Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Nanomaterials for Targeted Delivery of Anticancer Drugs: An Overview

Author(s): Bhavna Choudhary and Pubalee Sarmah*

Volume 7, Issue 1, 2022

Published on: 19 January, 2021

Page: [31 - 39] Pages: 9

DOI: 10.2174/2405461506666210119095130

Price: $65

Abstract

The application of nanomaterials in drug delivery is a rapidly developing area of interest. The main intention in the development of these drug delivery vehicles is to successfully know the targeted delivery-related efforts and carrying drugs to the required sites of therapeutic action with the reduction in adverse side effects. The task for targeted drug delivery to reach pathological areas has increased advances in nanomedicine. But the high toxicity of uncoated nanoparticles restricts the use in humans. So, to reduce toxicity, the encapsulation of nanoparticles is done with bio-compatible materials. Many efficient delivery systems have been developed in which nanoparticles are loaded with the cancer drug involving bi-layer molecules. The fields of nanotechnology have always played a crucial role in electronics, biology, and medicine. Its application can be appraised, as it involves the materials to be designed at the atomic and molecular level. This article reviews different types of nanomaterials used as delivery vehicles for chemotherapeutic agents and their mechanism of action that improve the therapeutic efficacy of the drugs. The recent scientific advances in the area of chemotherapy are also discussed by emphasizing the prospects in cancer treatments.

Keywords: Nanomaterials, drug delivery, CNT, GNP, liposome, nanomedicine.

Graphical Abstract

[1]
Alagarasi. A Chapter-Introduction to nanomaterials. J Biotechnol 2016; 32: 1-25.
[2]
De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomed 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[3]
Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: Applications in cancer imaging and therapy. Adv Mater 2011; 23(12): H18-40.
[http://dx.doi.org/10.1002/adma.201100140] [PMID: 21433100]
[4]
Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: A Mini review. Int Nano Lett 2014; 42: 4-94.
[5]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotech 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[6]
Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 37: 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[7]
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2018; 15: 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[8]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3: 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[9]
Li PG, Dai Y, Cheng Z, et al. Inorganic nanocarriers for platinum drug delivery. Mater Today 2015; 42: 1-11.
[10]
Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int J Nanomed 2011; 6: 2963-79.
[PMID: 22162655]
[11]
Conti1 M, Tazzari1 V, Lorenzo , et al. Anticancer drug delivery with nanoparticles. Int J Exp Clin Pathophysiology Drug Res 2006; 20: 697-702.
[12]
Kushwaha SK, Ghoshal S, Singh S, et al. Carbon nanotubes as a novel drug delivery system for anticancer therapy. Braz J Pharm Sci 2013; 49: 629-43.
[http://dx.doi.org/10.1590/S1984-82502013000400002]
[13]
Zhang G, Zeng X, Li P. Nanomaterials in cancer-therapy drug delivery system. J Biomed Nanotechnol 2013; 9(5): 741-50.
[http://dx.doi.org/10.1166/jbn.2013.1583] [PMID: 23802404]
[14]
Elhissi AM, Ahmed W, Hassan IU, Dhanak VR, D’Emanuele A. Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2012; 2012
[http://dx.doi.org/10.1155/2012/837327] [PMID: 22028974]
[15]
Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J Cell Physiol 2018; 234(1): 298-319.
[http://dx.doi.org/10.1002/jcp.26899] [PMID: 30078182]
[16]
Hilder TA, Hill JM. Carbon Nanotubes as drug delivery nano capsules. Curr Appl Phys 2008; 8: 258-61.
[http://dx.doi.org/10.1016/j.cap.2007.10.011]
[17]
Liu P. Modification strategies for carbon nanotubes as a drug delivery system. Ind Eng Chem Res 2013; 52: 13517-27.
[http://dx.doi.org/10.1021/ie402360f]
[18]
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005; 9(6): 674-9.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.005] [PMID: 16233988]
[19]
Adeli M, Beyranvandand S, Hamid M. Noncovalent interactions between linear-dendritic copolymers and Carbon Nanotubes lead to Liposome-like Nanocapsules. J Mater Chem 2012; 14: 1-12.
[http://dx.doi.org/10.1039/c2jm16919c]
[20]
Yukako I, Venkatesan N, Hirako N, et al. Effect of fibre length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. Int J Pharm 2007; 58: 357-60.
[21]
Tripiscianoa C, Kraemerb K, Taylorb A, et al. Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett 2009; 478: 200-5.
[http://dx.doi.org/10.1016/j.cplett.2009.07.071]
[22]
Wang H, Wang J, Deng X, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 2004; 4(8): 1019-24.
[http://dx.doi.org/10.1166/jnn.2004.146] [PMID: 15656196]
[23]
Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 2011; 6: 555-82.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[24]
Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: A review on structure and their interaction with protein. J Chem 2013; 2012: 140-59.
[http://dx.doi.org/10.1155/2013/676815]
[25]
Mo Y, Wang H, Liu J. RuiGuo Y L, Zhang Y, Xueab W and Zhan Y. Controlled release and targeted delivery to cancer cells of doxorubicin from polysaccharides functionalized single walled carbon nanotubes. J Mater Chem 2015; 3: 1846-55.
[http://dx.doi.org/10.1039/C4TB02123A] [PMID: 32262257]
[26]
Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2015; 68(16): 6652-0.
[27]
Firme Constantine, Bandaru Prabhakar. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine : Nanotechnology, biology, and medicine J nano 2011; 6(10): 245-56.
[28]
Mandal AK. Gold Nanomaterials as Drug Delivery System against Diseases. J Res Rev Biol 2017; 19: 1-7.
[http://dx.doi.org/10.9734/ARRB/2017/37866]
[29]
Sardar R, Funston AM, Mulvaney P, Murray RW. Gold nanoparticles: Past, present, and future. Langmuir 2009; 25(24): 13840-51.
[http://dx.doi.org/10.1021/la9019475] [PMID: 19572538]
[30]
Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012; 85(1010): 101-13.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[31]
Kumar A, Zhang X, Liang XJ. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol Adv 2013; 31(5): 593-606.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.002] [PMID: 23111203]
[32]
Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 2010; 49(19): 3280-94.
[http://dx.doi.org/10.1002/anie.200904359] [PMID: 20401880]
[33]
Review A. Journal of Cancer Nanotechnology 2016; 7: 1-8.
[http://dx.doi.org/10.1186/s12645-016-0013-x] [PMID: 26900409]
[34]
Song S, Hao Y, Yang X, Patra P, Chen J. Using gold nanoparticles as delivery vehicles for targeted delivery of chemotherapy drug fludarabine phosphate to treat hematological cancers. J Nanosci Nanotechnol 2016; 16(3): 2582-6.
[http://dx.doi.org/10.1166/jnn.2016.12349] [PMID: 27455673]
[35]
Kumar A, Ma H, Zhang X, et al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 2012; 33(4): 1180-9.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.058] [PMID: 22056754]
[36]
Krzysztofsztandera, Michagorzkiewicz, and Barbara K lajnert- Maculewicz. Gold nanoparticles in cancer treatment. Mol Pharm 2019; 16: 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810]
[37]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[38]
Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011; 5(5): 3679-92.
[http://dx.doi.org/10.1021/nn200007z] [PMID: 21462992]
[39]
Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132(13): 4678-84.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[40]
Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: Design, construction, and structure-efficacy relationship studies. J Mater Chem B Mater Biol Med 2020; 8(22): 4813-30.
[http://dx.doi.org/10.1039/C9TB02924A] [PMID: 32227036]
[41]
Gong T, Goh D, Olivo M, Yong KT. in vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers. Beilstein J Nanotechnol 2014; 5: 546-53.
[http://dx.doi.org/10.3762/bjnano.5.64] [PMID: 24991490]
[42]
Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 2008; 3(3): 145-50.
[http://dx.doi.org/10.1038/nnano.2008.30] [PMID: 18654486]
[43]
Wang Feng, Wang Yu-Cai, Dou Shuang. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011; 25: 3679-92.
[44]
Boateng Francis, Ngwa Wilfred. Delivery of nanoparticle-based radio-sensitizers for radiotherapy applications. Int J Mol Sci 2020; 21: 273-98.
[45]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[46]
Ciarakelly, Carolinejefferies, and Sally-Anncryan. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2010; 11: 1-11.
[47]
Lasic DD. Novel applications of liposomes. Trends Biotechnol 1998; 16(7): 307-21.
[http://dx.doi.org/10.1016/S0167-7799(98)01220-7] [PMID: 9675915]
[48]
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015; 115(19): 10938-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[49]
Wafa’ T. Jamal and Starelos K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 2011; 65: 258-65.
[50]
Theresa M, Pieter A, Cullis R. Liposomal drug delivery systems: From concept to clinical application. J Adv Drug Deliv Rev 2012; 65: 1-22.
[51]
Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[52]
Schaeffer HE, Krohn DL. Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci 1982; 22(2): 220-7.
[PMID: 7056633]
[53]
J Ostro Marc, P. Rcullis. Use of liposomes as injectable-drug delivery systems. Am J Hosp Pharm 1989; 46: 1576-87.
[PMID: 2672806]
[54]
Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001; 90(6): 667-80.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[55]
Review A. Pharm Acta Helv 1995; 70: 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7] [PMID: 7651973]
[56]
Gregoriadis G, Florence AT. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs 1993; 45(1): 15-28.
[http://dx.doi.org/10.2165/00003495-199345010-00003] [PMID: 7680982]
[57]
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come? Pharmacol Rev 2016; 68(3): 701-87.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[58]
Yadav B, Sandeep K, Pandey D, Kumari R. Liposomes for drug delivery. J Biotechnol Biomater 2017; 7: 1-8.
[http://dx.doi.org/10.4172/2155-952X.1000276] [PMID: 28778472]
[59]
Goyal P, Goyal K, Vijaya Kumar SG, Singh A, Katare OP, Mishra DN. Liposomal drug delivery systems clinical applications. Acta Pharm 2005; 55(1): 1-25.
[PMID: 15907221]
[60]
A Samad, Sultana Y and Aqil M. Liposomal drug delivery systems: An update review. J Curr Drug Deliv 2007; 4: 297-305.
[61]
O Medina Ying Zhu and K kairem. Targeted liposomal drug delivery in cancer treatment. J Curr Pharm Des 2004; 10: 2981-9.
[http://dx.doi.org/10.2174/1381612043383467]
[62]
Melis Sezer, Demir Ali. Liposomes as potential drug carrier systems for drug delivery 2014; 254-78.
[63]
Rajendran D, Kumari S, Dhanraj SA, et al. Liposomal drug delivery systems: An update review. Ind Pharm 1997; 23: 1099-2014.
[http://dx.doi.org/10.3109/03639049709150499]
[64]
Kolchens, Ramaswami S V, Birgenheier. Liposomal drug delivery systems- An update review J.; Nett. L, D.F. Chem Phys Lipids 1993; 65: 1-27.
[65]
Wang HD. Toys. Liposome’s as targeted drug delivery systems present and future prospective: A review. Biochim Biophys Acta 2002; 15: 25-32.
[66]
Sandy Gim Ming Ong LongChiau Ming, KahSeng Lee and Kah Hay Yue.. Influence of the encapsulation efficiency andsize of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics 2016; 8(25): 23-35.
[67]
Jonathan D. Ashley, Charissa J. Quinlan, Valerie A. Schroeder, Suckow, Vincenzo J. Pizzuti, TanyelKiziltepe and BasarBilgicer. Dual carfilzomib and doxorubicin–loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther 2016; 15(7): 198-225.
[68]
Dian L, Yu E, Chen X, et al. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 2014; 9(1): 2406.
[http://dx.doi.org/10.1186/1556-276X-9-684] [PMID: 26088982]
[69]
Safdar M, Khan SU, Jänis J. Progress toward catalytic micro- and nanomotors for biomedical and environmental applications. Adv Mater 2018; 30(24)
[http://dx.doi.org/10.1002/adma.201703660] [PMID: 29411445]
[70]
Olerile LD, Liu Y, Zhang B, et al. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf B Biointerfaces 2017; 150: 121-30.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.032] [PMID: 27907859]
[71]
Cai X, Luo Y, Zhang W, Du D, Lin Y. pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces 2016; 8(34): 22442-50.
[http://dx.doi.org/10.1021/acsami.6b04933] [PMID: 27463610]
[72]
Li M, Bu W, Ren J, et al. Enhanced synergism of thermo-chemotherapy for liver cancer with magnetothermally responsive nanocarriers. Theranostics 2018; 8(3): 693-709.
[http://dx.doi.org/10.7150/thno.21297] [PMID: 29344299]
[73]
Shi. Y, Pramanik. A, Tchounwou. C et al. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efcient capture and two photon imaging of rare tumor cells. ACS Appl Mater Interfaces 2015; 7: 10935-43.
[http://dx.doi.org/10.1021/acsami.5b02199] [PMID: 25939643]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy