Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

A Highly Efficient Photocatalyst Based on Layered g-C3N4/SnS2 Composites

Author(s): Yina Wang, Le Wang, Jiwei Wang and Jimin Du*

Volume 18, Issue 2, 2022

Published on: 31 May, 2021

Page: [217 - 223] Pages: 7

DOI: 10.2174/1573413717666210531155351

Abstract

Background: In this report, the layered g-C3N4/SnS2 composite was successfully fabricated by a facile hydrothermal route.

Methods: The ultraviolet-visible spectroscopy data presented that such layered g-C3N4/SnS2 catalysts showed a remarkable visible-light absorption, hence significantly enhancing the catalytic activity. Particularly, the g-C3N4/SnS2 catalysts showed an outstanding catalytic performance for the degradation of methylene blue (~ 98.1%) under visible light irradiation that is much better than that of pure SnS2 (~ 86.7%) and pure g-C3N4 (~ 67.3%).

Results: The remarkable photocatalytic performance is ascribed to its layer structure resulting in a large surface area, which not only improves the ion transfer rate but also provides abundant surface reaction sites.

Conclusion: Our work demonstrates that the layered g-C3N4/SnS2 can be considered as an exceptional candidate for a highly-efficient photocatalyst.

Keywords: SnS2, g-C3N4, visible light, photocatalysts, methylene blue, highly efficient.

Graphical Abstract

[1]
Gao, G.; Jiao, Y.; Waclawik, E.R.; Du, A. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc., 2016, 138(19), 6292-6297.
[http://dx.doi.org/10.1021/jacs.6b02692] [PMID: 27116595]
[2]
Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev., 2016, 116(12), 7159-7329.
[http://dx.doi.org/10.1021/acs.chemrev.6b00075] [PMID: 27199146]
[3]
An, S.; Zhang, G.; Wang, T.; Zhang, W.; Li, K.; Song, C.; Miller, J.T.; Miao, S.; Wang, J.; Guo, X. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano, 2018, 12(9), 9441-9450.
[http://dx.doi.org/10.1021/acsnano.8b04693] [PMID: 30183258]
[4]
Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B, 2016, 198, 347-377.
[http://dx.doi.org/10.1016/j.apcatb.2016.05.052]
[5]
Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci., 2017, 391, 72-123.
[http://dx.doi.org/10.1016/j.apsusc.2016.07.030]
[6]
Xin, G.; Meng, Y. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue. J. Chem., 2013, 2013, 1-5.
[7]
Sun, L.; Yang, M.; Huang, J.; Yu, D.; Hong, W.; Chen, X. Freestanding graphitic carbon nitride photonic crystals for enhanced photocatalysis. Adv. Funct. Mater., 2016, 26, 4943-4950.
[http://dx.doi.org/10.1002/adfm.201600894]
[8]
Wu, D.; Hu, S.; Xue, H.; Hou, X.; Du, H.; Xu, G.; Yuan, Y. Protonation and microwave-assisted heating induced excitation of lone-pair electrons in graphitic carbon nitride for increased photocatalytic hydrogen generation. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7, 20223-20228.
[http://dx.doi.org/10.1039/C9TA05135J]
[9]
Balu, S.; Uma, K.; Pan, G.T.; Yang, T.C.; Ramaraj, S.K. Degradation of methylene blue dye in the presence of visible light using SiO2@alpha-Fe2O3 nanocomposites deposited on SnS2 flowers. Mater., 2018, 11, 1030.
[http://dx.doi.org/10.3390/ma11061030]
[10]
Zhao, D.; Dong, C.L.; Wang, B.; Chen, C.; Huang, Y.C.; Diao, Z.; Li, S.; Guo, L.; Shen, S. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater., 2019, 31(43), e1903545.
[http://dx.doi.org/10.1002/adma.201903545] [PMID: 31518015]
[11]
Ma, L.; Fan, H.; Fu, K.; Lei, S.; Hu, Q.; Huang, H.; He, G. Protonation of graphitic carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@g-C3N4 core–shell nanostructure toward high hydrogen evolution. ACS Sustain. Chem. & Eng., 2017, 5, 7093-7103.
[http://dx.doi.org/10.1021/acssuschemeng.7b01312]
[12]
Zhang, Z.; Xu, R.; Wang, Z.; Dong, M.; Cui, B.; Chen, M. Visible-light neural stimulation on graphitic-carbon nitride/graphene photocatalytic fibers. ACS Appl. Mater. Interfaces, 2017, 9(40), 34736-34743.
[http://dx.doi.org/10.1021/acsami.7b12733] [PMID: 28929741]
[13]
Yu, Z.; Li, F.; Yang, Q.; Shi, H.; Chen, Q.; Xu, M. Nature-mimic method to fabricate polydopamine/graphitic carbon nitride for enhancing photocatalytic degradation performance. ACS Sustain. Chem.& Eng., 2017, 5, 7840-7850.
[http://dx.doi.org/10.1021/acssuschemeng.7b01313]
[14]
Liu, R.; Chen, Z.; Yao, Y.; Li, Y.; Cheema, W.A.; Wang, D.; Zhu, S. Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: a mini review. Rsc Adv., 2020, 10, 29408-29418.
[http://dx.doi.org/10.1039/D0RA05779G]
[15]
Zhang, Y.; Shi, J.; Huang, Z.; Guan, X.; Zong, S.; Cheng, C.; Zheng, B.; Guo, L. Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: Enhanced photocatalytic H2-evolution activity and mechanism insight. Chem. Eng. J., 2020, 401, 126135.
[http://dx.doi.org/10.1016/j.cej.2020.126135]
[16]
Tian, L.; Yang, X.; Cui, X.; Liu, Q.; Tang, H. Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance. Appl. Surf. Sci., 2019, 463, 9-17.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.209]
[17]
Cheng, F.; Yin, H.; Xiang, Q. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2 -production activity. Appl. Surf. Sci., 2017, 391, 432-439.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.169]
[18]
Fan, G.; Ma, Z.; Li, X.; Deng, L. Coupling of Bi2O3 nanoparticles with g-C3N4 for enhanced photocatalytic degradation of methylene blue. Ceram. Int., 2021, 47, 5758-5766.
[http://dx.doi.org/10.1016/j.ceramint.2020.10.162]
[19]
Fu, J.; Bie, C.; Cheng, B.; Jiang, C.; Yu, J. Hollow CoSx polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4. ACS Sustain. Chem.& Eng., 2018, 6, 2767-2779.
[http://dx.doi.org/10.1021/acssuschemeng.7b04461]
[20]
Liu, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. ZIF-67-Derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide. Small, 2019, 15(31), e1902291.
[http://dx.doi.org/10.1002/smll.201902291] [PMID: 31192542]
[21]
Yuan, Y.J.; Shen, Z.; Wu, S.; Su, Y.; Pei, L.; Ji, Z.; Ding, M.; Bai, W.; Chen, Y.; Yu, Z.T.; Zou, Z. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl. Catal. B, 2019, 246, 120-128.
[http://dx.doi.org/10.1016/j.apcatb.2019.01.043]
[22]
Fu, X.; Ilanchezhiyan, P.; Mohan Kumar, G.; Cho, H.D.; Zhang, L.; Chan, A.S.; Lee, D.J.; Panin, G.N.; Kang, T.W. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation. Nanoscale, 2017, 9(5), 1820-1826.
[http://dx.doi.org/10.1039/C6NR09022B] [PMID: 28106213]
[23]
Dashairya, L.; Sharma, M.; Basu, S.; Saha, P. SnS2/RGO based nanocomposite for efficient photocatalytic degradation of toxic industrial dyes under visible-light irradiation. J. Alloys Compd., 2019, 774, 625-636.
[http://dx.doi.org/10.1016/j.jallcom.2018.10.008]
[24]
Chava, R.K.; Do, J.Y.; Kang, M. Enhanced photoexcited carrier separation in CdS–SnS2 heteronanostructures: a new 1D–0D visible-light photocatalytic system for the hydrogen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7, 13614-13628.
[http://dx.doi.org/10.1039/C9TA03059J]
[25]
She, H.; Zhou, H.; Li, L.; Zhao, Z.; Jiang, M.; Huang, J.; Wang, L.; Wang, Q. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustain. Chem.& Eng., 2018, 7, 650-659.
[http://dx.doi.org/10.1021/acssuschemeng.8b04250]
[26]
Wang, K.; Li, Y.; Li, J.; Zhang, G. Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Appl. Catal. B, 2020, 263, 117730.
[http://dx.doi.org/10.1016/j.apcatb.2019.05.032]
[27]
Huo, Y.; Yang, Y.; Dai, K.; Zhang, J. Construction of 2D/2D porous graphitic C3N4/SnS2 composite as a direct Z-scheme system for efficient visible photocatalytic activity. Appl. Surf. Sci., 2019, 481, 1260-1269.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.221]
[28]
Wu, H.; Qian, Y.; Cui, J.; Chai, Q.; Du, J.; Zhang, L.; Zhang, H.; Wang, W.; Kang, D.J. Enhanced interfacial charge transfer and separation rate based on Sub 10 nm MoS2 nanoflakes in situ grown on graphitic‐C3N4. Adv. Mater. Interfaces, 2019, 6, 1900554.
[http://dx.doi.org/10.1002/admi.201900554]
[29]
Rameshbabu, R.; Ravi, P.; Sathish, M. Cauliflower-like CuS/ZnS nanocomposites decorated g-C3N4 nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting. Chem. Eng. J., 2019, 360, 1277-1286.
[http://dx.doi.org/10.1016/j.cej.2018.10.180]
[30]
Chen, Y.; Wang, X.; Lao, M.; Rui, K.; Zheng, X.; Yu, H.; Ma, J.; Dou, S.X.; Sun, W. Electrocatalytically inactive SnS2 promotes water adsorption/dissociation on molybdenum dichalcogenides for accelerated alkaline hydrogen evolution. Nano Energy, 2019, 64, 103918.
[http://dx.doi.org/10.1016/j.nanoen.2019.103918]
[31]
Li, M.; Qian, Y.; Du, J.; Wu, H.; Zhang, L.; Li, G.; Li, K.; Wang, W.; Kang, D.J. CuS nanosheets decorated with CoS2 nanoparticles as an efficient electrocatalyst for enhanced hydrogen evolution at all pH values. ACS Sustain. Chem.& Eng., 2019, 7, 14016-14022.
[http://dx.doi.org/10.1021/acssuschemeng.9b02519]
[32]
Jin, H.; Li, L.; Liu, X.; Tang, C.; Xu, W.; Chen, S.; Song, L.; Zheng, Y.; Qiao, S.Z. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Adv. Mater., 2019, 31(32), e1902709.
[http://dx.doi.org/10.1002/adma.201902709] [PMID: 31194268]
[33]
Zhang, F.; Cho, M.; Eom, T.; Kang, C.; Lee, H. Facile synthesis of manganese cobalt sulfide nanoparticles as high-performance supercapacitor electrode. Ceram. Int., 2019, 45, 20972-20976.
[http://dx.doi.org/10.1016/j.ceramint.2019.06.240]
[34]
Qian, Y.; Du, J.; Kang, D.J. Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method. Micro. Meso. Mater., 2019, 273, 148-155.
[http://dx.doi.org/10.1016/j.micromeso.2018.06.056]
[35]
Zhu, Q.L.; Xu, Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem, 2016, 1, 220-245.
[http://dx.doi.org/10.1016/j.chempr.2016.07.005]
[36]
Singh, G.; Kim, I.Y.; Lakhi, K.S.; Srivastava, P.; Naidu, R.; Vinu, A. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon, 2017, 116, 448-455.
[http://dx.doi.org/10.1016/j.carbon.2017.02.015]
[37]
Bariki, R.; Majhi, D.; Das, K.; Behera, A.; Mishra, B.G. Facile synthesis and photocatalytic efficacy of UiO-66/CdIn2S4 nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution. Appli. Catal. Biol. Environ., 2020, 270, 118882.
[38]
Das, K.; Majhi, D.; Bariki, R.; Mishra, B.G. SnS2/Bi4Ti3O12 heterostructure material: a UV‐visible light active direct Z‐scheme photocatalyst for aqueous phase degradation of diazinon. Chem.y Select, 2020, 5, 1567-1577.
[http://dx.doi.org/10.1002/slct.201904532]
[39]
Jiang, Y.; Hall, C.; Song, N.; Lau, D.; Burr, P.A.; Patterson, R.; Wang, D.W.; Ouyang, Z.; Lennon, A. Evidence for fast lithium-ion diffusion and charge-transfer reactions in amorphous TiOx nanotubes: insights for high-rate electrochemical energy storage. ACS Appl. Mater. Interfaces, 2018, 10(49), 42513-42523.
[http://dx.doi.org/10.1021/acsami.8b16994] [PMID: 30461253]
[40]
Qian, Y.; Wang, L.; Du, J.; Yang, H.; Li, M.; Wang, Y.; Kang, D.J. A high catalytic activity photocatalysts based on porous metal sulfides/TiO2 heterostructures. Adv. Mater. Interfaces, 2021, 8, 2001627.
[http://dx.doi.org/10.1002/admi.202001627]
[41]
Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B, 2019, 244, 1021-1064.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.080]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy