. Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method. Appl. Phys. Lett., 1994, 64(14), 1821-1823.
[http://dx.doi.org/10.1063/1.111766]
[48]
Li, X.; He, Y.; Talukdar, S.S.; Swihart, M.T. Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir, 2003, 19(20), 8490-8496.
[http://dx.doi.org/10.1021/la034487b]
[49]
Yoshida, T.; Takeyama, S.; Yamada, Y.; Mutoh, K. Nanometer‐sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas. Appl. Phys. Lett., 1996, 68(13), 1772-1774.
[http://dx.doi.org/10.1063/1.116662]
[50]
Saunders, W.A.; Sercel, P.C.; Lee, R.B.; Atwater, H.A.; Vahala, K.J.; Flagan, R.C.; Escorcia-Aparcio, E.J. Synthesis of luminescent silicon clusters by spark ablation. Appl. Phys. Lett., 1993, 63(11), 1549-1551.
[http://dx.doi.org/10.1063/1.110745]
[51]
Buehler, T.M. Controlled single electron transfer between Si: P dots. Appl. Phys. Lett., 2006, 88(19), 192101.
[http://dx.doi.org/10.1063/1.2203740]
[52]
Orii, T.; Hirasawa, M.; Seto, T. Tunable, narrow-band light emission from size-selected Si nanoparticles produced by pulsed-laser ablation. Appl. Phys. Lett., 2003, 83(16), 3395-3397.
[http://dx.doi.org/10.1063/1.1621457]
[53]
Umezu, I.; Minami, H.; Senoo, H.; Sugimura, A. Synthesis of photoluminescent colloidal silicon nanoparticles by pulsed laser ablation in liquids. J. Phys. Conf. Ser., 2007, 55(1), 392.
[http://dx.doi.org/10.1088/1742-6596/59/1/083]
[54]
Dewan, S.; Odhner, J.H.; Tibbetts, K.M.; Afsari, S.; Levis, R.J.; Borguet, E. Resolving the source of blue luminescence from alkyl-capped silicon nanoparticles synthesized by laser pulse ablation. J. Phys. Chem. C, 2016, 4(28), 6894-6899.
[55]
Zhang, L.; Tang, Z.; Dong, Y. Silicon quantum dot involved luminol chemiluminescence and its sensitive detection of dopamine. Anal. Methods, 2018, 10(34), 4129-4135.
[http://dx.doi.org/10.1039/C8AY01211C]
[56]
Atkins, T.M.; Thibert, A.; Larsen, D.S.; Dey, S.; Browning, N.D.; Kauzlarich, S.M. Femtosecond ligand/core dynamics of microwave-assisted synthesized silicon quantum dots in aqueous solution. J. Am. Chem. Soc., 2011, 133(51), 20664-20667.
[http://dx.doi.org/10.1021/ja207344u] [PMID: 22103236]
[57]
Zhong, Y.; Peng, F.; Bao, F.; Wang, S.; Ji, X.; Yang, L.; Su, Y.; Lee, S.T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc., 2013, 135(22), 8350-8356.
[http://dx.doi.org/10.1021/ja4026227] [PMID: 23581618]
[58]
Jiang, Y.; Wang, Z.; Dai, Z. Preparation of silicon–carbon-based dots@ dopamine and its application in intracellular Ag+ detection and cell imaging. ACS Appl. Mater. Interfaces, 2016, 8(6), 3644-3650.
[http://dx.doi.org/10.1021/acsami.5b08089] [PMID: 26502274]
[59]
Ye, H.L.; Cai, S.J.; Li, S.; He, X.W.; Li, W.Y.; Li, Y.H.; Zhang, Y.K. One-pot microwave synthesis of water-dispersible, high fluorescence silicon nanoparticles and their imaging applications in vitro and in vivo. Anal. Chem., 2016, 88(23), 11631-11638.
[http://dx.doi.org/10.1021/acs.analchem.6b03209] [PMID: 27797177]
[60]
Wang, J.; Liu, Y.; Peng, F.; Chen, C.; He, Y.; Ma, H.; Cao, L.; Sun, S. A general route to efficient functionalization of silicon quantum dots for high-performance fluorescent probes. Small, 2012, 8(15), 2430-2435.
[http://dx.doi.org/10.1002/smll.201102627] [PMID: 22623450]
[61]
Han, Y.; Chen, Y.; Feng, J.; Na, M.; Liu, J.; Ma, Y.; Ma, S.; Chen, X. Investigation of nitrogen content effect in reducing agent to prepare wavelength controllable fluorescent silicon nanoparticles and its application in detection of 2-nitrophenol. Talanta, 2019, 194, 822-829.
[http://dx.doi.org/10.1016/j.talanta.2018.11.008] [PMID: 30609611]
[62]
Zhang, J.; Yu, S.H. Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions. Nanoscale, 2014, 6(8), 4096-4101.
[http://dx.doi.org/10.1039/c3nr05896d] [PMID: 24604008]
[63]
Zhu, L.; Peng, X.; Li, H.; Zhang, Y.; Yao, S. On–off–on fluorescent silicon nanoparticles for recognition of chromium (VI) and hydrogen sulfide based on the inner filter effect. Sens. Actuator B-Chem., 2017, 238, 196-203.
[http://dx.doi.org/10.1016/j.snb.2016.07.029]
[64]
Tang, M.; Zhu, B.; Qu, Y.; Jin, Z.; Bai, S.; Chai, F.; Chen, L.; Wang, C.; Qu, F. Fluorescent silicon nanoparticles as dually emissive probes for copper(II) and for visualization of latent fingerprints. Mikrochim. Acta, 2019, 187(1), 65.
[http://dx.doi.org/10.1007/s00604-019-4048-7] [PMID: 31853657]
[65]
Ghosh, B.; Hamaoka, T.; Nemoto, Y.; Takeguchi, M.; Shirahata, N. Impact of anchoring monolayers on the enhancement of radiative recombination in light-emitting diodes based on silicon nanocrystals. J. Phys. Chem. C, 2018, 122(11), 6422-6430.
[http://dx.doi.org/10.1021/acs.jpcc.7b12812]
[66]
Zhong, Y.; Sun, X.; Wang, S.; Peng, F.; Bao, F.; Su, Y.; Li, Y.; Lee, S.T.; He, Y. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano, 2015, 9(6), 5958-5967.
[http://dx.doi.org/10.1021/acsnano.5b00683] [PMID: 26027458]
[67]
Lin, J.; Wang, Q. Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics. RSC Advances, 2015, 5(35), 27458-27463.
[http://dx.doi.org/10.1039/C5RA01769F]
[68]
Ma, S.D.; Chen, Y.L.; Feng, J.; Liu, J.J.; Zuo, X.W.; Chen, X.G. One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal. Chem., 2016, 88(21), 10474-10481.
[http://dx.doi.org/10.1021/acs.analchem.6b02448] [PMID: 27689235]
[69]
Shen, S.; Huang, B.; Guo, X.; Wang, H. A dual-responsive fluorescent sensor for Hg2+ and thiols based on N-doped silicon quantum dots and its application in cell imaging. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(44), 7033-7041.
[http://dx.doi.org/10.1039/C9TB01502G] [PMID: 31638630]
[70]
Wang, J.; Li, R.; Long, X.; Li, Z. Synthesis of imidazole-functionalized silicon quantum dots as “off-on” fluorescence probe for highly selective and sensitive detection of l-histidine. Sens. Actuators B Chem., 2016, 237, 740-748.
[http://dx.doi.org/10.1016/j.snb.2016.06.157]
[71]
Wang, L. Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. Light Sci. Appl., 2015, 4(1), e245-e245.
[http://dx.doi.org/10.1038/lsa.2015.18]
[72]
Wen, G.; Zeng, X.; Liao, W.; Cao, C. Crystallization mechanism of silicon quantum dots upon thermal annealing of hydrogenated amorphous Si-rich silicon carbide films. Thin Solid Films, 2014, 552, 18-23.
[http://dx.doi.org/10.1016/j.tsf.2013.12.001]
[73]
Hartel, A.M.; Künle, M.; Löper, P.; Janz, S.; Bett, A.W. Amorphous SixC1− x: H single layers before and after thermal annealing: Correlating optical and structural properties. Sol. Energy Mater. Sol. Cells, 2010, 94(11), 1942-1946.
[http://dx.doi.org/10.1016/j.solmat.2010.06.014]
[74]
Ma, D.; Liu, J.; Zhang, W. Investigation of Silicon Quantum Dots Embedded in Boron‐Doped Silicon Oxide Thin Films Prepared by PECVD Applying Ar Dilution. Phys. Status Solidi, 2018, 215(2), 1700682.
[http://dx.doi.org/10.1002/pssa.201700682]
[75]
Nomoto, K. Atom probe tomography of size-controlled phosphorus doped silicon nanocrystals. Phys. Status Solidi Rapid Res. Lett., 2017, 11(1), 1600376.
[http://dx.doi.org/10.1002/pssr.201600376]
[76]
Ma, J. High open-circuit voltage (1.04 V) n–i–p type thin film silicon solar cell by two-phase silicon carbide intrinsic material. Sol. Energy Mater. Sol. Cells, 2014, 130, 561-566.
[http://dx.doi.org/10.1016/j.solmat.2014.08.011]
[77]
Barbé, J.; Makasheva, K.; Perraud, S.; Carrada, M.; Despax, B. Structural analysis of the interface of silicon nanocrystals embedded in a Si3N4 matrix. J. Phys. D Appl. Phys., 2014, 47(25), 255302.
[http://dx.doi.org/10.1088/0022-3727/47/25/255302]
[78]
Laube, J.; Gutsch, S.; Wang, D.; Kubel, C.; Zacharias, M.; Hiller, D. Two-dimensional percolation threshold in confined Si nanoparticle networks. Appl. Phys. Lett., 2016, 108(4)
[http://dx.doi.org/10.1063/1.4940971]
[79]
Hwang, J. Engineering of alkyl-terminated silicon nanoparticles for the selective filtration of copper ions. J. Ind. Eng. Chem., 2019, 82, 197-204.
[http://dx.doi.org/10.1016/j.jiec.2019.10.013]
[80]
Heinrich, J.L.; Curtis, C.L.; Credo, G.M.; Sailor, M.J.; Kavanagh, K.L. Luminescent colloidal silicon suspensions from porous silicon. Science, 1992, 255(5040), 66-68.
[http://dx.doi.org/10.1126/science.255.5040.66] [PMID: 17739915]
[81]
He, Y.; Fan, C.; Lee, S.T. Silicon nanostructures for bioapplications. Nano Today, 2010, 5(4), 282-295.
[http://dx.doi.org/10.1016/j.nantod.2010.06.008]
[82]
Kang, Z.; Liu, Y.; Tsang, C.H.A.; Ma, D.D.D.; Fan, X.; Wong, N.B.; Lee, S.T. Water-soluble silicon quantum dots with wavelength‐tunable photoluminescence. Adv. Mater., 2009, 21(6), 661-664.
[http://dx.doi.org/10.1002/adma.200801642]
[83]
Yi, Y.; Zhu, G.; Liu, C.; Huang, Y.; Zhang, Y.; Li, H.; Zhao, J.; Yao, S. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal. Chem., 2013, 85(23), 11464-11470.
[http://dx.doi.org/10.1021/ac403257p] [PMID: 24160846]
[84]
Romero, J.J.; Llansola-Portolés, M.J.; Dell’Arciprete, M.L.; Rodríguez, H.B.; Moore, A.L.; Gonzalez, M.C. Photoluminescent 1–2 nm sized silicon nanoparticles: a surface-dependent system. Chem. Mater., 2013, 25(17), 3488-3498.
[http://dx.doi.org/10.1021/cm401666a]
[85]
Wang, H.; Xu, Z.; Fink, M.J.; Shchukin, D.; Mitchell, B.S. Functionalized silicon nanoparticles from reactive cavitation erosion of silicon wafers. Chem. Commun. (Camb.), 2015, 51(8), 1465-1468.
[http://dx.doi.org/10.1039/C4CC06991A] [PMID: 25494039]
[86]
Sutikno, M.; Hashim, U.; Jamal, Z.A.Z. A systematic dry etching process for profile control of quantum dots and nanoconstrictions. Microelectronics J., 2007, 38(8-9), 823-827.
[http://dx.doi.org/10.1016/j.mejo.2007.07.081]
[87]
Troia, A.; Giovannozzi, A.; Amato, G. Preparation of tunable silicon q-dots through ultrasound. Ultrason. Sonochem., 2009, 16(4), 448-451.
[http://dx.doi.org/10.1016/j.ultsonch.2008.12.014] [PMID: 19201244]
[88]
Shiohara, A.; Prabakar, S.; Faramus, A.; Hsu, C.Y.; Lai, P.S.; Northcote, P.T.; Tilley, R.D. Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale, 2011, 3(8), 3364-3370.
[http://dx.doi.org/10.1039/c1nr10458f] [PMID: 21727983]
[89]
Zou, J.; Baldwin, R.K.; Pettigrew, K.A.; Kauzlarich, S.M. Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett., 2004, 4(7), 1181-1186.
[http://dx.doi.org/10.1021/nl0497373]
[90]
Tilley, R.D.; Warner, J.H.; Yamamoto, K.; Matsui, I.; Fujimori, H. Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem. Commun. (Camb.), 2005, 14(14), 1833-1835.
[http://dx.doi.org/10.1039/b416069j] [PMID: 15795758]
[91]
Wilcoxon, J.P.; Samara, G.A. Tailorable. visible light emission from silicon nanocrystals. Appl. Phys. Lett., 1999, 74(21), 3164-3166.
[http://dx.doi.org/10.1063/1.124096]
[92]
Linehan, K.; Doyle, H. Size controlled synthesis of silicon nanocrystals using cationic surfactant templates. Small, 2014, 10(3), 584-590.
[http://dx.doi.org/10.1002/smll.201301189] [PMID: 24027115]
[93]
Rosso-Vasic, M. Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging. J. Mater. Chem., 2009, 19(33), 5926-5933.
[http://dx.doi.org/10.1039/b902671a]
[94]
Wang, J.; Sun, S.; Peng, F.; Cao, L.; Sun, L. Efficient one-pot synthesis of highly photoluminescent alkyl-functionalised silicon nanocrystals. Chem. Commun. (Camb.), 2011, 47(17), 4941-4943.
[http://dx.doi.org/10.1039/c1cc10573f] [PMID: 21431220]
[95]
Du, L.; Li, Z.; Yao, J.; Wen, G.; Dong, C.; Li, H.W. Enzyme free glucose sensing by amino-functionalized silicon quantum dot. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 216, 303-309.
[http://dx.doi.org/10.1016/j.saa.2019.03.071] [PMID: 30909086]
[96]
Hessel, C.M.; Henderson, E.J.; Veinot, J.G. Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater., 2016, 18(26), 6139-6146.
[http://dx.doi.org/10.1021/cm0602803]
[97]
Henderson, E.J.; Kelly, J.A.; Veinot, J.G. Influence of HSiO 1.5 sol− gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals. Chem. Mater., 2009, 1(22), 5426-5434.
[http://dx.doi.org/10.1021/cm902028q]
[98]
Mastronardi, M.L.; Hennrich, F.; Henderson, E.J.; Maier-Flaig, F.; Blum, C.; Reichenbach, J.; Lemmer, U.; Kübel, C.; Wang, D.; Kappes, M.M.; Ozin, G.A. Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J. Am. Chem. Soc., 2011, 133(31), 11928-11931.
[http://dx.doi.org/10.1021/ja204865t] [PMID: 21740050]
[99]
Lu, X.; Hessel, C.M.; Yu, Y.; Bogart, T.D.; Korgel, B.A. Colloidal luminescent silicon nanorods. Nano Lett., 2013, 13(7), 3101-3105.
[http://dx.doi.org/10.1021/nl401802h] [PMID: 23731184]
[100]
Heath, J.R. A liquid-solution-phase synthesis of crystalline silicon. Science, 1992, 258(5085), 1131-1133.
[http://dx.doi.org/10.1126/science.258.5085.1131] [PMID: 17789084]
[101]
Littau, K.A.; Szajowski, P.J.; Muller, A.J.; Kortan, A.R.; Brus, L.E. A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem., 1993, 97(6), 1224-1230.
[http://dx.doi.org/10.1021/j100108a019]
[102]
Bley, R.A.; Kauzlarich, S.M. A low-temperature solution phase route for the synthesis of silicon nanoclusters. J. Am. Chem. Soc., 1996, 118(49), 12461-12462.
[http://dx.doi.org/10.1021/ja962787s]
[103]
Pettigrew, K.A.; Liu, Q.; Power, P.P.; Kauzlarich, S.M. Solution synthesis of alkyl-and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem. Mater., 2003, 15(21), 4005-4011.
[http://dx.doi.org/10.1021/cm034403k]
[104]
Abdelhameed, M.; Martir, D.R.; Chen, S.; Xu, W.Z.; Oyeneye, O.O.; Chakrabarti, S.; Zysman-Colman, E.; Charpentier, P.A. Tuning the optical properties of silicon quantum dots via surface functionalization with conjugated aromatic Fluorophores. Sci. Rep., 2018, 8(1), 3050.
[http://dx.doi.org/10.1038/s41598-018-21181-8] [PMID: 29445234]
[105]
Liang, K.; Yang, H.; Guo, W.; Du, J.; Tian, L.; Wen, X. Facile preparation of nanoscale silicon as an anode material for lithium ion batteries by a mild temperature metathesis route. J. Alloys Compd., 2018, 735, 441-444.
[http://dx.doi.org/10.1016/j.jallcom.2017.11.119]
[106]
Liu, X.; Giordano, C.; Antonietti, M. A molten-salt route for synthesis of Si and Ge nanoparticles: chemical reduction of oxides by electrons solvated in salt melt. J. Alloys Compd., 2012, 22(12), 5454-5459.
[107]
Lam, C.; Zhang, Y.F.; Tang, Y.H.; Lee, C.S.; Bello, I.; Lee, S.T. Large-scale synthesis of ultrafine Si nanoparticles by ball milling. J. Cryst. Growth, 2000, 220(4), 466-470.
[http://dx.doi.org/10.1016/S0022-0248(00)00882-4]
[108]
Araujo-Andrade, C.; Espinoza-Beltran, F.J.; Jimenez-Sandoval, S.; Gonzalez-Hernandez, J. Synthesis of nanocrystalline Si particles from a solid-state reaction during a ball-milling process. Scr. Mater., 2003, 49(8), 773-778.
[http://dx.doi.org/10.1016/S1359-6462(03)00429-9]
[109]
Ruizendaal, L.; Pujari, S.P.; Gevaerts, V.; Paulusse, J.M.; Zuilhof, H. Biofunctional silicon nanoparticles by means of thiol-ene click chemistry. Chem. Asian J., 2011, 6(10), 2776-2786.
[http://dx.doi.org/10.1002/asia.201100375] [PMID: 21954077]
[110]
Wilbrink, J.L.; Huang, C.C.; Dohnalova, K.; Paulusse, J.M.J. Critical assessment of wet-chemical oxidation synthesis of silicon quantum dots. Faraday Discuss., 2020, 222(0), 149-165.
[http://dx.doi.org/10.1039/C9FD00099B] [PMID: 32104860]
[111]
Epur, R.; Minardi, L.; Datta, M.K.; Chung, S.J.; Kumta, P.N. A simple facile approach to large scale synthesis of high specific surface area silicon nanoparticles. J. Solid State Chem., 2013, 208, 93-98.
[http://dx.doi.org/10.1016/j.jssc.2013.09.002]
[112]
Neiner, D.; Chiu, H.W.; Kauzlarich, S.M. Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. J. Am. Chem. Soc., 2006, 128(34), 11016-11017.
[http://dx.doi.org/10.1021/ja064177q] [PMID: 16925406]
[113]
Zhang, Y.; Chen, J. Preparation and photoluminescence of mass-produced silicon quantum dots. Semiconductor Technology., 2017, 042(002), 124-128.
[114]
Zhao, J.; Deng, J.; Yi, Y.; Li, H.; Zhang, Y.; Yao, S. Label-free silicon quantum dots as fluorescent probe for selective and sensitive detection of copper ions. Talanta, 2014, 125, 372-377.
[http://dx.doi.org/10.1016/j.talanta.2014.03.031] [PMID: 24840459]
[115]
Dhenadhayalan, N.; Lee, H.L.; Yadav, K.; Lin, K.C.; Lin, Y.T.; Chang, A.H.H. Silicon quantum dot-based fluorescence turn-on metal ion sensors in live cells. ACS Appl. Mater. Interfaces, 2016, 8(36), 23953-23962.
[http://dx.doi.org/10.1021/acsami.6b07789] [PMID: 27541983]
[116]
Zhu, B.; Ren, G.; Tang, M.; Chai, F.; Qu, F.; Wang, C.; Su, Z. Fluorescent silicon nanoparticles for sensing Hg2+ and Ag+ as well visualization of latent fingerprints. Dyes Pigments, 2018, 149, 686-695.
[http://dx.doi.org/10.1016/j.dyepig.2017.11.041]
[117]
Zhu, B.; Tang, M.; Yu, L.; Qu, Y.; Chai, F.; Chen, L.; Wu, H. Silicon nanoparticles: fluorescent, colorimetric and gel membrane multiple detection of Cu2+ and Mn2+ as well as rapid visualization of latent fingerprints. Anal. Methods, 2019, 11(28), 3570-3577.
[http://dx.doi.org/10.1039/C9AY01011D]
[118]
Li, X.; Zhou, Z.; Zhang, C.C.; Zheng, Y.; Gao, J.; Wang, Q. Ratiometric fluorescence platform based on modified silicon quantum dots and its logic gate performance. Inorg. Chem., 2018, 57(15), 8866-8873.
[http://dx.doi.org/10.1021/acs.inorgchem.8b00788] [PMID: 29984986]
[119]
Meng, L.; Yuan, Y.; Pu, G.; Xu, N. An “on–off–on” fluorescence assay based on silicon nanoparticles for selective detection of manganese (II). Anal. Methods, 2017, 9(17), 2553-2560.
[http://dx.doi.org/10.1039/C7AY00514H]
[120]
Chu, B.; Wang, H.; Song, B.; Peng, F.; Su, Y.; He, Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal. Chem., 2016, 88(18), 9235-9242.
[http://dx.doi.org/10.1021/acs.analchem.6b02488] [PMID: 27539306]
[121]
Tu, C.C.; Tang, L.; Huang, J.; Voutsas, A.; Lin, L.Y. Solution-processed photodetectors from colloidal silicon nano/micro particle composite. Opt. Express, 2010, 18(21), 21622-21627.
[http://dx.doi.org/10.1364/OE.18.021622] [PMID: 20941060]
[122]
Lin, T.; Liu, X.; Zhou, B.; Zhan, Z.; Cartwright, A.N.; Swihart, M.T. A Solution‐Processed UV‐Sensitive Photodiode Produced Using a New Silicon Nanocrystal Ink. Adv. Funct. Mater., 2014, 24(38), 6016-6022.
[http://dx.doi.org/10.1002/adfm.201400600]
[123]
Zhang, X.; Chen, X.; Kai, S.; Wang, H.Y.; Yang, J.; Wu, F.G.; Chen, Z. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal. Chem., 2015, 87(6), 3360-3365.
[http://dx.doi.org/10.1021/ac504520g] [PMID: 25671464]
[124]
Jose, A.R.; Sivasankaran, U.; Menon, S.; Kumar, K.G. A silicon nanoparticle based turn off fluorescent sensor for sudan I. Anal. Methods, 2016, 8(28), 5701-5706.
[http://dx.doi.org/10.1039/C6AY01125J]
[125]
Ban, R.; Zheng, F.; Zhang, J. A highly sensitive fluorescence assay for 2, 4, 6-trinitrotoluene using amine-capped silicon quantum dots as a probe. Anal. Methods, 2015, 7(5), 1732-1737.
[http://dx.doi.org/10.1039/C4AY02729A]
[126]
Li, X.; Wu, T.; Fu, Y.; Ding, X.; Li, Z.; Zhu, G.; Fan, J. A high sensitivity background eliminated fluorescence sensing platform for hyaluronidase activity detection based on Si QDs/HA-δ-FeOOH nanoassembly. Biosens. Bioelectron., 2020, 150, 111928.
[http://dx.doi.org/10.1016/j.bios.2019.111928] [PMID: 31818757]
[127]
Luo, L. Fluorescent silicon nanoparticles-based ratiometric fluorescence immunoassay for sensitive detection of ethyl carbamate in red wine. Sens. Actuators B Chem., 2018, 255, 2742-2749.
[http://dx.doi.org/10.1016/j.snb.2017.09.088]
[128]
Wang, G.; Yau, S.T.; Mantey, K.; Nayfeh, M.H. Fluorescent Si nanoparticle-based electrode for sensing biomedical substances. Opt. Commun., 2008, 281(7), 1765-1770.
[http://dx.doi.org/10.1016/j.optcom.2007.07.070]
[129]
Ding, L.; Gong, Z.; Yan, M.; Yu, J.; Song, X. Determination of glucose by using fluorescent silicon nanoparticles and an inner filter caused by peroxidase-induced oxidation of o-phenylenediamine by hydrogen peroxide. Mikrochim. Acta, 2017, 184(11), 4531-4536.
[http://dx.doi.org/10.1007/s00604-017-2445-3]
[130]
Chen, Q.; Liu, M.; Zhao, J.; Peng, X.; Chen, X.; Mi, N.; Yin, B.; Li, H.; Zhang, Y.; Yao, S. Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose. Chem. Commun. (Camb.), 2014, 50(51), 6771-6774.
[http://dx.doi.org/10.1039/C4CC01703J] [PMID: 24834912]
[131]
Nsanzamahoro, S. Highly selective and sensitive detection of catechol by one step synthesized highly fluorescent and water-soluble silicon nanoparticles. Sens. Actuators B Chem., 2019, 281, 849-856.
[http://dx.doi.org/10.1016/j.snb.2018.11.016]
[132]
Yi, Y.; Liu, L.; Zeng, W.; Lv, B.; Zhu, G. Bifunctional silicon quantum dots sensing platform for selective and sensitive detection of p-dihydroxybenzene with double signals. Microchem. J., 2019, 147, 245-252.
[http://dx.doi.org/10.1016/j.microc.2019.03.018]
[133]
Zhou, Z.; Gu, J.; Chen, Y.; Zhang, X.; Wu, H.; Qiao, X. Europium functionalized silicon quantum dots nanomaterials for ratiometric fluorescence detection of Bacillus anthrax biomarker. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 212, 88-93.
[http://dx.doi.org/10.1016/j.saa.2018.12.036] [PMID: 30616167]
[134]
Feng, J.; Chen, Y.; Han, Y.; Liu, J.; Ren, C.; Chen, X. Fluorescent carbon nanoparticles: A low-temperature trypsin-assisted preparation and Fe(3+) sensing. Anal. Chim. Acta, 2016, 926, 107-117.
[http://dx.doi.org/10.1016/j.aca.2016.04.039] [PMID: 27216399]
[135]
Ma, H. Fluorescent glutathione probe based on MnO2–Si quantum dots nanocomposite directly used for intracellular glutathione imaging. Sens. Actuators B Chem., 2018, 255, 1687-1693.
[http://dx.doi.org/10.1016/j.snb.2017.08.170]
[136]
Zhang, Y.; Ning, X.; Mao, G.; Ji, X.; He, Z. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching. Anal. Bioanal. Chem., 2018, 410(13), 3209-3216.
[http://dx.doi.org/10.1007/s00216-018-1030-x] [PMID: 29594427]
[137]
Dong, Y.P.; Wang, J.; Peng, Y.; Zhu, J.J. Electrogenerated chemiluminescence of Si quantum dots in neutral aqueous solution and its biosensing application. Biosens. Bioelectron., 2017, 89(Pt 2), 1053-1058.
[http://dx.doi.org/10.1016/j.bios.2016.10.011] [PMID: 27825526]
[138]
Huang, B.H.; Shen, S.S.; Wei, N.; Guo, X.F.; Wang, H. Fluorescence biosensor based on silicon quantum dots and 5,5¢-dithiobis-(2-nitrobenzoic acid) for thiols in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229, 117972.
[http://dx.doi.org/10.1016/j.saa.2019.117972] [PMID: 31891868]
[139]
Li, D. A facile synthesis of hybrid silicon quantum dots and fluorescent detection of bovine hemoglobin. New J. Chem., 2019, 43(48), 19338-19343.
[http://dx.doi.org/10.1039/C9NJ05033G]
[140]
Na, M.; Zhang, S.; Liu, J.; Ma, S.; Han, Y.; Wang, Y.; He, Y.; Chen, H.; Chen, X. Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. J. Hazard. Mater., 2020, 386, 121956.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121956] [PMID: 31884372]
[141]
Mu, Q.; Jiang, G.; Chen, L.; Zhou, H.; Fourches, D.; Tropsha, A.; Yan, B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev., 2014, 114(15), 7740-7781.
[http://dx.doi.org/10.1021/cr400295a] [PMID: 24927254]
[142]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[143]
Jabarullah, N.H. Temperature Dependence of Quantum Dots-in-well Infrared Photodetectors (QDIPs) Using Photoluminescence. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2019, 54(2), 133-141.
[144]
Howard, M.; Zern, B.J.; Anselmo, A.C.; Shuvaev, V.V.; Mitragotri, S.; Muzykantov, V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Author-Choice, 2014, 8(5)
[145]
Kůsová, K. van, Pan; Jan, Vana. Bright trions in direct-bandgap silicon nanocrystals revealed by low-temperature single-nanocrystal spectroscopy. Light Sci. Appl., 2015, •••, e336.
[http://dx.doi.org/10.1038/lsa.2015.109]
[146]
Dutta, M.; Thirugnanam, L.; Trinh, P.V.; Fukata, N. High efficiency hybrid solar cells using nanocrystalline Si quantum dots and Si nanowires. ACS Nano, 2015, 9(7), 6891-6899.
[http://dx.doi.org/10.1021/acsnano.5b03268] [PMID: 26167772]
[147]
Löper, P. Silicon nanocrystals embedded in silicon carbide: Investigation of charge carrier transport and recombination. Appl. Phys. Lett., 2013, 102(3), 033507.
[http://dx.doi.org/10.1063/1.4789441]
[148]
Pi, X.; Li, Q.; Li, D.; Yang, D. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol. Energy Mater. Sol. Cells, 2011, 95(10), 2941-2945.
[http://dx.doi.org/10.1016/j.solmat.2011.06.010]
[149]
Liu, C.Y.; Holman, Z.C.; Kortshagen, U.R. Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett., 2009, 9(1), 449-452.
[http://dx.doi.org/10.1021/nl8034338] [PMID: 19113966]
[150]
Yuan, Z. Silicon nanocrystals as a photoluminescence down shifter for solar cells. Sol. Energy Mater. Sol. Cells, 2010, 95(4), 1224-1227.
[http://dx.doi.org/10.1016/j.solmat.2010.10.035]
[151]
Cho, E.C.; Park, S.; Hao, X.; Song, D.; Conibeer, G.; Park, S.C.; Green, M.A. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology, 2008, 19(24), 245201.
[http://dx.doi.org/10.1088/0957-4484/19/24/245201] [PMID: 21825804]
[152]
Hsu, C.W.; Hsieh, Y.D.; Wang, G.J. Quantum dots/silicon nanowire coaxial photoelectrode-based dye-sensitized solar cells. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2015, pp. 1-6.
[153]
Flores-Pacheco, A.; Álvarez-Ramos, M.E.; Ayón, A. Down-shifting by quantum dots for silicon solar cell applications; Solar Cells and Light Management, 2020, pp. 443-477.
[154]
Kwak, G.Y.; Kim, T.G.; Kim, N.; Shin, J.Y.; Kim, K.J. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells. Nanotechnology, 2020, 31(19), 195404.
[http://dx.doi.org/10.1088/1361-6528/ab7044] [PMID: 31986507]
[155]
Heidarzadeh, H.; Rostami, A.; Dolatyari, M. Management of losses (thermalization-transmission) in the Si-QDs inside 3C–SiC to design an ultra-high-efficiency solar cell. Mater. Sci. Semicond. Process., 2020, 109, 104936.
[http://dx.doi.org/10.1016/j.mssp.2020.104936]
[156]
Subramani, T.; Chen, J.; Sun, Y.L.; Jevasuwan, W.; Fukata, N. High-efficiency silicon hybrid solar cells employing nanocrystalline Si quantum dots and Si nanotips for energy management. Nano Energy, 2017, 35, 154-160.
[http://dx.doi.org/10.1016/j.nanoen.2017.03.037]
[157]
Fukata, N.; Subramani, T.; Jevasuwan, W.; Dutta, M.; Bando, Y. Functionalization of Silicon Nanostructures for Energy-Related Applications. Small, 2017, 13(45), 1701713.
[http://dx.doi.org/10.1002/smll.201701713] [PMID: 28941166]
[158]
Gunawan, O.; Guha, S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells. Solar Cells, 2009, 93(8), 1388-1393.
[http://dx.doi.org/10.1016/j.solmat.2009.02.024]
[159]
Dan, Y.; Seo, K.; Takei, K.; Meza, J.H.; Javey, A.; Crozier, K.B. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett., 2011, 11(6), 2527-2532.
[http://dx.doi.org/10.1021/nl201179n] [PMID: 21598980]
[160]
Wang, H.; Wang, J.; Hong, L.; Tan, Y.H.; Tan, C.S. Rusli, Thin film silicon nanowire/PEDOT: PSS hybrid solar cells with surface treatment. Nanoscale Res. Lett., 2016, 11(1), 311.
[http://dx.doi.org/10.1186/s11671-016-1527-1] [PMID: 27356558]
[161]
Tsai, M.L.; Wei, W.R.; Tang, L.; Chang, H.C.; Tai, S.H.; Yang, P.K.; Lau, S.P.; Chen, L.J.; He, J.H. Si hybrid solar cells with 13% efficiency via concurrent improvement in optical and electrical properties by employing graphene quantum dots. ACS Nano, 2016, 10(1), 815-821.
[http://dx.doi.org/10.1021/acsnano.5b05928] [PMID: 26679147]
[162]
He, L.; Jiang, C.; Wang, H.; Lai, D. Rusli, Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% efficiency. ACS Appl. Mater. Interfaces, 2012, 4(3), 1704-1708.
[http://dx.doi.org/10.1021/am201838y] [PMID: 22391479]
[163]
Conibeer, G. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511(Jul), 654-662.
[http://dx.doi.org/10.1016/j.tsf.2005.12.119]
[164]
Kang, Z.; Tsang, C.H.A.; Wong, N.B.; Zhang, Z.; Lee, S.T. Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J. Am. Chem. Soc., 2007, 129(40), 12090-12091.
[http://dx.doi.org/10.1021/ja075184x] [PMID: 17880086]
[165]
Wang, Y.; Li, F.; Fang, W.; Li, Y.; Sun, C.; Men, Z. Influence of Si quantum dots on water molecules icing. J. Mol. Liq., 2019, 291, 111315.
[http://dx.doi.org/10.1016/j.molliq.2019.111315]
[166]
Dang, Q.; Liao, F.; Sun, Y.; Zhang, S.; Huang, H.; Shen, W.; Shao, M. Rhodium/silicon quantum dot/carbon quantum dot composites as highly efficient electrocatalysts for hydrogen evolution reaction with Pt-like performance. Electrochim. Acta, 2019, 299, 828-834.
[http://dx.doi.org/10.1016/j.electacta.2019.01.031]
[167]
Hessel, C.M. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater., 2014, 24(2), 393-401.
[http://dx.doi.org/10.1021/cm2032866]
[168]
Dasog, M.; De los Reyes, G.B.; Titova, L.V.; Hegmann, F.A.; Veinot, J.G.C. Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano, 2014, 8(9), 9636-9648.
[http://dx.doi.org/10.1021/nn504109a] [PMID: 25183018]
[169]
Iqbal, M.; Purkait, T.K.; Goss, G.G.; Bolton, J.R.; Gamal El-Din, M.; Veinot, J.G. Application of engineered Si nanoparticles in light-induced advanced oxidation remediation of a water-borne model contaminant. ACS Nano, 2016, 10(5), 5405-5412.
[http://dx.doi.org/10.1021/acsnano.6b01619] [PMID: 27078819]
[170]
Erogbogbo, F.; Yong, K.T.; Roy, I.; Xu, G.; Prasad, P.N.; Swihart, M.T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano, 2008, 2(5), 873-878.
[http://dx.doi.org/10.1021/nn700319z] [PMID: 19206483]
[171]
Sugimoto, H.; Zhou, H.; Takada, M.; Fushimi, J.; Fujii, M. Visible-light driven photocatalytic hydrogen generation by water-soluble all-inorganic core–shell silicon quantum dots. J. Mater. Chem. A Mater. Energy Sustain., 2020.
[http://dx.doi.org/10.1039/D0TA01071E]
[172]
Sato, K.; Kojima, K.; Kawasaki, M.; Matsuzaki, Y.; Hirano, T.; Nakano, M.; Koinuma, H. A quantum chemical study on hydrogen radical reactions with methane and silane. J. Appl. Phys., 1989, 65(5), 2145.
[http://dx.doi.org/10.1063/1.342866]
[173]
Yang, Z.; Dasog, M.; Dobbie, A.R.; Lockwood, R.; Zhi, Y.; Meldrum, A.; Veinot, J.G. Highly luminescent covalently linked silicon nanocrystal/polystyrene hybrid functional materials: synthesis, properties, and processability. Funct. Mater., 2014, 24(10), 1345-1353.
[http://dx.doi.org/10.1002/adfm.201302091]
[174]
Höhlein, I.M.; Werz, P.D.; Veinot, J.G.; Rieger, B. Photoluminescent silicon nanocrystal-polymer hybrid materials via surface initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Nanoscale, 2015, 7(17), 7811-7818.
[http://dx.doi.org/10.1039/C5NR00561B] [PMID: 25850065]
[175]
Zhou, T.; Anderson, R.T.; Li, H.; Bell, J.; Yang, Y.; Gorman, B.P.; Pylypenko, S.; Lusk, M.T.; Sellinger, A. Bandgap tuning of silicon quantum dots by surface functionalization with conjugated organic groups. Nano Lett., 2015, 15(6), 3657-3663.
[http://dx.doi.org/10.1021/nl504051x] [PMID: 25971956]
[176]
Ji, Y.; Zhang, H.; Zhang, C.; Quan, Z.; Huang, M.; Wang, L. Fluorescent and Mechanical Properties of Silicon Quantum Dots Modified Sodium Alginate-Carboxymethylcellulose Sodium Nanocomposite Bio-Polymer Films. Polymers (Basel), 2019, 11(9), 1476.
[http://dx.doi.org/10.3390/polym11091476] [PMID: 31505896]
[177]
Morales-Morales, F.; Palacios-Huerta, L.; Cabanas-Tay, S.A.; Coyopol, A.; Morales-Sanchez, A. Luminescent si quantum dots in flexible and semitransparent membranes for photon down converting material. Opt. Mater., 2019, 90, 220-226.
[http://dx.doi.org/10.1016/j.optmat.2019.02.043]
[178]
Feng, Y.X. Preparation and Properties of MoX_2/rGO Composites Controlled by Silicon Quantum Dots (Doctoral dissertation)., Harbin Institute of Technology, 2018.
[179]
Li, Z.; Cui, X.; Hao, H.; Lu, M.; Lin, Y. Enhanced photoelectrochemical water splitting from si quantum dots/TiO2 nanotube arrays composite electrodes. Mater. Res. Bull., 2015, 66, 9-15.
[http://dx.doi.org/10.1016/j.materresbull.2015.02.003]
[180]
Asus, Z.; Daud, Z.H.C.; Mazali, I.I.; Hamid, M.K.A.; Doumin, A.M.; Yakub, F. Experimental Study of Lithium-ion Battery Thermal Behaviour Under Abuse Discharge Condition. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2019, 54(1), 102-111.
[181]
Annuar, K.A.M.; Ab Halim, M.F.M.; Harun, M.H.; Sabirin, I.; Kamal, M.F.A. Evaluation of charging profile and thermal behaviour of lead acid battery. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2019, 56(1), 124-132.
[182]
Budiarso, B.; Febriansyah, D.; Warjito, W.; Watanabe, K.; Adanta, D. Storage System Manufacturability, Portability and Modularity for a Pico Hydro Turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2018, 51(2), 209-214.
[183]
Abdullah, N.; Saidur, R.; Zainoodin, A.M.; Aslfattahi, N. Optimization of electrocatalyst performance of platinum–ruthenium induced with MXene by response surface methodology for clean energy application. Journal of Cleaner Production. J. Clean. Prod., 2020, 277, 123395.
[http://dx.doi.org/10.1016/j.jclepro.2020.123395]
[184]
Ma, S.; Yue, T.; Xiao, X.; Cheng, H.; Zhao, D. A proof of concept study of preparing ultra bright silicon quantum dots based on synergistic effect of reductants. J. Lumin., 2018, 201, 77-84.
[http://dx.doi.org/10.1016/j.jlumin.2018.04.006]
[185]
Shang, Y.; Ning, Z. Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. Natl. Sci. Rev., 2017, 4(2), 170-183.
[http://dx.doi.org/10.1093/nsr/nww097]
[186]
Ghambari, M.; Ebadzadeh, T.; Pakseresht, A.H.; Ghasali, E. Preparation of Ag/reduced graphene oxide reinforced copper matrix composites through spark plasma sintering: An investigation of microstructure and mechanical properties. Ceram. Int., 2020.
[187]
Luo, J.W.; Li, S.S.; Sychugov, I.; Pevere, F.; Linnros, J.; Zunger, A. Absence of redshift in the direct bandgap of silicon nanocrystals with reduced size. Nat. Nanotechnol., 2017, 12(10), 930-932.
[http://dx.doi.org/10.1038/nnano.2017.190] [PMID: 28945238]
[188]
Dohnalova, K.; Saeed, S.; Poddubny, A.N.; Prokofiev, A.A.; Gregorkiewicz, T. Thermally activated emission from direct bandgap-like silicon quantum dots. ECS Trans., 2013, 53(4), 63-68.
[http://dx.doi.org/10.1149/05304.0063ecst]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy