Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Zeolitic Imidazolate Framework ZIF-ZNI Nanocrystals used for Oil-water Separation

Author(s): Patrícia Fernandes Tomaz, Diogo Pierre Alves Rodrigues, Tellys Lins Almeida Barbosa and Meiry Glaucia Freire Rodrigues*

Volume 7, Issue 1, 2022

Published on: 20 April, 2021

Page: [40 - 48] Pages: 9

DOI: 10.2174/2405461506666210420131237

Price: $65

Abstract

Background: The oil removal from industrial effluents is one of the biggest problems faced in the world. It is a very important environmental issue, and it is necessary to solve this problem. In this sense, ZIFs are increasingly important in the environmental area.

Objective: This work reports a method for the synthesis of ZIF-zni nanocrystals at room temperature in 1 h, and a performance of the ZIF-zni nano adsorbent in the oil removal from the oil-water emulsion.

Methods: ZIF-zni was produced from the solvothermal method, and it was characterized by X-ray diffraction, electron microscopy, contact angle, infrared spectroscopy and thermogravimetry. Oilwater emulsion was produced by lubricant oil and distilled water. Batch-type adsorption at 200 rpm for 2 h was used to evaluate the potential of ZIF-zni for the separation of the oil-water emulsion with initial oil concentration (100, 300 mg/L) and temperature (30, 60°C).

Results: The characterizations showed that the crystalline phase of ZIF-zni was successfully obtained. The ZIF-zni exhibit a very high removal percentage (above 95%) and adsorption capacity. The predictions of multiple linear regression models determined based on the factorial design of experiments are excellent.

Conclusion: The value up to 2879 mg/g of adsorption capacity was reached, thus indicating that the use of the nanoadsorbent ZIF-zni has great potential in the process of separating oil-water emulsion.

Keywords: Metal-organic frameworks, polymorphism, nanotechnology, lubricant oil, emulsion, demulsification.

[1]
Walker DB, Baumgartner DJ, Gerba CP, Fitzsimmons K. Surface water pollution. In: Brusseau ML, Pepper IL, Gerba CP, Eds. Environmental and Pollution Science. 3rd ed. United States: Academic Press 2019; pp. 261-92.
[http://dx.doi.org/10.1016/B978-0-12-814719-1.00016-1]
[2]
Roy R. Besides air pollution: Water pollution is one of the major cause of human death. Indian J Appl Res 2019; 9: 20-1.
[http://dx.doi.org/10.36106/ijar]
[3]
Helmer R, Hespanhol I. Water pollution control: A guide to the use of water quality management principles. 1st ed. United Kingdom: Taylor & Francis 1997.
[http://dx.doi.org/10.4324/9780203477540]
[4]
Nelson-Smith A. The problem of oil pollution of the sea. Adv Mar Biol 1971; 8: 215-306.
[http://dx.doi.org/10.1016/S0065-2881(08)60493-9]
[5]
Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ. Review of technologies for oil and gas produced water treatment. J Hazard Mater 2009; 170(2-3): 530-51.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.044] [PMID: 19505758]
[6]
Reis JC. Enviromental control in petroleum engineering. Texas: Gulf Professional Publishing 1996.
[7]
Yu L, Han M, He F. A review of treating oily wastewater. Arab J Chem 2017; 10: S1913-22.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.020]
[8]
Saththasivam J, Loganathan K, Sarp S. An overview of oil-water separation using gas flotation systems. Chemosphere 2016; 144: 671-80.
[http://dx.doi.org/10.1016/j.chemosphere.2015.08.087] [PMID: 26408973]
[9]
Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 2013; 25(14): 2071-6.
[http://dx.doi.org/10.1002/adma.201204520] [PMID: 23418068]
[10]
Padaki M, Surya Murali R, Abdullah MS, et al. Membrane technology enhancement in oil–water separation. A review. Desalination 2015; 357: 197-207.
[http://dx.doi.org/10.1016/j.desal.2014.11.023]
[11]
Barbosa TLA, Silva FMN, Barbosa AS, Lima EG, Rodrigues MGF. Synthesis and application of a composite NaA zeolite/gamma-alumina membrane for oil-water separation process. Ceramica 2020; 66: 137-44.
[http://dx.doi.org/10.1590/0366-69132020663782820]
[12]
Silva FMN, Barbosa TLA, Lima EG, Rodrigues MGF. Development of MOR zeolite membranes supported on ɣ-alumina and α-alumina obtained from the decomposition of aluminum sulfate. 13th international conference on catalysis in membrane reactors. Houston. United States. June 10-13, 2017;
[13]
Barbosa AS, Barbosa AS, Barbosa TLA, Rodrigues MGF. Synthesis of zeolite membrane (NaY/alumina): Effect of precursor of ceramic support and its application in the process of oil-water separation. Separ Purif Tech 2018; 200: 141-54.
[http://dx.doi.org/10.1016/j.seppur.2018.02.001]
[14]
Barbosa AS, Barbosa AS, Rodrigues MGF. Contaminants removal in wastewater using membrane adsorbents zeolite Y/alpha-alumina. Mater Sci Forum 2018; 912: 12-5.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.912.12]
[15]
Barbosa AS, Barbosa AS, Rodrigues MGF. Synthesis of zeolite membrane (MCM-22/α- alumina) and its application in the process of oil-water separation. Desalination Water Treat 2015; 56(13): 3665-72.
[http://dx.doi.org/10.1080/19443994.2014.995719]
[16]
Barbosa AS, Barbosa AS, Rodrigues MGF. Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Ceramica 2019; 65: 531-40.
[http://dx.doi.org/10.1590/0366-69132019653762676]
[17]
Barbosa AS, Barbosa AS, Rodrigues MGF. Y-type zeolite membranes: Synthesis by secondary by method and application in treatment of oily effluents. Mater Sci Forum 2019; 958: 23-8.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.958.23]
[18]
Cunha RSS, Mota JD, Silva FMN, Rodrigues MGF. Synthesis, characterization and evaluation of organophilic bofe clay for use in the removal of oil effluents. Mater Sci Forum 2019; 13: 17-22.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.958.17]
[19]
Cunha RS, Mota JD, Mota MF, Rodrigues MGF, Machado F. Preparation and characterization of tubular composite membranes and their application in water flow measurements. Mater Sci Forum 2018; 912: 263-8.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.912.263]
[20]
Scheibler JR, Santos ERF, Barbosa AS, Rodrigues MGF. Performance of zeolite membrane (ZSM-5/γ-Alumina) in the oil/water separation process. Desalination Water Treat 2014; 56(13): 3561-7.
[http://dx.doi.org/10.1080/19443994.2014.986536]
[21]
Ahmad AL, Sumathi S, Hameed BH. Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: A comparative study. Chem Eng J 2005; 108: 179-85.
[http://dx.doi.org/10.1016/j.cej.2005.01.016]
[22]
Gonzaga AC, Sousa BV, Santana LNL, Neves GA, Rodrigues MGF. Study of different methods in the preparation of organoclays from the bentonite with application in the petroleum industry. Braz J Petrol Gas 2007; 1: 16-25.
[http://dx.doi.org/10.5419/bjpg.v1i1.4]
[23]
Rodrigues SCG, Queiroz MB, Pereira KRO, Rodrigues MGF, Valenzuela-Diaz FR. Comparative study of organophilic clays to be used in the gas & petrol industry. Mater Sci Forum 2010; 660: 1037-42.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.660-661.1037]
[24]
Mota MF, Silva JA, Queiroz MB, Laborde HM, Rodrigues MGF. Organophilic clay for oil/water separation process by finite bath tests. Braz J Petrol Gas 2011; 5: 97-107.
[http://dx.doi.org/10.5419/bjpg2011-0011]
[25]
Oliveira GC, Mota MF, Silva MM, Rodrigues MGF, Laborde HM. Performance of natural sodium clay treated with ammonium salt in the separation of emulsified oil in water. Bra J Petrol Gas 2012; 6: 171-83.
[http://dx.doi.org/10.5419/bjpg2012-0014]
[26]
Jovelino JR, Rodrigues JJ, Rodrigues MGF. SBA-15 molecular sieve: Synthesis. characterization and application in oil/water separation. Braz J Petrol Gas 2018; 12: 219-27.
[http://dx.doi.org/10.5419/bjpg2018-0020]
[27]
Rodrigues MGF, Rodrigues DPA, Barbosa TLA. Preparação da estrutura metalorgânica ZIF-8 e sua aplicação na separação emulsão óleo/água: Utilização e reutilização. In: XXI Congreso Argentino de Catálisis. X Congreso de Catálisis del Mercorsur, 18 a 20 de setembre de 2019. Santa Fé. Argentina. (in Portuguese).
[28]
Kumar V, Vellingiri K, Kukkar D, Kumar S, Kim K. Recent advances and opportunities in the treatment of hydrocarbons and oils: Metal-organic frameworks-based approaches. Crit Rev Environ Sci Technol 2019; 49: 587-654.
[http://dx.doi.org/10.1080/10643389.2018.1554402]
[29]
Shahmirzaee M, Hemmati-Sarapardeh A, Husein MM, Schaffie M, Ranjbar M. A review on zeolitic imidazolate frameworks use for crude oil spills cleanup. Adv Geo-Ene Rese 2019; 3: 320-42.
[http://dx.doi.org/10.26804/ager.2019.03.10]
[30]
Bennett TD, Simoncic P, Moggach SA, et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem Commun (Camb) 2011; 47(28): 7983-5.
[http://dx.doi.org/10.1039/c1cc11985k] [PMID: 21681315]
[31]
Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 2010; 43(1): 58-67.
[http://dx.doi.org/10.1021/ar900116g] [PMID: 19877580]
[32]
Jian M, Liu B, Liu R, Qu J, Wang H, Zhang X. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv 2015; 5: 48433-41.
[http://dx.doi.org/10.1039/C5RA04033G]
[33]
Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006; 103(27): 10186-91.
[http://dx.doi.org/10.1073/pnas.0602439103] [PMID: 16798880]
[34]
Naseri M, Pitzalis F, Carucci C, et al. Lipase and laccase encapsulated on zeolite imidazolate framework: Enzyme activity and stability from voltammetric measurements. Chem Cat Chem 2018; 10: 5538-47.
[http://dx.doi.org/10.1002/cctc.201801293]
[35]
Tan JC, Bennett TD, Cheetham AK. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2010; 107(22): 9938-43.
[http://dx.doi.org/10.1073/pnas.1003205107] [PMID: 20479264]
[36]
Hughes JTT, Bennett TD, Cheetham AK, Navrotsky A. Thermochemistry of zeolitic imidazolate frameworks of varying porosity. J Am Chem Soc 2013; 135(2): 598-601.
[http://dx.doi.org/10.1021/ja311237m] [PMID: 23270310]
[37]
Lewis DW, Ruiz-Salvador AR, Gómes A, et al. Zeolitic imidazole frameworks: Structural and energetics trends compared with their zeolite analogues. Cryst Eng Comm 2009; 11: 2272-6.
[http://dx.doi.org/10.1039/b912997a]
[38]
Liu H, Huang A. One-step synthesis of superhydrophobic zeolitic imidazolate framework F-ZIF-90 for efficient removal of oil. New J Chem 2018; 42: 2372-5.
[http://dx.doi.org/10.1039/C7NJ04373B]
[39]
Lin KY, Chen YC, Phattarapattamawong S. Efficient demulsification of oil-in-water emulsions using a zeolitic imidazolate framework: Adsorptive removal of oil droplets from water. J Colloid Interface Sci 2016; 478: 97-106.
[http://dx.doi.org/10.1016/j.jcis.2016.05.057] [PMID: 27288575]
[40]
Sann EE, Pan Y, Gao Z, Zhan S, Xia F. Highly hydrophobic ZIF-8 particles and application for oil-water separation. Separ Purif Tech 2018; 206: 186-91.
[http://dx.doi.org/10.1016/j.seppur.2018.04.027]
[41]
Garcia JJV, Bennett TD, Fairen-Jimenez D, Tian T. Metal-organic frameworks. Patent WO 2015/189599 Al.
[42]
Fairen-Jimenez D, Tian T. Metal-organic frameworks, methods for their manufacture and uses thereof . WO 2018/065555 Al.
[43]
Montgomery DC, Runger GC. Applied statistics and probability for engineers. New York: John Wiley & Sons 2003.
[44]
Mota MF, Rodrigues MGF, Machado F. Oil-water separation process with organoclays: A comparative analysis. Appl Clay Sci 2014; 99: 237-45.
[http://dx.doi.org/10.1016/j.clay.2014.06.039]
[45]
Henderson SB, Grigson SJW, Johnson P, Roddie BD. Potential impact of production chemicals on the toxicity of produced water discharges from North Sea Oil Platforms. Mar Pollut Bull 2014; 38: 1141-51.
[http://dx.doi.org/10.1016/S0025-326X(99)00144-7]
[46]
Hikov T, Schröder CA, Cravillon J, Wiebcke M, Huber K. In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys Chem Chem Phys 2012; 14(2): 511-21.
[http://dx.doi.org/10.1039/C1CP22855B] [PMID: 22124382]
[47]
Zhang J, Qiao A, Tao H, Yue Y. Synthesis, phase transitions and vitrification of the zeolitic imidazolate framework: ZIF-4. J Non-Cryst Solids 2019; 525: 119665.
[http://dx.doi.org/10.1016/j.jnoncrysol.2019.119665]
[48]
Spencer EC, Angel RJ, Ross NL, Hanson BE, Howard JA. Pressure-induced cooperative bond rearrangement in a zinc imidazolate framework: A high-pressure single-crystal X-ray diffraction study. J Am Chem Soc 2009; 131(11): 4022-6.
[http://dx.doi.org/10.1021/ja808531m] [PMID: 19254021]
[49]
Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun (Camb) 2011; 47(7): 2071-3.
[http://dx.doi.org/10.1039/c0cc05002d] [PMID: 21206942]
[50]
Schejn A, Balan L, Falk V, Aranda L, Medjahdic G, Schneider R. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. Cryst Eng Comm 2014; 16: 4493-500.
[http://dx.doi.org/10.1039/C3CE42485E]
[51]
Binks BP, Rocher A. Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles. J Colloid Interface Sci 2009; 335(1): 94-104.
[http://dx.doi.org/10.1016/j.jcis.2009.03.089] [PMID: 19406414]
[52]
Mysore D, Viraraghavan T, Jin YC. Treatment of oily waters using vermiculite. Water Res 2005; 39(12): 2643-53.
[http://dx.doi.org/10.1016/j.watres.2005.04.034] [PMID: 15979121]
[53]
Moazed H, Viraraghavan T. Use of organo-clay/anthracite mixture in the separation of oil from oily waters. Energy Sources 2005; 27: 101-12.
[http://dx.doi.org/10.1080/00908310490448145]
[54]
Ibrahim S, Ang HM, Wang S. Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour Technol 2009; 100(23): 5744-9.
[http://dx.doi.org/10.1016/j.biortech.2009.06.070] [PMID: 19625183]
[55]
Yang X, Guo M, Wu Y, Wu Q, Zhang R. Removal of emulsified oil from water by fruiting bodies of macro-fungus (Auricularia polytricha). PLoS One 2014; 9(4): e95162.
[http://dx.doi.org/10.1371/journal.pone.0095162] [PMID: 24743498]
[56]
Elanchezhiyan SSD, Meenakshi S, Meenakshi S. Synthesis and characterization of chitosan/Mg-Al layered double hydroxide composite for the removal of oil particles from oil-in-water emulsion. Int J Biol Macromol 2017; 104(Pt B): 1586-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.095] [PMID: 28126456]
[57]
Elanchezhiyan SSD, Sivasurian N, Meenakshi S. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method. Carbohydr Polym 2016; 145: 103-13.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.038] [PMID: 27106157]
[58]
Rodrigues MGF, Barbosa TLA, Rodrigues DPA. Zinc imidazolate framework-8 nanoparticle application in oil removal from oil/water emulsion and reuse. J Nanopart Res 2020; 22: 328.
[http://dx.doi.org/10.1007/s11051-020-05036-w]
[59]
Patterson JW. Industrial wastewater treatment technology, 1985. United Kingdom: Butterworth Publishers 1985.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy