Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Dye Removal Ability of Pure and Doped Graphitic Carbon Nitride

Author(s): Dimitra Das, Amit Kuamr Sharma, Kalyan Kumar Chattopadhyay and Diptonil Banerjee *

Volume 18, Issue 3, 2022

Published on: 08 January, 2021

Page: [309 - 340] Pages: 32

DOI: 10.2174/1573411017666210108092850

Price: $65

Abstract

Background: Rapid escalation in textile, paper, pesticides, pharmaceuticals and several other chemical-based manufacturing industries due to amplification in human requirements have proportionately contributed to the extreme contamination of the water ecosystem, resulted from the discharge of toxic pollutants from industries. Effluents from textile industries are comprised of coloured dyes like Rhodamine B, Methyl Orange, Methylene Blue and phenolic compounds, which deserve special mention owing to their non-biodegradable, carcinogenic and severe detrimental nature. Urgent needs to ameliorate this fast declining environmental situation are of immense necessity in the current scenario.

Objectives: In this regard, graphitic carbon nitride (GCN) is a distinguished material for water purification- based applications because of its exclusive characteristics, making it highly prospective for the degradation of toxic dyes from water by catalysis and adsorption techniques. GCN has been a material of conspicuous interest in recent times owing to its two-dimensional sheets like structure with favourable surface area, and cost-effective synthesis approaches along with high production yield. This article presents a detailed study of different aspects of GCN as a material of potential for water purification. Through extensive literature surveys, it has been shown that GCN is an effective material to be used in the fields of application. Several effective procedures like catalysis or adsorption for removal of dyes from water have been discussed with their basic science behind.

Conclusion: This systematic effort shows that GCN can be considered to be one of the most efficient water purifiers with further advantages arising from its easy and cost-effective large scale synthesis.

Keywords: Graphitic carbon nitride, water purification, toxic dyes, photocatalysis, chemical catalysis, adsorption.

Graphical Abstract

[1]
Rashid, M.M.; Chowdhury, M.; Talukder, M.R. Textile wastewater treatment by underwater parallel-multi-tube air discharge plasma jet. J. Environ. Chem. Eng., 2020, 8(6)104504
[http://dx.doi.org/10.1016/j.jece.2020.104504]
[2]
Medrano-Rodríguez, F.; Picos-Benítez, A.; Brillas, E.; Bandala, E.R.; Pérez, T.; Peralta-Hernández, J.M. Electrochemical advanced oxidation discoloration and removal of three brown diazo dyes used in the tannery industry. J. Electroanal. Chem. (Lausanne Switz.), 2020, 873114360
[http://dx.doi.org/10.1016/j.jelechem.2020.114360]
[3]
Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mater. Today Chem., 2020, 16100233
[http://dx.doi.org/10.1016/j.mtchem.2019.100233]
[4]
Encourage Textile Manufacturers to Reduce Pollution. Available from: https://www.nrdc.org/issues/encourage-textile-manufacturers-reduce-pollution
[5]
Bharathi, K.S.; Ramesh, S.T. Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl. Water Sci., 2013, 3(4), 773-790.
[http://dx.doi.org/10.1007/s13201-013-0117-y]
[6]
Joseph, S.; Mathew, B. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J. Mol. Liq., 2015, 204, 184-191.
[http://dx.doi.org/10.1016/j.molliq.2015.01.027]
[7]
Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci., 2014, 209, 172-184.
[http://dx.doi.org/10.1016/j.cis.2014.04.002] [PMID: 24780401]
[8]
Zhang, L.; Li, L.; Sun, X.; Liu, P.; Yang, D.; Zhao, X. ZnO-layered double hydroxide@ graphitic carbon nitride composite for consecutive adsorption and photodegradation of dyes under UV and visible lights. Materials (Basel), 2016, 9(11), 927.
[http://dx.doi.org/10.3390/ma9110927] [PMID: 28774047]
[9]
Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol., 2003, 87(1), 129-132.
[http://dx.doi.org/10.1016/S0960-8524(02)00201-8] [PMID: 12733586]
[10]
de Assis, L.K.; Damasceno, B.S.; Carvalho, M.N.; Oliveira, E.H.C.; Ghislandi, M.G. Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of coloured textile dyes from wastewater. Environ. Technol., 2020, 41(18), 2360-2371.
[http://dx.doi.org/10.1080/09593330.2019.1567603] [PMID: 30623733]
[11]
Matyszczak, G.; Sędkowska, A.; Kuś, S. Comparative degradation of Metanil Yellow in the electro-Fenton process with different catalysts: A simplified kinetic model study. Dyes Pigm., 2020, 174108076
[http://dx.doi.org/10.1016/j.dyepig.2019.108076]
[12]
Ghorai, K.; Panda, A.; Bhattacharjee, M.; Mandal, D.; Hossain, A.; Bera, P.; Seikh, M.M.; Gayen, A. Facile synthesis of CuCr2O4/CeO2 nanocomposite: A new Fenton like catalyst with domestic LED light assisted improved photocatalytic activity for the degradation of RhB, MB and MO dyes. Appl. Surf. Sci., 2021, 536147604
[http://dx.doi.org/10.1016/j.apsusc.2020.147604]
[13]
Das, B.; Das, B.; Das, N.S.; Pal, S.; Das, B.K.; Sarkar, S.; Chattopadhyay, K.K. Novel Ag2O-Ga2O3 type II pn heterojunction as an efficient water cleanser for green cleaning technology. Appl. Surf. Sci., 2020, 515145958
[http://dx.doi.org/10.1016/j.apsusc.2020.145958]
[14]
Tab, A.; Bellal, B.; Belabed, C.; Dahmane, M.; Trati, M. Visible light assisted photocatalytic degradation and mineralization of Rhodamine B in aqueous solution by Ag3PO4. Optik (Stuttg.), 2020, 2020164858
[http://dx.doi.org/10.1016/j.ijleo.2020.164858]
[15]
Chaudhari, S.M.; Gawal, P.M.; Sane, P.K.; Sontakke, S.M.; Nemade, P.R. Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: a comparison with Cr-and Ni-doped TiO2. Res. Chem. Intermed., 2018, 44(5), 3115-3134.
[http://dx.doi.org/10.1007/s11164-018-3296-1]
[16]
Mitra, A.; Howli, P.; Sen, D.; Das, B.; Chattopadhyay, K.K. Cu2O/g-C3N4 nanocomposites: an insight into the band structure tuning and catalytic efficiencies. Nanoscale, 2016, 8(45), 19099-19109.
[http://dx.doi.org/10.1039/C6NR06837E] [PMID: 27824200]
[17]
Jun, B.M.; Kim, Y.; Yoon, Y.; Yea, Y.; Park, C.M. Enhanced sonocatalytic degradation of recalcitrant organic contaminants using a magnetically recoverable Ag3PO4/Fe3O4-activated biochar composite. Ceram. Int., 2020, 46(14), 22521-22531.
[http://dx.doi.org/10.1016/j.ceramint.2020.06.012]
[18]
Goswami, M.; Chaturvedi, P.; Kumar Sonwani, R.; Dutta Gupta, A.; Rani Singhania, R.; Shekher Giri, B.; Nath Rai, B.; Singh, H.; Yadav, S.; Sharan Singh, R. Application of Arjuna (Terminalia arjuna) seed biochar in hybrid treatment system for the bioremediation of Congo red dye. Bioresour. Technol., 2020, 307123203
[http://dx.doi.org/10.1016/j.biortech.2020.123203] [PMID: 32222690]
[19]
Joseph, J.; Radhakrishnan, R.C.; Johnson, J.K.; Joy, S.P.; Thomas, J. Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater. Chem. Phys., 2020, 242122488
[http://dx.doi.org/10.1016/j.matchemphys.2019.122488]
[20]
Li, H.; Liu, S.; Zhao, J.; Feng, N. Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloids Surf. A Physicochem. Eng. Asp., 2016, 494, 222-227.
[http://dx.doi.org/10.1016/j.colsurfa.2016.01.048]
[21]
Kumar, S.; Ahlawat, W.; Bhanjana, G.; Heydarifard, S.; Nazhad, M.M.; Dilbaghi, N. Nanotechnology-based water treatment strategies. J. Nanosci. Nanotechnol., 2014, 14(2), 1838-1858.
[http://dx.doi.org/10.1166/jnn.2014.9050] [PMID: 24749460]
[22]
Cai, Z.; Sun, Y.; Liu, W.; Pan, F.; Sun, P.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res. Int., 2017, 24(19), 15882-15904.
[http://dx.doi.org/10.1007/s11356-017-9003-8] [PMID: 28477250]
[23]
Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res., 2013, 47(12), 3931-3946.
[http://dx.doi.org/10.1016/j.watres.2012.09.058] [PMID: 23571110]
[24]
Puthiaraj, P.; Lee, Y.R.; Zhang, S.; Ahn, W.S. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(42), 16288-16311.
[http://dx.doi.org/10.1039/C6TA06089G]
[25]
Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S.A. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces, 2014, 6(19), 16449-16465.
[http://dx.doi.org/10.1021/am502925j] [PMID: 25215903]
[26]
Yousefi, M.; Villar-Rodil, S.; Paredes, J.I.; Moshfegh, A.Z. Oxidized graphitic carbon nitride nanosheets as an effective adsorbent for organic dyes and tetracycline for water remediation. J. Alloys Compd., 2019, 809151783
[http://dx.doi.org/10.1016/j.jallcom.2019.151783]
[27]
Xin, G.; Meng, Y. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue. J. Chem., 2013.
[http://dx.doi.org/10.1155/2013/187912]
[28]
Hassaan, M.A.; El Nemr, A. Health and environmental impacts of dyes: mini review. Am. J. Environ. Sci. Eng., 2017, 1(3), 64-67.
[29]
Gupta, V.K. Suhas, Application of low-cost adsorbents for dye removal--a review. J. Environ. Manage., 2009, 90(8), 2313-2342.
[http://dx.doi.org/10.1016/j.jenvman.2008.11.017] [PMID: 19264388]
[30]
Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 2011, 280(1-3), 1-13.
[http://dx.doi.org/10.1016/j.desal.2011.07.019]
[31]
Berneth, H. Cationic dyes; Ullmann's Encyclopedia of Industrial Chemistry, 2000.
[http://dx.doi.org/10.1002/14356007.a05_369]
[32]
Dahri, M.K.; Kooh, M.R.R.; Lim, L.B. Remediation of rhodamine B dye from aqueous solution using Casuarina equisetifolia cone powder as a low-cost adsorbent. Adv. Phys. Chem., 2016, 2016Article ID 9497378
[http://dx.doi.org/10.1155/2016/9497378]
[34]
Hou, C.; Hu, B.; Zhu, J. Photocatalytic degradation of methylene blue over TiO2 pretreated with varying concentrations of NaOH. Catalysts, 2018, 8(12), 575.
[http://dx.doi.org/10.3390/catal8120575]
[35]
Vutskits, L.; Briner, A.; Klauser, P.; Gascon, E.; Dayer, A.G.; Kiss, J.Z.; Muller, D.; Licker, M.J.; Morel, D.R. Adverse effects of methylene blue on the central nervous system. Anesthesiology, 2008, 108(4), 684-692.
[http://dx.doi.org/10.1097/ALN.0b013e3181684be4] [PMID: 18362601]
[36]
Vadivelan, V.; Kumar, K.V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci., 2005, 286(1), 90-100.
[http://dx.doi.org/10.1016/j.jcis.2005.01.007] [PMID: 15848406]
[37]
Ramli, Z.A.C.; Asim, N.; Isahak, W.N.; Emdadi, Z.; Ahmad-Ludin, N.; Yarmo, M.A.; Sopian, K. Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2. ScientificWorldJournal, 2014, 2014415136
[PMID: 25013855]
[38]
Balcha, A.; Yadav, O.P.; Dey, T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. Int., 2016, 23(24), 25485-25493.
[http://dx.doi.org/10.1007/s11356-016-7750-6] [PMID: 27704379]
[39]
Rao, H.; Lu, Z.; Liu, X.; Ge, H.; Zhang, Z.; Zou, P.; Wang, Y. Visible light-driven photocatalytic degradation performance for methylene blue with different multi-morphological features of ZnS. RSC Advances, 2016, 6(52), 46299-46307.
[http://dx.doi.org/10.1039/C6RA05212F]
[40]
Samuel, J.J.; Yam, F.K. Photocatalytic degradation of methylene blue under visible light by dye sensitized titania. Mater. Res. Express, 2020, 7(1)015051
[http://dx.doi.org/10.1088/2053-1591/ab6409]
[41]
Saha, J.; Begum, A.; Mukherjee, A.; Kumar, S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res., 2017, 27(5), 245-250.
[http://dx.doi.org/10.1016/j.serj.2017.04.003]
[42]
Ganapuram, B.R.; Alle, M.; Dadigala, R.; Dasari, A.; Maragoni, V.; Guttena, V. Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int. Nano Lett., 2015, 5(4), 215-222.
[http://dx.doi.org/10.1007/s40089-015-0158-3]
[43]
Kora, A.J.; Rastogi, L. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab. J. Chem., 2018, 11(7), 1097-1106.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.024]
[44]
Fathima, J.B.; Pugazhendhi, A.; Oves, M.; Venis, R. Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. J. Mol. Liq., 2018, 260, 1-8.
[http://dx.doi.org/10.1016/j.molliq.2018.03.033]
[45]
Kulkarni, J.C.A.V.; Chavhan, A.; Bappakhane, A.; Chimmankar, J. ZnO Nanoparticles as Adsorbent for Removal of Methylene Blue dye. Res. J. Chem. Environ. Sci, 2016, 4, 158-163.
[46]
Sawafta, R.; Shahwan, T. A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions. J. Mol. Liq., 2019, 273, 274-281.
[http://dx.doi.org/10.1016/j.molliq.2018.10.010]
[47]
Mohammadi, A. Aliakbarzadeh Karimi, A. Methylene blue removal using surface-modified TiO2 nanoparticles: a comparative study on adsorption and photocatalytic degradation. J. Water Environ. Nanotechnol., 2017, 2(2), 118-128.
[48]
Ariyanti, D.; Maillot, M.; Gao, W. TiO2 used as photocatalyst for rhodamine B degradation under solar radiation. Int. J. Mod. Phys. B, 2017, 31(16-19)1744095
[http://dx.doi.org/10.1142/S0217979217440957]
[49]
Jun, B.M.; Elanchezhiyan, S.S.; Yoon, Y.; Wang, D.; Kim, S.; Prabhu, S.M.; Park, C.M. Accelerated photocatalytic degradation of rhodamine B over carbonate-rich lanthanum-substituted zinc spinel ferrite assembled reduced graphene oxide by ultraviolet (UV)-activated persulfate. Chem. Eng. J., 2020, 393124733
[http://dx.doi.org/10.1016/j.cej.2020.124733]
[50]
Sarkar, R.; Das, D.; Das, B.K.; Mitra, A.; Das, N.S.; Sarkar, S.; Chattopadhyay, K.K. Hollow micro-spherical bismuth oxy-chloride for superior visible light induced dye-sensitized photocatalytic activity and its theoretical insight. Mater. Res. Bull., 2020, 125110778
[http://dx.doi.org/10.1016/j.materresbull.2020.110778]
[51]
Ma, S.; Chen, X.; Zhao, B.; Li, L.; Fu, W. Rapid degradation of rhodamine B via poly (dopamine)‐modified membranes with silver nanoparticles. Chem. Eng. Technol., 2018, 41(1), 149-156.
[http://dx.doi.org/10.1002/ceat.201600682]
[52]
Sahoo, P.K.; Thakur, D.; Bahadur, D.; Panigrahy, B. Highly efficient and simultaneous catalytic reduction of multiple dyes using recyclable RGO/Co dendritic nanocomposites as catalyst for wastewater treatment. RSC Advances, 2016, 6(108), 106723-106731.
[http://dx.doi.org/10.1039/C6RA23621A]
[53]
Liu, Y.; Liu, K.; Zhang, L.; Zhang, Z. Removal of Rhodamine B from aqueous solution using magnetic NiFe nanoparticles. Water Sci. Technol., 2015, 72(7), 1243-1249.
[http://dx.doi.org/10.2166/wst.2015.319] [PMID: 26398041]
[54]
Azeez, L.; Lateef, A.; Adebisi, S.A.; Oyedeji, A.O. Novel biosynthesized silver nanoparticles from cobweb as adsorbent for Rhodamine B: equilibrium isotherm, kinetic and thermodynamic studies. Appl. Water Sci., 2018, 8(1), 32.
[http://dx.doi.org/10.1007/s13201-018-0676-z]
[55]
Peng, L.; Qin, P.; Lei, M.; Zeng, Q.; Song, H.; Yang, J.; Shao, J.; Liao, B.; Gu, J. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J. Hazard. Mater., 2012, 209-210, 193-198.
[http://dx.doi.org/10.1016/j.jhazmat.2012.01.011] [PMID: 22321856]
[56]
Liu, L.; Zhang, B.; Zhang, Y.; He, Y.; Huang, L.; Tan, S.; Cai, X. Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. J. Chem. Eng. Data, 2015, 60(5), 1270-1278.
[http://dx.doi.org/10.1021/je5009312]
[57]
Attia, A.A.; Rashwan, W.E.; Khedr, S.A. Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment. Dyes Pigm., 2006, 69(3), 128-136.
[http://dx.doi.org/10.1016/j.dyepig.2004.07.009]
[58]
Rumky, J.F.; Abedin, Z.; Rahman, H.; Hossain, A. Environmental treatment of dyes: methyl orange decolorization using Hog plum peel and mix-bacterial strains. IOSR J. Environ. Sci. Toxicol. Food Technol, 2013, 5(3), 19-22.
[http://dx.doi.org/10.9790/2402-0531922]
[59]
Munagapati, V.S.; Yarramuthi, V.; Kim, D.S. Methyl orange removal from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads. J. Mol. Liq., 2017, 240, 329-339.
[http://dx.doi.org/10.1016/j.molliq.2017.05.099]
[60]
Dai, K.; Chen, H.; Peng, T.; Ke, D.; Yi, H. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere, 2007, 69(9), 1361-1367.
[http://dx.doi.org/10.1016/j.chemosphere.2007.05.021] [PMID: 17588640]
[61]
Nguyen, Q.B.; Vu, D.P.; Nguyen, T.H.C.; Doan, T.D.; Pham, N.C.; Duong, T.L.; Dao, N.N. Photocatalytic Activity of BiTaO4 Nanoparticles for the Degradation of Methyl Orange Under Visible Light. J. Electron. Mater., 2019, 48(5), 3131-3136.
[http://dx.doi.org/10.1007/s11664-019-07066-0]
[62]
Hadi, H.M.; Wahab, H.S. Visible light photocatalytic decolourization of methyl orange using N-doped TiO2 nanoparticles. Al-Nahrain J. Sci., 2015, 18(3), 1-9.
[http://dx.doi.org/10.22401/JNUS.18.3.01]
[63]
Zheng, L.Q.; Yu, X.D.; Xu, J.J.; Chen, H.Y. Reversible catalysis for the reaction between methyl orange and NaBH4 by silver nanoparticles. Chem. Commun. (Camb.), 2015, 51(6), 1050-1053.
[http://dx.doi.org/10.1039/C4CC07711C] [PMID: 25434675]
[64]
Gupta, N.; Singh, H.P.; Sharma, R.K. Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J. Mol. Catal. Chem., 2011, 335(1-2), 248-252.
[http://dx.doi.org/10.1016/j.molcata.2010.12.001]
[65]
Ismail, M.; Gul, S.; Khan, M.I.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Process. Synth., 2019, 8(1), 135-143.
[http://dx.doi.org/10.1515/gps-2018-0038]
[66]
Amokrane, S.; Aid, A.; Nibou, D.; Trari, M. Adsorption of methyl orange on nanoparticles of a synthetic zeolite NaA/CuO. C. R. Chim., 2015, 18(3), 336-344.
[http://dx.doi.org/10.1016/j.crci.2014.09.009]
[67]
Debnath, A.; Deb, K.; Chattopadhyay, K.K.; Saha, B. Methyl orange adsorption onto simple chemical route synthesized crystalline α-Fe2O3 nanoparticles: kinetic, equilibrium isotherm, and neural network modeling. Desalination Water Treat., 2016, 57(29), 13549-13560.
[http://dx.doi.org/10.1080/19443994.2015.1060540]
[68]
Mokhtari, P.; Ghaedi, M.; Dashtian, K.; Rahimi, M.R.; Purkait, M.K. Removal of methyl orange by copper sulfide nanoparticles loaded activated carbon: Kinetic and isotherm investigation. J. Mol. Liq., 2016, 219, 299-305.
[http://dx.doi.org/10.1016/j.molliq.2016.03.022]
[69]
Sundararajan, M.; Sailaja, V.; Kennedy, L.J.; Vijaya, J.J. Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: Kinetics and mechanism. Ceram. Int., 2017, 43(1), 540-548.
[http://dx.doi.org/10.1016/j.ceramint.2016.09.191]
[70]
Le, T.T.T.; Tran, T.D. Photocatalytic degradation of Rhodamine B by C and N Codoped TiO2 nanoparticles under visible-light irradiation. J. Chem., 2020.
[http://dx.doi.org/10.1155/2020/4310513]
[71]
Le Thi Thanh, T.; Nguyen Thi, L.; Tran Dinh, T.; Nguyen Van, N. Enhanced photocatalytic degradation of Rhodamine B using C/Fe Co-doped titanium dioxide coated on activated carbon. J. Chem., 2019.
[http://dx.doi.org/10.1155/2019/2949316]
[72]
Tian, J.; Shao, Q.; Zhao, J.; Pan, D.; Dong, M.; Jia, C.; Ding, T.; Wu, T.; Guo, Z. Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. J. Colloid Interface Sci., 2019, 541, 18-29.
[http://dx.doi.org/10.1016/j.jcis.2019.01.069] [PMID: 30682590]
[73]
Wang, Y.; Ge, S.; Cheng, W.; Hu, Z.; Shao, Q.; Wang, X.; Lin, J.; Dong, M.; Wang, J.; Guo, Z. Microwave Hydrothermally Synthesized Metal-Organic Framework-5 Derived C-doped ZnO with Enhanced Photocatalytic Degradation of Rhodamine B. Langmuir, 2020, 36(33), 9658-9667.
[http://dx.doi.org/10.1021/acs.langmuir.0c00395] [PMID: 32787068]
[74]
Wang, T.; Liu, S.; Mao, W.; Bai, Y.; Chiang, K.; Shah, K.; Paz-Ferreiro, J. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(VI). J. Hazard. Mater., 2020, 389121827
[http://dx.doi.org/10.1016/j.jhazmat.2019.121827] [PMID: 31837938]
[75]
Zhang, J.; Zhang, Z.; Zhu, W.; Meng, X. Boosted photocatalytic degradation of Rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite. Appl. Surf. Sci., 2020, 502144275
[http://dx.doi.org/10.1016/j.apsusc.2019.144275]
[76]
Kurniawan, T.A.; Mengting, Z.; Fu, D.; Yeap, S.K.; Othman, M.H.D.; Avtar, R.; Ouyang, T. Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. J. Environ. Manage., 2020, 270110871
[http://dx.doi.org/10.1016/j.jenvman.2020.110871] [PMID: 32721315]
[77]
Moztahida, M.; Lee, D.S. Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: Optimization using response surface methodology. J. Hazard. Mater., 2020, 400123314
[http://dx.doi.org/10.1016/j.jhazmat.2020.123314] [PMID: 32947714]
[78]
Sackey, J.; Bashir, A.K.H.; Ameh, A.E.; Nkosi, M.; Kaonga, C.; Maaza, M. Date pits extracts assisted synthesis of magnesium oxides nanoparticles and its application towards the photocatalytic degradation of methylene blue. J. King Saud Univ. Sci., 2020, 32(6), 2767-2776.
[http://dx.doi.org/10.1016/j.jksus.2020.06.013]
[79]
Samuel, M.S.; Suman, S. Venkateshkannan; Selvarajan, E.; Mathimani, T.; Pugazhendhi, A. Immobilization of Cu3(btc)2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. J. Photochem. Photobiol. B, 2020, 204111809
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111809] [PMID: 32062390]
[80]
Manimohan, M.; Pugalmani, S.; Ravichandran, K.; Sithique, M.A. Synthesis and characterisation of novel Cu (ii)-anchored biopolymer complexes as reusable materials for the photocatalytic degradation of methylene blue. RSC Advances, 2020, 10(31), 18259-18279.
[http://dx.doi.org/10.1039/D0RA01724H]
[81]
Dhanalakshmi, M.; Saravanakumar, K.; Prabavathi, S.L.; Muthuraj, V. Iridium doped ZnO nanocomposites: Synergistic effect induced photocatalytic degradation of methylene blue and crystal violet. Inorg. Chem. Commun., 2020, 111107601
[http://dx.doi.org/10.1016/j.inoche.2019.107601]
[82]
Hariganesh, S.; Vadivel, S.; Maruthamani, D.; Kumaravel, M.; Paul, B.; Balasubramanian, N.; Vijayaraghavan, T. Facile large scale synthesis of CuCr2O4/CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light. Appl. Organomet. Chem., 2020, 34(2)e5365
[http://dx.doi.org/10.1002/aoc.5365]
[83]
Lahmar, H.; Benamira, M.; Douafer, S.; Messaadia, L.; Boudjerda, A.; Trari, M. Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light. Chem. Phys. Lett., 2020, 742137132
[http://dx.doi.org/10.1016/j.cplett.2020.137132]
[84]
Jia, Z.; Chen, Q.; Li, C.; Li, Z.; Zhang, D.; Chu, R.; Wu, L. Facile in situ preparation of fibrous Ag/AgCl composites with efficient photocatalytic degradation of methyl orange under solar light. J. Phys. Chem. Solids, 2020, 140109360
[http://dx.doi.org/10.1016/j.jpcs.2020.109360]
[85]
Dey, P.C.; Das, R. Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231118122
[http://dx.doi.org/10.1016/j.saa.2020.118122] [PMID: 32044711]
[86]
Shan, R.; Lu, L.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y.; Luo, B. Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater. Sci. Semicond. Process., 2020, 114105088
[http://dx.doi.org/10.1016/j.mssp.2020.105088]
[87]
Bjelajac, A.; Petrović, R.; Vujancevic, J.; Veltruska, K.; Matolin, V.; Siketic, Z.; Provatas, G.; Jaksic, M.; Stan, G.E.; Socol, G.; Mihailescu, I.N. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. J. Phys. Chem. Solids, 2020, 147109609
[http://dx.doi.org/10.1016/j.jpcs.2020.109609]
[88]
Ramos, P.G.; Luyo, C.; Sánchez, L.A.; Gomez, E.D.; Rodriguez, J.M. The spinning voltage influence on the growth of ZnO-rGO nanorods for photocatalytic degradation of methyl orange dye. Catalysts, 2020, 10(6), 660.
[http://dx.doi.org/10.3390/catal10060660]
[89]
Dhir, R. Photocatalytic degradation of methyl orange dye under UV irradiation in the presence of synthesized PVP capped pure and gadolinium doped ZnO nanoparticles. Chem. Phys. Lett., 2020, 746137302
[http://dx.doi.org/10.1016/j.cplett.2020.137302]
[90]
Narendhran, S.; Shakila, P.B.; Manikandan, M.; Vinoth, V.; Rajiv, P. Spectroscopic investigation on photocatalytic degradation of methyl orange using Fe2O3/WO3/FeWO4 nanomaterials. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 232118164
[http://dx.doi.org/10.1016/j.saa.2020.118164] [PMID: 32106029]
[91]
Li, Y.; Wang, Y.; Lu, H.; Li, X. Preparation of CoFe2O4–P4VP@Ag NPs as effective and recyclable catalysts for the degradation of organic pollutants with NaBH4 in water. Int. J. Hydrogen Energy, 2020, 45(32), 16080-16093.
[http://dx.doi.org/10.1016/j.ijhydene.2020.04.002]
[92]
Yan, Q.; Wang, X.Y.; Feng, J.J.; Mei, L.P.; Wang, A.J. Simple fabrication of bimetallic platinum-rhodium alloyed nanomultipods: A highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B. J. Colloid Interface Sci 2021, 582(Pt B), 701-710.
[http://dx.doi.org/10.1016/j.jcis.2020.08.062] [PMID: 32911415]
[93]
Bhat, S.A.; Rashid, N.; Rather, M.A.; Bhat, S.A.; Ingole, P.P.; Bhat, M.A. Highly efficient catalytic reductive degradation of Rhodamine-B over Palladium-reduced graphene oxide nanocomposite. Chem. Phys. Lett., 2020, 754137724
[http://dx.doi.org/10.1016/j.cplett.2020.137724]
[94]
Xiong, L.L.; Huang, R.; Chai, H.H.; Yu, L.; Li, C.M. Facile Synthesis of Fe3O4@Tannic Acid@Au Nanocomposites as a Catalyst for 4-Nitrophenol and methylene blue removal. ACS Omega, 2020, 5(33), 20903-20911.
[http://dx.doi.org/10.1021/acsomega.0c02347] [PMID: 32875225]
[95]
Malik, A.; Nath, M. Synthesis of Ag/ZIF-7 by Immobilization of Ag Nanoparticles onto ZIF-7 Microcrystals: A heterogeneous catalyst for the reduction of nitroaromatic compounds and organic dyes. J. Environ. Chem. Eng., 2020, 8(6)104547
[http://dx.doi.org/10.1016/j.jece.2020.104547]
[96]
Ismail, M.; Gul, S.; Khan, M.I.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Proces. Synth., 2019, 8(1), 135-143.
[97]
Barzinjy, A.A.; Hamad, S.M.; Aydın, S.; Ahmed, M.H.; Hussain, F.H. Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J. Mater. Sci. Mater. Electron., 2020, 31, 11303-11316.
[http://dx.doi.org/10.1007/s10854-020-03679-y]
[98]
Esmaili, N.; Mohammadi, P.; Abbaszadeh, M.; Sheibani, H. Green synthesis of silver nanoparticles using Eucalyptus comadulensis leaves extract and its immobilization on magnetic nanocomposite (GO‐Fe3O4/PAA/Ag) as a recoverable catalyst for degradation of organic dyes in water. Appl. Organomet. Chem., 2020, 34(4)e5547
[http://dx.doi.org/10.1002/aoc.5547]
[99]
Gong, C.; Zhou, Z.; Liu, R.; Zhou, H. Facile Synthesis of Gold Nanoparticles Decorated Core-Shell Feć Oć @Carbon: Control of Surface Charge and Comparison in Catalytic Reduction for Methyl Orange. J. Nanosci. Nanotechnol., 2020, 20(4), 2330-2336.
[http://dx.doi.org/10.1166/jnn.2020.17373] [PMID: 31492244]
[100]
Raj, S.; Singh, H.; Trivedi, R.; Soni, V. Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Sci. Rep., 2020, 10(1), 9616.
[http://dx.doi.org/10.1038/s41598-020-66851-8] [PMID: 32541840]
[101]
Xiao, W.; Garba, Z.N.; Sun, S.; Lawan, I.; Wang, L.; Lin, M.; Yuan, Z. Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. J. Clean. Prod., 2020, 253119989
[http://dx.doi.org/10.1016/j.jclepro.2020.119989]
[102]
Wu, J.; Yang, J.; Huang, G.; Xu, C.; Lin, B. Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. J. Clean. Prod., 2020, 251119717
[http://dx.doi.org/10.1016/j.jclepro.2019.119717]
[103]
Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Haounati, R.; Amaterz, E.; Addi, A.A.; Akbal, F.; Taha, M.L. Experimental and molecular dynamics simulation study on the adsorption of Rhodamine B dye on magnetic montmorillonite composite γ-Fe2O3@ Mt. J. Mol. Liq., 2020, 309113142
[http://dx.doi.org/10.1016/j.molliq.2020.113142]
[104]
Singh, S.; Kumar, A.; Gupta, H. Activated banana peel carbon: a potential adsorbent for Rhodamine B decontamination from aqueous system. Appl. Water Sci., 2020, 10(8), 1-8.
[http://dx.doi.org/10.1007/s13201-020-01274-4]
[105]
Zhang, Y.; Li, K.; Liao, J. Facile synthesis of reduced-graphene-oxide/rare-earth-metal-oxide aerogels as a highly efficient adsorbent for Rhodamine-B. Appl. Surf. Sci., 2020, 504144377
[http://dx.doi.org/10.1016/j.apsusc.2019.144377]
[106]
Wang, J.; Wang, Y.; Liang, Y.; Zhou, J.; Liu, L.; Huang, S.; Cai, J. Nitrogen-doped carbons from in-situ glucose-coated ZIF-8 as efficient adsorbents for Rhodamine B removal from wastewater. Microporous Mesoporous Mater., 2020, 310110662
[http://dx.doi.org/10.1016/j.micromeso.2020.110662]
[107]
Yue, X.; Zhao, J.; Shi, H.; Chi, Y.; Salam, M. Preparation of composite adsorbents of activated carbon supported MgO/MnO2 and adsorption of Rhodamine B. Water Sci. Technol., 2020, 81(5), 906-914.
[http://dx.doi.org/10.2166/wst.2020.172] [PMID: 32541109]
[108]
Somsesta, N.; Sricharoenchaikul, V.; Aht-Ong, D. Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Mater. Chem. Phys., 2020, 240122221
[http://dx.doi.org/10.1016/j.matchemphys.2019.122221]
[109]
Hoslett, J.; Ghazal, H.; Mohamad, N.; Jouhara, H. Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material. Sci. Total Environ., 2020, 714136832
[http://dx.doi.org/10.1016/j.scitotenv.2020.136832] [PMID: 32018976]
[110]
Silvestri, S.; Stefanello, N.; Sulkovski, A.A.; Foletto, E.L. Preparation of TiO2 supported on MDF biochar for simultaneous removal of methylene blue by adsorption and photocatalysis. J. Chem. Technol. Biotechnol., 2020, 95(10), 2723-2729.
[111]
Zhang, C.; Dai, Y.; Wu, Y.; Lu, G.; Cao, Z.; Cheng, J.; Wang, K.; Yang, H.; Xia, Y.; Wen, X.; Ma, W.; Liu, C.; Wang, Z. Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr. Polym., 2020, 234115882
[http://dx.doi.org/10.1016/j.carbpol.2020.115882] [PMID: 32070505]
[112]
El-Kousy, S.M.; El-Shorbagy, H.G.; Abd El-Ghaffar, M.A. Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions. Mater. Chem. Phys., 2020, 254123236
[http://dx.doi.org/10.1016/j.matchemphys.2020.123236]
[113]
Jaramillo-Fierro, X.; González, S.; Jaramillo, H.A.; Medina, F. Synthesis of the ZnTiO3/TiO2 nanocomposite supported in ecuadorian clays for the adsorption and photocatalytic removal of methylene blue dye. Nanomaterials (Basel), 2020, 10(9), 1891.
[http://dx.doi.org/10.3390/nano10091891] [PMID: 32967271]
[114]
Hoijang, S.; Wangkarn, S.; Ieamviteevanich, P.; Pinitsoontorn, S.; Ananta, S.; Lee, T.R.; Srisombat, L. Silica-coated magnesium ferrite nanoadsorbent for selective removal of methylene blue. Colloids Surf. A Physicochem. Eng. Asp., 2020, 606125483
[http://dx.doi.org/10.1016/j.colsurfa.2020.125483]
[115]
Rahmanian, O.; Falsafin, M.; Dinari, M. High surface area benzimidazole based porous covalent organic framework for removal of methylene blue from aqueous solutions. Polym. Int., 2020, 69(8), 712-718.
[http://dx.doi.org/10.1002/pi.6007]
[116]
Tang, G.; Chen, W.; Wan, X.; Zhang, F.; Xu, J. Construction of magnetic Fe3O4 nanoparticles coupled with flower-like MoSe2 nanosheets for efficient adsorptive removal of methylene blue. Colloids Surf. A Physicochem. Eng. Asp., 2020, 587124291
[http://dx.doi.org/10.1016/j.colsurfa.2019.124291]
[117]
Gago, D.; Chagas, R.; Ferreira, L.M.; Velizarov, S.; Coelhoso, I. A Novel Cellulose-Based Polymer for Efficient Removal of Methylene Blue. Membranes (Basel), 2020, 10(1), 13.
[http://dx.doi.org/10.3390/membranes10010013] [PMID: 31936780]
[118]
Wong, K.T.; Wong, V.L.; Lim, S.S. Bio-sorptive removal of methyl orange by micro-grooved chitosan (GCS) Beads: Optimization of process variables using taguchi L9 Orthogonal Array. J. Polym. Environ., 2020, 2020, 1-20.
[http://dx.doi.org/10.1007/s10924-020-01878-6]
[119]
Wu, W.; Yao, T.; Xiang, Y.; Zou, H.; Zhou, Y. Efficient removal of methyl orange by a flower-like TiO2/MIL-101(Cr) composite nanomaterial. Dalton Trans., 2020, 49(17), 5722-5729.
[http://dx.doi.org/10.1039/D0DT00778A] [PMID: 32301452]
[120]
Riaz, Q.; Ahmed, M.; Zafar, M.N.; Zubair, M.; Nazar, M.F.; Sumrra, S.H.; Ahmad, I.; Hosseini-Bandegharaei, A. NiO nanoparticles for enhanced removal of methyl orange: equilibrium, kinetics, thermodynamic and desorption studies. Int. J. Environ. Anal. Chem., 2020, 2020, 1-20.
[http://dx.doi.org/10.1080/03067319.2020.1715383]
[121]
Liu, D.M.; Dong, C.; Zhong, J.; Ren, S.; Chen, Y.; Qiu, T. Facile preparation of chitosan modified magnetic kaolin by one-pot coprecipitation method for efficient removal of methyl orange. Carbohydr. Polym., 2020, 245116572
[http://dx.doi.org/10.1016/j.carbpol.2020.116572] [PMID: 32718649]
[122]
Das, T.R.; Sharma, P.K. Bimetal oxide decorated graphene oxide (Gd2O3/Bi2O3@ GO) nanocomposite as an excellent adsorbent in the removal of methyl orange dye. Mater. Sci. Semicond. Process., 2020, 105104721
[http://dx.doi.org/10.1016/j.mssp.2019.104721]
[123]
Duhan, M.; Kaur, R. Adsorptive removal of methyl orange with polyaniline nanofibers: an unconventional adsorbent for water treatment. Environ. Technol., 2020, 41(23), 2977-2990.
[http://dx.doi.org/10.1080/09593330.2019.1593511] [PMID: 30874498]
[124]
Waheed, A.; Kazi, I.W.; Manzar, M.S.; Ahmad, T.; Mansha, M.; Ullah, N.; Blaisi, N.I.A. Ultrahigh and efficient removal of Methyl orange, Eriochrom Black T and acid Blue 92 by triazine based cross-linked polyamine resin: Synthesis, isotherm and kinetic studies. Colloids Surf. A Physicochem. Eng. Asp., 2020, 607125472
[http://dx.doi.org/10.1016/j.colsurfa.2020.125472]
[125]
Yan, X.; Tian, Z.; Peng, W.; Zhang, J.; Tong, Y.; Li, J.; Sun, D.; Ge, H.; Zhang, J. Synthesis of nano-octahedral MgO via a solvothermal-solid-decomposition method for the removal of methyl orange from aqueous solutions. RSC Advances, 2020, 10(18), 10681-10688.
[http://dx.doi.org/10.1039/C9RA10296E]
[126]
Yang, H.; Yuan, H.; Hu, Q.; Liu, W. Zhang, D. Synthesis of mesoporous C/MoS2 for adsorption of methyl orange and photo-catalytic sterilization. Appl. Surf. Sci., 2020, 504144445
[http://dx.doi.org/10.1016/j.apsusc.2019.144445]
[127]
Zhu, Z.; Xiang, M.; Li, P.; Shan, L.; Zhang, P. Surfactant-modified three-dimensional layered double hydroxide for the removal of methyl orange and rhodamine B: Extended investigations in binary dye systems. J. Solid State Chem., 2020, 288121448
[http://dx.doi.org/10.1016/j.jssc.2020.121448]
[128]
Wang, Q.; Yang, Y.; Ma, S.; Wu, J. Yao, T. Preparation of Fe3O4@Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B. Colloids Surf. A Physicochem. Eng. Asp., 2020, 606125416
[http://dx.doi.org/10.1016/j.colsurfa.2020.125416]
[129]
Van Viet, P.; Van Chuyen, D.; Hien, N.Q.; Duy, N.N.; Thi, C.M. Visible-light-induced photo-Fenton degradation of rhodamine B over Fe2O3-diatomite materials. J. Sci.: Adv. Mater. Devices, 2020, 5(3), 308-315.
[130]
Biswas, S.; Pal, A. Visible light assisted Fenton type degradation of methylene blue by admicelle anchored alumina supported rod shaped manganese oxide. J. Water Process Eng., 2020, 36101272
[http://dx.doi.org/10.1016/j.jwpe.2020.101272]
[131]
Huang, X.; Nan, Z. Synergetic adsorption and photo-Fenton degradation of methylene blue by ZnFe2O4/SiO2 magnetic double-mesoporous-shelled hollow spheres. Environ. Technol., 2020, 2020, 1-13.
[http://dx.doi.org/10.1080/09593330.2020.1725142] [PMID: 32008479]
[132]
Ahmed, S.; Ahmad, Z. Development of Hexagonal Nanoscale Nickel Ferrite for the Removal of Organic Pollutant via Photo-Fenton type Catalytic Oxidation Process. Environ. Nanotechnol. Monit. Manag., 2020, 14100321
[http://dx.doi.org/10.1016/j.enmm.2020.100321]
[133]
Du, P.D.; Danh, H.T.; Pham, N.H.; Nguyen, M.T.; Nguyen, V.T.; Khieu, D.Q. Heterogeneous UV/Fenton-Like Degradation of Methyl Orange Using Iron Terephthalate MIL-53 Catalyst. J. Chem., 2020.
[134]
Anwer, H.; Mahmood, A.; Lee, J.; Kim, K.H.; Park, J.W.; Yip, A.C. Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res., 2019, 12(5), 955-972.
[http://dx.doi.org/10.1007/s12274-019-2287-0]
[135]
Deng, Y.; Zhao, R. Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep., 2015, 1(3), 167-176.
[http://dx.doi.org/10.1007/s40726-015-0015-z]
[136]
Patel, S. K.; Patel, S. G.; Patel, G. V. Degradation of Reactive Dye in Aqueous Solution by Fenton, Photo-Fenton Process and Combination Process with Activated Charcoal and TiO2. Proceedings Nat. Acad. Sci., India Sect. A: Phys. Sci 2019, 1-13.
[137]
Chuaicham, C.; Pawar, R.; Sasaki, K. Dye-sensitized photocatalyst of sepiolite for organic dye degradation. Catalysts, 2019, 9(3), 235.
[http://dx.doi.org/10.3390/catal9030235]
[138]
Ansari, M.O.; Kumar, R.; Ansari, S.P.; Hassan, M.S.A.W.; Alshahrie, A.; Barakat, M.A.E.F. Nanocarbon aerogel composites.Nanocarbon and its Composites; Woodhead Publishing, 2019, pp. 1-26.
[http://dx.doi.org/10.1016/B978-0-08-102509-3.00001-8]
[139]
Islam, M.T.; Dominguez, N.; Ahsan, M.A.; Dominguez-Cisneros, H.; Zuniga, P.; Alvarez, P.J.; Noveron, J.C. Sodium rhodizonate induced formation of gold nanoparticles supported on cellulose fibers for catalytic reduction of 4-nitrophenol and organic dyes. J. Environ. Chem. Eng., 2017, 5(5), 4185-4193.
[http://dx.doi.org/10.1016/j.jece.2017.08.017]
[140]
Tareq, R.; Akter, N.; Azam, M.S. Biochars and biochar composites: low-cost adsorbents for environmental remediation.Biochar from biomass and waste; Elsevier, 2019, pp. 169-209.
[http://dx.doi.org/10.1016/B978-0-12-811729-3.00010-8]
[141]
Sadegh, H.; Ali, G.A. Potential applications of nanomaterials in wastewater treatment: nanoadsorbents performance.Advanced Treatment Techniques for Industrial Wastewater; IGI Global, 2019, pp. 51-61.
[http://dx.doi.org/10.4018/978-1-5225-5754-8.ch004]
[142]
Tyagi, I.; Gupta, V.K.; Sadegh, H.; Ghoshekandi, R.S.; Makhlouf, A.S.H. Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci. Technol. Develop., 2017, 34(3), 195-214.
[143]
Zhang, J.H.; Wei, M.J.; Wei, Z.W.; Pan, M.; Su, C.Y. Ultrathin Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Evolution. ACS Appl. Nano Mater., 2020, 3(2), 1010-1018.
[http://dx.doi.org/10.1021/acsanm.9b02590]
[144]
Xu, J.; Shalom, M. Conjugated Carbon Nitride as an Emerging Luminescent Material: Quantum Dots, Thin Films and Their Applications in Imaging, Sensing, Optoelectronic Devices and Photoelectrochemistry. ChemPhotoChem, 2019, 3(4), 170-179.
[http://dx.doi.org/10.1002/cptc.201800256]
[145]
Zhao, Q.; Wu, W.; Wei, X.; Jiang, S.; Zhou, T.; Li, Q.; Lu, Q. Graphitic carbon nitride as electrode sensing material for tetrabromobisphenol-A determination. Sens. Actuators B Chem., 2017, 248, 673-681.
[http://dx.doi.org/10.1016/j.snb.2017.04.002]
[146]
Sun, Y.P.; Ha, W.; Chen, J.; Qi, H.Y.; Shi, Y.P. Advances and applications of graphitic carbon nitride as sorbent in analytical chemistry for sample pre-treatment: A review. TrAC Trends Analyt. Chem., 2016, 84, 12-21.
[http://dx.doi.org/10.1016/j.trac.2016.03.002]
[147]
Noda, Y.; Merschjann, C.; Tarábek, J.; Amsalem, P.; Koch, N.; Bojdys, M.J. Directional charge transport in layered two-dimensional triazine-based graphitic carbon nitride. Angew. Chem. Int. Ed. Engl., 2019, 58(28), 9394-9398.
[http://dx.doi.org/10.1002/anie.201902314] [PMID: 31070846]
[148]
Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem., 2008, 18(41), 4893-4908.
[http://dx.doi.org/10.1039/b800274f]
[149]
Das, D.; Banerjee, D.; Pahari, D.; Ghorai, U.K.; Sarkar, S.; Das, N.S.; Chattopadhyay, K.K. Defect induced tuning of photoluminescence property in graphitic carbon nitride nanosheets through synthesis conditions. J. Lumin., 2017, 185, 155-165.
[http://dx.doi.org/10.1016/j.jlumin.2017.01.007]
[150]
Algara-Siller, G.; Severin, N.; Chong, S.Y.; Björkman, T.; Palgrave, R.G.; Laybourn, A.; Antonietti, M.; Khimyak, Y.Z.; Krasheninnikov, A.V.; Rabe, J.P.; Kaiser, U.; Cooper, A.I.; Thomas, A.; Bojdys, M.J. Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew. Chem. Int. Ed. Engl., 2014, 53(29), 7450-7455.
[http://dx.doi.org/10.1002/anie.201402191] [PMID: 24838808]
[151]
Zhao, Z.; Ma, Y.; Fan, J.; Xue, Y.; Chang, H.; Masubuchi, Y.; Yin, S. Synthesis of graphitic carbon nitride from different precursors by fractional thermal polymerization method and their visible light induced photocatalytic activities. J. Alloys Compd., 2018, 735, 1297-1305.
[http://dx.doi.org/10.1016/j.jallcom.2017.11.033]
[152]
Das, D.; Banerjee, D.; Mondal, M.; Shett, A.; Das, B.; Das, N.S.; Chattopadhyay, K.K. Nickel doped graphitic carbon nitride nanosheets and its application for dye degradation by chemical catalysis. Mater. Res. Bull., 2018, 101, 291-304.
[http://dx.doi.org/10.1016/j.materresbull.2018.02.004]
[153]
Das, D.; Banerjee, D.; Das, B.; Das, N.S.; Chattopadhyay, K.K. Effect of cobalt doping into graphitic carbon nitride on photo induced removal of dye from water. Mater. Res. Bull., 2017, 89, 170-179.
[http://dx.doi.org/10.1016/j.materresbull.2017.01.034]
[154]
Paul, T.; Das, D.; Das, B.K.; Sarkar, S.; Maiti, S.; Chattopadhyay, K.K. CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst. J. Hazard. Mater., 2019, 380120855
[http://dx.doi.org/10.1016/j.jhazmat.2019.120855] [PMID: 31325693]
[155]
Wang, J.; Li, M.; Qian, M.; Zhou, S.; Xue, A.; Zhang, L.; Zhao, Y.; Xing, W. Simple synthesis of high specific surface carbon nitride for adsorption-enhanced photocatalytic performance. Nanoscale Res. Lett., 2018, 13(1), 248.
[http://dx.doi.org/10.1186/s11671-018-2654-7] [PMID: 30136161]
[156]
Ma, L.; Fan, H.; Wang, J.; Zhao, Y.; Tian, H.; Dong, G. Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance. Appl. Catal. B, 2016, 190, 93-102.
[http://dx.doi.org/10.1016/j.apcatb.2016.03.002]
[157]
Wu, M.; Gong, Y.; Nie, T.; Zhang, J.; Wang, R.; Wang, H.; He, B. Template-free synthesis of nanocage-like gC3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(10), 5324-5332.
[http://dx.doi.org/10.1039/C8TA12076E]
[158]
Sun, S.; Liang, S. Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale, 2017, 9(30), 10544-10578.
[http://dx.doi.org/10.1039/C7NR03656F] [PMID: 28726962]
[159]
Paul, D.R.; Sharma, R.; Nehra, S.P.; Sharma, A. Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Advances, 2019, 9(27), 15381-15391.
[http://dx.doi.org/10.1039/C9RA02201E]
[160]
Paul, D.R. Nehra, S. P. Graphitic carbon nitride: a sustainable photocatalyst for organic pollutant degradation and antibacterial applications. Environ. Sci. Pollut. Res. Int., 2020.
[161]
Gu, S.; Xie, J.; Li, C.M. Hierarchically porous graphitic carbon nitride: large-scale facile synthesis and its application toward photocatalytic dye degradation. RSC Advances, 2014, 4(103), 59436-59439.
[http://dx.doi.org/10.1039/C4RA10958A]
[162]
Erdogan, D.A.; Sevim, M.; Kısa, E.; Emiroglu, D.B.; Karatok, M.; Vovk, E.I.; Ozensoy, E. Photocatalytic activity of mesoporous graphitic carbon nitride (mpg-C3N4) towards organic chromophores under UV and VIS light illumination. Top. Catal., 2016, 59(15-16), 1305-1318.
[http://dx.doi.org/10.1007/s11244-016-0654-3]
[163]
Cui, Y.; Tang, Y.; Wang, X. Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants. Mater. Lett., 2015, 161, 197-200.
[http://dx.doi.org/10.1016/j.matlet.2015.08.106]
[164]
Shi, L.; Liang, L.; Wang, F.; Liu, M.; Zhong, S.; Sun, J. Tetraethylorthosilicate induced preparation of mesoporous graphitic carbon nitride with improved visible light photocatalytic activity. Catal. Commun., 2015, 59, 131-135.
[http://dx.doi.org/10.1016/j.catcom.2014.10.014]
[165]
Gao, X.; Jiao, X.; Zhang, L.; Zhu, W.; Xu, X.; Ma, H.; Chen, T. Cosolvent-free nanocasting synthesis of ordered mesoporous gC3N4 and its remarkable photocatalytic activity for methyl orange degradation. RSC Advances, 2015, 5(94), 76963-76972.
[http://dx.doi.org/10.1039/C5RA13438B]
[166]
Wang, C.; Fan, H.; Ren, X.; Fang, J.; Ma, J.; Zhao, N. Porous graphitic carbon nitride nanosheets by pre-polymerization for enhanced photocatalysis. Mater. Charact., 2018, 139, 89-99.
[http://dx.doi.org/10.1016/j.matchar.2018.02.036]
[167]
Liu, J.; Zhang, T.; Wang, Z.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem., 2011, 21(38), 14398-14401.
[http://dx.doi.org/10.1039/c1jm12620b]
[168]
Chang, F.; Li, C.; Luo, J.; Xie, Y.; Deng, B.; Hu, X. Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride. Appl. Surf. Sci., 2015, 358, 270-277.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.124]
[169]
Ibad, M.F.; Kosslick, H.; Tomm, J.W.; Frank, M.; Schulz, A. Impact of the crystallinity of mesoporous polymeric graphitic carbon nitride on the photocatalytic performance under UV and visible light. Microporous Mesoporous Mater., 2017, 254, 136-145.
[http://dx.doi.org/10.1016/j.micromeso.2017.04.052]
[170]
Li, X.; Zhang, H.; Huang, J.; Luo, J.; Feng, Z.; Wang, X. Folded nano-porous graphene-like carbon nitride with significantly improved visible-light photocatalytic activity for dye degradation. Ceram. Int., 2017, 43(17), 15785-15792.
[http://dx.doi.org/10.1016/j.ceramint.2017.08.144]
[171]
Pawar, R.C.; Kang, S.; Park, J.H.; Kim, J.H.; Ahn, S.; Lee, C.S. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability. Sci. Rep., 2016, 6, 31147.
[http://dx.doi.org/10.1038/srep31147] [PMID: 27498979]
[172]
Zhang, X.S.; Hu, J.Y.; Jiang, H. Facile modification of a graphitic carbon nitride catalyst to improve its photoreactivity under visible light irradiation. Chem. Eng. J., 2014, 256, 230-237.
[http://dx.doi.org/10.1016/j.cej.2014.07.012]
[173]
Dong, F.; Sun, Y.; Wu, L.; Fu, M.; Wu, Z. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal. Sci. Technol., 2012, 2(7), 1332-1335.
[http://dx.doi.org/10.1039/c2cy20049j]
[174]
Cui, Y.; Huang, J.; Fu, X.; Wang, X. Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors. Catal. Sci. Technol., 2012, 2(7), 1396-1402.
[http://dx.doi.org/10.1039/c2cy20036h]
[175]
Huang, Z.; Li, F.; Chen, B.; Yuan, G. Nanosheets of graphitic carbon nitride as metal-free environmental photocatalysts. Catal. Sci. Technol., 2014, 4(12), 4258-4264.
[http://dx.doi.org/10.1039/C4CY00832D]
[176]
Yan, J.; Zhou, C.; Li, P.; Chen, B.; Zhang, S.; Dong, X.; Liu, J. Nitrogen-rich graphitic carbon nitride: controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Colloids Surf. A Physicochem. Eng. Asp., 2016, 508, 257-264.
[http://dx.doi.org/10.1016/j.colsurfa.2016.08.067]
[177]
Sundaram, I.M.; Kalimuthu, S. Metal-free heterojunction of graphitic carbon nitride composite with superior and stable visible-light active photocatalysis. Mater. Chem. Phys., 2018, 204, 243-250.
[http://dx.doi.org/10.1016/j.matchemphys.2017.10.041]
[178]
Liu, S.; Li, D.; Sun, H.; Ang, H.M.; Tadé, M.O.; Wang, S. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis. J. Colloid Interface Sci., 2016, 468, 176-182.
[http://dx.doi.org/10.1016/j.jcis.2016.01.051] [PMID: 26845029]
[179]
Ye, M.Y.; Zhao, Z.H.; Hu, Z.F.; Liu, L.Q.; Ji, H.M.; Shen, Z.R.; Ma, T.Y. 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible‐light‐driven photocatalysis. Angew. Chem. Int. Ed. Engl., 2017, 56(29), 8407-8411.
[http://dx.doi.org/10.1002/anie.201611127] [PMID: 28052568]
[180]
Tonda, S.; Kumar, S.; Kandula, S.; Shanker, V. Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(19), 6772-6780.
[http://dx.doi.org/10.1039/c3ta15358d]
[181]
Nguyen, T.K.A.; Pham, T.T.; Nguyen-Phu, H.; Shin, E.W. The effect of graphitic carbon nitride precursors on the photocatalytic dye degradation of water-dispersible graphitic carbon nitride photocatalysts. Appl. Surf. Sci., 2020, 537148027
[http://dx.doi.org/10.1016/j.apsusc.2020.148027]
[182]
Masunga, N.; Mamba, B.B.; Kefeni, K.K. Trace samarium doped graphitic carbon nitride photocatalytic activity toward metanil yellow dye degradation under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp., 2020, 602125107
[http://dx.doi.org/10.1016/j.colsurfa.2020.125107]
[183]
Veisi, H.; Kazemi, S.; Mohammadi, P.; Safarimehr, P.; Hemmati, S. Catalytic reduction of 4-nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes. Polyhedron, 2019, 157, 232-240.
[http://dx.doi.org/10.1016/j.poly.2018.10.014]
[184]
Li, J. Liu, C. Y.; Liu, Y. Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem., 2012, 22(17), 8426-8430.
[http://dx.doi.org/10.1039/c2jm16386a]
[185]
Zhang, P.; Shao, C.; Zhang, Z.; Zhang, M.; Mu, J.; Guo, Z.; Liu, Y. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale, 2011, 3(8), 3357-3363.
[http://dx.doi.org/10.1039/c1nr10405e] [PMID: 21761072]
[186]
Mohammadi, P.; Heravi, M.M.; Sadjadi, S. Green synthesis of Ag NPs on magnetic polyallylamine decorated gC3N4 by Heracleum persicum extract: efficient catalyst for reduction of dyes. Sci. Rep., 2020, 10(1), 1-10.
[http://dx.doi.org/10.1038/s41598-020-63756-4] [PMID: 31913322]
[187]
Sarangapany, S.; Mohanty, K. Facile Green Synthesis of Ag@gC3N4 for Enhanced Photocatalytic and Catalytic Degradation of Organic Pollutant. J. Cluster Sci., 2020.
[http://dx.doi.org/10.1007/s10876-020-01816-5]
[188]
Fu, Y.; Huang, T.; Zhang, L.; Zhu, J.; Wang, X. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale, 2015, 7(32), 13723-13733.
[http://dx.doi.org/10.1039/C5NR03260A] [PMID: 26220662]
[189]
Kumar, Y.; Rani, S.; Shabir, J.; Kumar, L.S. Nitrogen-Rich and porous graphitic Carbon nitride nanosheet-immobilized palladium nanoparticles as highly active and recyclable catalysts for the reduction of nitro compounds and degradation of organic dyes. ACS Omega, 2020.
[http://dx.doi.org/10.1021/acsomega.0c01280]
[190]
Murugan, E.; Kumar, S.S.; Reshna, K.M.; Govindaraju, S. Highly sensitive, stable g-CN decorated with AgNPs for SERS sensing of toluidine blue and catalytic reduction of crystal violet. J. Mater. Sci., 2019, 54(7), 5294-5310.
[http://dx.doi.org/10.1007/s10853-018-3184-5]
[191]
Dorraj, M.; Sadjadi, S.; Heravi, M.M. Pd on poly(1-vinylimidazole) decorated magnetic S-doped grafitic carbon nitride: an efficient catalyst for catalytic reduction of organic dyes. Sci. Rep., 2020, 10(1), 13440.
[http://dx.doi.org/10.1038/s41598-020-70457-5] [PMID: 32778757]
[192]
Khan, S.B.; Ahmad, S.; Kamal, T.; Asiri, A.M.; Bakhsh, E.M. Metal nanoparticles decorated sodium alginate carbon nitride composite beads as effective catalyst for the reduction of organic pollutants. Int. J. Biol. Macromol., 2020, 164, 1087-1098.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.091] [PMID: 32673713]
[193]
Zhang, P.; Wang, F.; Qin, Y.; Wang, N. Exfoliated Graphitic Carbon Nitride Nanosheets/Gold Nanoparticles/Spherical Montmorillonite Ternary Porous Heterostructures for the Degradation of Organic Dyes. ACS Appl. Nano Mater., 2020, 3(8), 7847-7857.
[http://dx.doi.org/10.1021/acsanm.0c01355]
[194]
Mohanty, L.; Dash, S.K. Adsorptive Removal Of MB Dye By Graphitic-C3N4 From Industrial Effluents. Int. J. Sci. Technol. Res., 2020, 9(03), 2029-2034.
[195]
Zhu, B.; Xia, P.; Ho, W.; Yu, J. Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci., 2015, 344, 188-195.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.086]
[196]
Fronczak, M.; Krajewska, M.; Demby, K.; Bystrzejewski, M. Extraordinary adsorption of methyl blue onto sodium-doped graphitic carbon nitride. J. Phys. Chem. C, 2017, 121(29), 15756-15766.
[http://dx.doi.org/10.1021/acs.jpcc.7b03674]
[197]
Bhowmik, T.; Kundu, M.K.; Barman, S. Ultra small gold nanoparticles–graphitic carbon nitride composite: an efficient catalyst for ultrafast reduction of 4-nitrophenol and removal of organic dyes from water. RSC Advances, 2015, 5(48), 38760-38773.
[http://dx.doi.org/10.1039/C5RA04913J]
[198]
Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Ji, Y.; Wang, H.; Wang, X. β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(37), 14170-14179.
[http://dx.doi.org/10.1039/C6TA05958A]
[199]
Ren, B.; Xu, Y.; Zhang, L.; Liu, Z. Carbon-doped graphitic carbon nitride as environment-benign adsorbent for methylene blue adsorption: Kinetics, isotherm and thermodynamics study. J. Taiwan Inst. Chem. Eng., 2018, 88, 114-120.
[http://dx.doi.org/10.1016/j.jtice.2018.03.041]
[200]
Xie, M.; Wei, W.; Jiang, Z.; Xu, Y.; Xie, J. Carbon nitride nanowires/nanofibers: a novel template-free synthesis from a cyanuric chloride–melamine precursor towards enhanced adsorption and visible-light photocatalytic performance. Ceram. Int., 2016, 42(3), 4158-4170.
[http://dx.doi.org/10.1016/j.ceramint.2015.11.089]
[201]
Fronczak, M.; Demby, K.; Strachowski, P.; Strawski, M.; Bystrzejewski, M. Graphitic carbon nitride doped with the s-block metals: adsorbent for the removal of methyl blue and copper (II) ions. Langmuir, 2018, 34(25), 7272-7283.
[http://dx.doi.org/10.1021/acs.langmuir.8b01041] [PMID: 29856628]
[202]
Gan, Q.; Shi, W.; Xing, Y.; Hou, Y. A polyoxoniobate/g-C3N4 nanoporous material with high adsorption capacity of methylene blue from aqueous solution. Front Chem., 2018, 6, 7.
[http://dx.doi.org/10.3389/fchem.2018.00007] [PMID: 29445725]
[203]
Lu, P.; Hu, X.; Li, Y.; Zhang, M.; Liu, X.; He, Y.; Zhang, Z. One-step preparation of a novel SrCO3/gC3N4 nano-composite and its application in selective adsorption of crystal violet. RSC Advances, 2018, 8(12), 6315-6325.
[http://dx.doi.org/10.1039/C7RA11565B]
[204]
Chegeni, M.; Dehghan, N. Preparation of Phosphorus Doped Graphitic Carbon Nitride Using a Simple Method and Its Application for Removing Methylene Blue. Phys. Chem. Res., 2020, 8(1), 31-44.
[205]
Xu, L.; Gu, D.; Chang, X.; Chai, L.; Li, Z.; Jin, X.; Sun, S. Adsorption and photocatalytic study of dye degradation over the g-C3N4/W18O49 nanocomposite. Micro & Nano Lett., 2018, 13(4), 541-545.
[http://dx.doi.org/10.1049/mnl.2017.0719]
[206]
Yang, H.C.; Chao, M.W.; Chou, C.J.; Wang, K.H.; Hu, C. Mushroom waste-derived g-C3N4 for methyl blue adsorption and cytotoxic test for Chinese hamster ovary cells. Mater. Chem. Phys., 2020, 244122715
[http://dx.doi.org/10.1016/j.matchemphys.2020.122715]
[207]
Xu, C.; Wang, J.; Gao, B.; Dou, M.; Chen, R. Synergistic adsorption and visible-light catalytic degradation of RhB from recyclable 3D mesoporous graphitic carbon nitride/reduced graphene oxide aerogels. J. Mater. Sci., 2019, 54(12), 8892-8906.
[http://dx.doi.org/10.1007/s10853-019-03531-7]
[208]
Martins, J.T.; Guimarães, C.H.; Silva, P.M.; Oliveira, R.L.; Prediger, P. Enhanced removal of basic dye using carbon nitride/graphene oxide nanocomposites as adsorbents: high performance, recycling, and mechanism. Environ. Sci. Pollut. Res. Int., 2020, 2020, 1-20.
[http://dx.doi.org/10.1007/s11356-020-10779-z] [PMID: 32918265]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy