Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Sam Domains in Multiple Diseases

Author(s): Marian Vincenzi, Flavia Anna Mercurio and Marilisa Leone*

Volume 27, Issue 3, 2020

Page: [450 - 476] Pages: 27

DOI: 10.2174/0929867325666181009114445

Price: $65

Abstract

Background: The sterile alpha motif (Sam) domain is a small helical protein module, able to undergo homo- and hetero-oligomerization, as well as polymerization, thus forming different types of protein architectures. A few Sam domains are involved in pathological processes and consequently, they represent valuable targets for the development of new potential therapeutic routes. This study intends to collect state-of-the-art knowledge on the different modes by which Sam domains can favor disease onset and progression.

Methods: This review was build up by searching throughout the literature, for: a) the structural properties of Sam domains, b) interactions mediated by a Sam module, c) presence of a Sam domain in proteins relevant for a specific disease.

Results: Sam domains appear crucial in many diseases including cancer, renal disorders, cataracts. Often pathologies are linked to mutations directly positioned in the Sam domains that alter their stability and/or affect interactions that are crucial for proper protein functions. In only a few diseases, the Sam motif plays a kind of "side role" and cooperates to the pathological event by enhancing the action of a different protein domain.

Conclusion: Considering the many roles of the Sam domain into a significant variety of diseases, more efforts and novel drug discovery campaigns need to be engaged to find out small molecules and/or peptides targeting Sam domains. Such compounds may represent the pillars on which to build novel therapeutic strategies to cure different pathologies.

Keywords: Sam domains, drug discovery, structural biology, protein-protein interactions, diseases, therapeutic routes

[1]
Denay, G.; Vachon, G.; Dumas, R.; Zubieta, C.; Parcy, F. Plant Sam-domain proteins start to reveal their roles. Trends Plant Sci., 2017, 22(8), 718-725.
[http://dx.doi.org/10.1016/j.tplants.2017.06.006] [PMID: 28668510]
[2]
Kim, C.A.; Bowie, J.U. SAM domains: uniform structure, diversity of function. Trends Biochem. Sci., 2003, 28(12), 625-628.
[http://dx.doi.org/10.1016/j.tibs.2003.11.001] [PMID: 14659692]
[3]
Knight, M.J.; Leettola, C.; Gingery, M.; Li, H.; Bowie, J.U. A human sterile alpha motif domain polymerizome. Protein Sci., 2011, 20(10), 1697-1706.
[http://dx.doi.org/10.1002/pro.703] [PMID: 21805519]
[4]
Ramachander, R.; Bowie, J.U. SAM domains can utilize similar surfaces for the formation of polymers and closed oligomers. J. Mol. Biol., 2004, 342(5), 1353-1358.
[http://dx.doi.org/10.1016/j.jmb.2004.08.011] [PMID: 15364564]
[5]
Schultz, J.; Ponting, C.P.; Hofmann, K.; Bork, P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci., 1997, 6(1), 249-253.
[http://dx.doi.org/10.1002/pro.5560060128] [PMID: 9007998]
[6]
Qiao, F.; Bowie, J.U. The many faces of SAM. Sci. STKE, 2005, 2005(286), re7.
[PMID: 15928333]
[7]
Mercurio, F.A.; Leone, M. The sam domain of EphA2 receptor and its relevance to cancer: a novel challenge for drug discovery? Curr. Med. Chem., 2016, 23(42), 4718-4734.
[http://dx.doi.org/10.2174/0929867323666161101100722] [PMID: 27804871]
[8]
Grabrucker, A.M. A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Dev. Neurobiol., 2014, 74(2), 136-146.
[http://dx.doi.org/10.1002/dneu.22089] [PMID: 23650259]
[9]
Park, J.E.; Son, A.I.; Hua, R.; Wang, L.; Zhang, X.; Zhou, R. Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. PLoS One, 2012, 7(5), e36564.
[http://dx.doi.org/10.1371/journal.pone.0036564] [PMID: 22570727]
[10]
Mercurio, F.A.; Costantini, S.; Di Natale, C.; Pirone, L.; Guariniello, S.; Scognamiglio, P.L.; Marasco, D.; Pedone, E.M.; Leone, M. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain? Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(9), 1095-1104.
[http://dx.doi.org/10.1016/j.bbapap.2017.06.003] [PMID: 28602916]
[11]
Gerdts, J.; Summers, D.W.; Sasaki, Y.; DiAntonio, A.; Milbrandt, J. Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J. Neurosci., 2013, 33(33), 13569-13580.
[http://dx.doi.org/10.1523/JNEUROSCI.1197-13.2013] [PMID: 23946415]
[12]
Stafford, R.L.; Hinde, E.; Knight, M.J.; Pennella, M.A.; Ear, J.; Digman, M.A.; Gratton, E.; Bowie, J.U. Tandem SAM domain structure of human Caskin1: a presynaptic, self-assembling scaffold for CASK. Structure, 2011, 19(12), 1826-1836.
[http://dx.doi.org/10.1016/j.str.2011.09.018] [PMID: 22153505]
[13]
Thanos, C.D.; Faham, S.; Goodwill, K.E.; Cascio, D.; Phillips, M.; Bowie, J.U. Monomeric structure of the human EphB2 sterile alpha motif domain. J. Biol. Chem., 1999, 274(52), 37301-37306.
[http://dx.doi.org/10.1074/jbc.274.52.37301] [PMID: 10601296]
[14]
Yang, S.; Noble, C.G.; Yang, D. Characterization of DLC1-SAM equilibrium unfolding at the amino acid residue level. Biochemistry, 2009, 48(19), 4040-4049.
[http://dx.doi.org/10.1021/bi9000936] [PMID: 19317456]
[15]
Li, H.; Fung, K.L.; Jin, D.Y.; Chung, S.S.; Ching, Y.P.; Ng, I.O.; Sze, K.H.; Ko, B.C.; Sun, H. Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins, 2007, 67(4), 1154-1166.
[http://dx.doi.org/10.1002/prot.21361] [PMID: 17380510]
[16]
Meruelo, A.D.; Bowie, J.U. Identifying polymer-forming SAM domains. Proteins, 2009, 74(1), 1-5.
[http://dx.doi.org/10.1002/prot.22232] [PMID: 18831011]
[17]
Thanos, C.D.; Goodwill, K.E.; Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science, 1999, 283(5403), 833-836.
[http://dx.doi.org/10.1126/science.283.5403.833] [PMID: 9933164]
[18]
Bienz, M. Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends Biochem. Sci., 2014, 39(10), 487-495.
[http://dx.doi.org/10.1016/j.tibs.2014.08.006] [PMID: 25239056]
[19]
Leone, M.; Cellitti, J.; Pellecchia, M. NMR studies of a heterotypic Sam-Sam domain association: the interaction between the lipid phosphatase Ship2 and the EphA2 receptor. Biochemistry, 2008, 47(48), 12721-12728.
[http://dx.doi.org/10.1021/bi801713f] [PMID: 18991394]
[20]
Leone, M.; Cellitti, J.; Pellecchia, M. The Sam domain of the lipid phosphatase Ship2 adopts a common model to interact with Arap3-Sam and EphA2-Sam. BMC Struct. Biol., 2009, 9, 59.
[http://dx.doi.org/10.1186/1472-6807-9-59] [PMID: 19765305]
[21]
Mercurio, F.A.; Marasco, D.; Pirone, L.; Pedone, E.M.; Pellecchia, M.; Leone, M. Solution structure of the first Sam domain of Odin and binding studies with the EphA2 receptor. Biochemistry, 2012, 51(10), 2136-2145.
[http://dx.doi.org/10.1021/bi300141h] [PMID: 22332920]
[22]
Mercurio, F.A.; Marasco, D.; Pirone, L.; Scognamiglio, P.L.; Pedone, E.M.; Pellecchia, M.; Leone, M. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights. ChemBioChem, 2013, 14(1), 100-106.
[http://dx.doi.org/10.1002/cbic.201200592] [PMID: 23239578]
[23]
Shamseldin, H.E.; Yakulov, T.A.; Hashem, A.; Walz, G.; Alkuraya, F.S. ANKS3 is mutated in a family with autosomal recessive laterality defect. Hum. Genet., 2016, 135(11), 1233-1239.
[http://dx.doi.org/10.1007/s00439-016-1712-4] [PMID: 27417436]
[24]
Delestré, L.; Bakey, Z.; Prado, C.; Hoffmann, S.; Bihoreau, M.T.; Lelongt, B.; Gauguier, D. ANKS3 co-localises with ANKS6 in mouse renal cilia and is associated with vasopressin signaling and apoptosis in vivo in mice. PLoS One, 2015, 10(9), e0136781.
[http://dx.doi.org/10.1371/journal.pone.0136781] [PMID: 26327442]
[25]
Leettola, C.N.; Knight, M.J.; Cascio, D.; Hoffman, S.; Bowie, J.U. Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3. BMC Struct. Biol., 2014, 14, 17.
[http://dx.doi.org/10.1186/1472-6807-14-17] [PMID: 24998259]
[26]
Bakey, Z.; Bihoreau, M.T.; Piedagnel, R.; Delestré, L.; Arnould, C.; de Villiers, Ad.; Devuyst, O.; Hoffmann, S.; Ronco, P.; Gauguier, D.; Lelongt, B. The SAM domain of ANKS6 has different interacting partners and mutations can induce different cystic phenotypes. Kidney Int., 2015, 88(2), 299-310.
[http://dx.doi.org/10.1038/ki.2015.122] [PMID: 26039630]
[27]
Hoff, S.; Halbritter, J.; Epting, D.; Frank, V.; Nguyen, T.M.; van Reeuwijk, J.; Boehlke, C.; Schell, C.; Yasunaga, T.; Helmstädter, M.; Mergen, M.; Filhol, E.; Boldt, K.; Horn, N.; Ueffing, M.; Otto, E.A.; Eisenberger, T.; Elting, M.W.; van Wijk, J.A.; Bockenhauer, D.; Sebire, N.J.; Rittig, S.; Vyberg, M.; Ring, T.; Pohl, M.; Pape, L.; Neuhaus, T.J.; Elshakhs, N.A.; Koon, S.J.; Harris, P.C.; Grahammer, F.; Huber, T.B.; Kuehn, E.W.; Kramer-Zucker, A.; Bolz, H.J.; Roepman, R.; Saunier, S.; Walz, G.; Hildebrandt, F.; Bergmann, C.; Lienkamp, S.S. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat. Genet., 2013, 45(8), 951-956.
[http://dx.doi.org/10.1038/ng.2681] [PMID: 23793029]
[28]
Kurabi, A.; Brener, S.; Mobli, M.; Kwan, J.J.; Donaldson, L.W. A nuclear localization signal at the SAM-SAM domain interface of AIDA-1 suggests a requirement for domain uncoupling prior to nuclear import. J. Mol. Biol., 2009, 392(5), 1168-1177.
[http://dx.doi.org/10.1016/j.jmb.2009.08.004] [PMID: 19666031]
[29]
Lee, H.J.; Hota, P.K.; Chugha, P.; Guo, H.; Miao, H.; Zhang, L.; Kim, S.J.; Stetzik, L.; Wang, B.C.; Buck, M. NMR structure of a heterodimeric SAM:SAM complex: characterization and manipulation of EphA2 binding reveal new cellular functions of SHIP2. Structure, 2012, 20(1), 41-55.
[http://dx.doi.org/10.1016/j.str.2011.11.013] [PMID: 22244754]
[30]
Zhang, L.; Buck, M. Molecular simulations of a dynamic protein complex: role of salt-bridges and polar interactions in configurational transitions. Biophys. J., 2013, 105(10), 2412-2417.
[http://dx.doi.org/10.1016/j.bpj.2013.09.052] [PMID: 24268153]
[31]
Zhang, L.; Borthakur, S.; Buck, M. Dissociation of a dynamic protein complex studied by all-atom molecular simulations. Biophys. J., 2016, 110(4), 877-886.
[http://dx.doi.org/10.1016/j.bpj.2015.12.036] [PMID: 26910424]
[32]
Wang, Y.; Shang, Y.; Li, J.; Chen, W.; Li, G.; Wan, J.; Liu, W.; Zhang, M. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. eLife, 2018, 7, e35677.
[http://dx.doi.org/10.7554/eLife.35677] [PMID: 29749928]
[33]
Li, Z.; Buck, M. Protein association pathways and dynamics with improved potential functions in all atom MD simulations. bioRxiv, 2018.
[http://dx.doi.org/10.1101/241810]
[34]
Zhuang, G.; Hunter, S.; Hwang, Y.; Chen, J. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. J. Biol. Chem., 2007, 282(4), 2683-2694.
[http://dx.doi.org/10.1074/jbc.M608509200] [PMID: 17135240]
[35]
Rubnitz, J.E.; Pui, C.H.; Downing, J.R. The role of TEL fusion genes in pediatric leukemias. Leukemia, 1999, 13(1), 6-13.
[http://dx.doi.org/10.1038/sj.leu.2401258] [PMID: 10049061]
[36]
Tran, H.H.; Kim, C.A.; Faham, S.; Siddall, M.C.; Bowie, J.U. Native interface of the SAM domain polymer of TEL. BMC Struct. Biol., 2002, 2, 5.
[http://dx.doi.org/10.1186/1472-6807-2-5] [PMID: 12193272]
[37]
Smirnova, E.; Kwan, J.J.; Siu, R.; Gao, X.; Zoidl, G.; Demeler, B.; Saridakis, V.; Donaldson, L.W. A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein. Cell Commun. Signal., 2016, 14(1), 17.
[http://dx.doi.org/10.1186/s12964-016-0140-3] [PMID: 27549312]
[38]
Aviv, T.; Lin, Z.; Lau, S.; Rendl, L.M.; Sicheri, F.; Smibert, C.A. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol., 2003, 10(8), 614-621.
[http://dx.doi.org/10.1038/nsb956] [PMID: 12858164]
[39]
Oberstrass, F.C.; Lee, A.; Stefl, R.; Janis, M.; Chanfreau, G.; Allain, F.H. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat. Struct. Mol. Biol., 2006, 13(2), 160-167.
[http://dx.doi.org/10.1038/nsmb1038] [PMID: 16429156]
[40]
Oberstrass, F.C.; Allain, F.H.; Ravindranathan, S. Changes in dynamics of SRE-RNA on binding to the VTS1p-SAM domain studied by 13C NMR relaxation. J. Am. Chem. Soc., 2008, 130(36), 12007-12020.
[http://dx.doi.org/10.1021/ja8023115] [PMID: 18698768]
[41]
Parker, R. RNA degradation in Saccharomyces cerevisae. Genetics, 2012, 191(3), 671-702.
[http://dx.doi.org/10.1534/genetics.111.137265] [PMID: 22785621]
[42]
Ravindranathan, S.; Oberstrass, F.C.; Allain, F.H. Increase in backbone mobility of the VTS1p-SAM domain on binding to SRE-RNA. J. Mol. Biol., 2010, 396(3), 732-746.
[http://dx.doi.org/10.1016/j.jmb.2009.12.004] [PMID: 20004205]
[43]
Barrera, F.N.; Poveda, J.A.; González-Ros, J.M.; Neira, J.L. Binding of the C-terminal sterile alpha motif (SAM) domain of human p73 to lipid membranes. J. Biol. Chem., 2003, 278(47), 46878-46885.
[http://dx.doi.org/10.1074/jbc.M307846200] [PMID: 12954612]
[44]
Inoue, H.; Baba, T.; Sato, S.; Ohtsuki, R.; Takemori, A.; Watanabe, T.; Tagaya, M.; Tani, K. Roles of SAM and DDHD domains in mammalian intracellular phospholipase A1 KIAA0725p. Biochim. Biophys. Acta, 2012, 1823(4), 930-939.
[http://dx.doi.org/10.1016/j.bbamcr.2012.02.002] [PMID: 22922100]
[45]
Kwan, J.J.; Donaldson, L.W. The NMR structure of the murine DLC2 SAM domain reveals a variant fold that is similar to a four-helix bundle. BMC Struct. Biol., 2007, 7, 34.
[http://dx.doi.org/10.1186/1472-6807-7-34] [PMID: 17519008]
[46]
Rufini, S.; Lena, A.M.; Cadot, B.; Mele, S.; Amelio, I.; Terrinoni, A.; Desideri, A.; Melino, G.; Candi, E. The sterile alpha-motif (SAM) domain of p63 binds in vitro monoasialoganglioside (GM1) micelles. Biochem. Pharmacol., 2011, 82(10), 1262-1268.
[http://dx.doi.org/10.1016/j.bcp.2011.07.087] [PMID: 21820419]
[47]
Kaghad, M.; Bonnet, H.; Yang, A.; Creancier, L.; Biscan, J.C.; Valent, A.; Minty, A.; Chalon, P.; Lelias, J.M.; Dumont, X.; Ferrara, P.; McKeon, F.; Caput, D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell, 1997, 90(4), 809-819.
[http://dx.doi.org/10.1016/S0092-8674(00)80540-1] [PMID: 9288759]
[48]
Stathopulos, P.B.; Zheng, L.; Li, G.Y.; Plevin, M.J.; Ikura, M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell, 2008, 135(1), 110-122.
[http://dx.doi.org/10.1016/j.cell.2008.08.006] [PMID: 18854159]
[49]
Kim, C.A.; Phillips, M.L.; Kim, W.; Gingery, M.; Tran, H.H.; Robinson, M.A.; Faham, S.; Bowie, J.U. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J., 2001, 20(15), 4173-4182.
[http://dx.doi.org/10.1093/emboj/20.15.4173] [PMID: 11483520]
[50]
Loreto, A.; Di Stefano, M.; Gering, M.; Conforti, L. Wallerian degeneration is executed by an NMN-SARM1-dependent late Ca(2+) influx but only modestly influenced by mitochondria. Cell Rep., 2015, 13(11), 2539-2552.
[http://dx.doi.org/10.1016/j.celrep.2015.11.032] [PMID: 26686637]
[51]
Malapati, H.; Millen, S.M.J.; Buchser, W. The axon degeneration gene SARM1 is evolutionarily distinct from other TIR domain-containing proteins. Mol. Genet. Genomics, 2017, 292(4), 909-922.
[http://dx.doi.org/10.1007/s00438-017-1320-6] [PMID: 28447196]
[52]
Habbig, S.; Liebau, M.C. Ciliopathies - from rare inherited cystic kidney diseases to basic cellular function. Mol. Cell Pediatr., 2015, 2(1), 8.
[http://dx.doi.org/10.1186/s40348-015-0019-1] [PMID: 26542298]
[53]
Torres, V.E.; Harris, P.C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int., 2009, 76(2), 149-168.
[http://dx.doi.org/10.1038/ki.2009.128] [PMID: 19455193]
[54]
Torres, V.E.; Harris, P.C.; Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet, 2007, 369(9569), 1287-1301.
[http://dx.doi.org/10.1016/S0140-6736(07)60601-1] [PMID: 17434405]
[55]
Chebib, F.T.; Torres, V.E. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am. J. Kidney Dis., 2016, 67(5), 792-810.
[http://dx.doi.org/10.1053/j.ajkd.2015.07.037] [PMID: 26530876]
[56]
Rothé, B.; Leettola, C.N.; Leal-Esteban, L.; Cascio, D.; Fortier, S.; Isenschmid, M.; Bowie, J.U.; Constam, D.B. Crystal structure of Bicc1 Sam polymer and mapping of interactions between the ciliopathy-associated proteins Bicc1, ANKS3, and ANKS6. Structure, 2018, 26(2), 209-224.e6.
[http://dx.doi.org/10.1016/j.str.2017.12.002] [PMID: 29290488]
[57]
Taskiran, E.Z.; Korkmaz, E.; Gucer, S.; Kosukcu, C.; Kaymaz, F.; Koyunlar, C.; Bryda, E.C.; Chaki, M.; Lu, D.; Vadnagara, K.; Candan, C.; Topaloglu, R.; Schaefer, F.; Attanasio, M.; Bergmann, C.; Ozaltin, F. Mutations in ANKS6 cause a nephronophthisis-like phenotype with ESRD. J. Am. Soc. Nephrol., 2014, 25(8), 1653-1661.
[http://dx.doi.org/10.1681/ASN.2013060646] [PMID: 24610927]
[58]
Kan, W.; Fang, F.; Chen, L.; Wang, R.; Deng, Q. Influence of the R823W mutation on the interaction of the ANKS6-ANKS3: insights from molecular dynamics simulation and free energy analysis. J. Biomol. Struct. Dyn., 2016, 34(5), 1113-1122.
[http://dx.doi.org/10.1080/07391102.2015.1071281] [PMID: 26295479]
[59]
Cogswell, C.; Price, S.J.; Hou, X.; Guay-Woodford, L.M.; Flaherty, L.; Bryda, E.C. Positional cloning of jcpk/bpk locus of the mouse. Mamm. Genome, 2003, 14(4), 242-249.
[http://dx.doi.org/10.1007/s00335-002-2241-0] [PMID: 12682776]
[60]
Kraus, M.R.; Clauin, S.; Pfister, Y.; Di Maïo, M.; Ulinski, T.; Constam, D.; Bellanné-Chantelot, C.; Grapin-Botton, A. Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Hum. Mutat., 2012, 33(1), 86-90.
[http://dx.doi.org/10.1002/humu.21610] [PMID: 21922595]
[61]
Rothé, B.; Leal-Esteban, L.; Bernet, F.; Urfer, S.; Doerr, N.; Weimbs, T.; Iwaszkiewicz, J.; Constam, D.B. Bicc1 polymerization regulates the localization and silencing of bound mRNA. Mol. Cell. Biol., 2015, 35(19), 3339-3353.
[http://dx.doi.org/10.1128/MCB.00341-15] [PMID: 26217012]
[62]
Haargaard, B.; Wohlfahrt, J.; Fledelius, H.C.; Rosenberg, T.; Melbye, M. A nationwide Danish study of 1027 cases of congenital/infantile cataracts: etiological and clinical classifications. Ophthalmology, 2004, 111(12), 2292-2298.
[http://dx.doi.org/10.1016/j.ophtha.2004.06.024] [PMID: 15582089]
[63]
Bennett, T.M.; M’Hamdi, O.; Hejtmancik, J.F.; Shiels, A. Germ-line and somatic EPHA2 coding variants in lens aging and cataract. PLoS One, 2017, 12(12), e0189881.
[http://dx.doi.org/10.1371/journal.pone.0189881] [PMID: 29267365]
[64]
Kong, L.; Fry, M.; Al-Samarraie, M.; Gilbert, C.; Steinkuller, P.G. An update on progress and the changing epidemiology of causes of childhood blindness worldwide. J. AAPOS, 2012, 16(6), 501-507.
[http://dx.doi.org/10.1016/j.jaapos.2012.09.004] [PMID: 23237744]
[65]
Lim, Z.; Rubab, S.; Chan, Y.H.; Levin, A.V. Pediatric cataract: the Toronto experience-etiology. Am. J. Ophthalmol., 2010, 149(6), 887-892.
[http://dx.doi.org/10.1016/j.ajo.2010.01.012] [PMID: 20430363]
[66]
Dave, A.; Martin, S.; Kumar, R.; Craig, J.E.; Burdon, K.P.; Sharma, S. EphA2 mutations contribute to congenital cataract through diverse mechanisms. Mol. Vis., 2016, 22, 18-30.
[PMID: 26900323]
[67]
Berry, V.; Pontikos, N.; Albarca-Aguilera, M.; Plagnol, V.; Massouras, A.; Prescott, D.; Moore, A.T.; Arno, G.; Cheetham, M.E.; Michaelides, M. A recurrent splice-site mutation in EphA2 causing congenital posterior nuclear cataract. Ophthalmic Genet., 2018, 39(2), 236-241.
[http://dx.doi.org/10.1080/13816810.2017.1381977] [PMID: 29039721]
[68]
Zhang, H.; Zhong, J.; Bian, Z.; Fang, X.; Peng, Y.; Hu, Y. Association between polymorphisms of OGG1, EPHA2 and age-related cataract risk: a meta-analysis. BMC Ophthalmol., 2016, 16(1), 168.
[http://dx.doi.org/10.1186/s12886-016-0341-y] [PMID: 27681698]
[69]
Bu, J.; He, S.; Wang, L.; Li, J.; Liu, J.; Zhang, X. A novel splice donor site mutation in EPHA2 caused congenital cataract in a Chinese family. Indian J. Ophthalmol., 2016, 64(5), 364-368.
[http://dx.doi.org/10.4103/0301-4738.185597] [PMID: 27380975]
[70]
Reis, L.M.; Tyler, R.C.; Semina, E.V. Identification of a novel C-terminal extension mutation in EPHA2 in a family affected with congenital cataract. Mol. Vis., 2014, 20, 836-842.
[PMID: 24940039]
[71]
Sundaresan, P.; Ravindran, R.D.; Vashist, P.; Shanker, A.; Nitsch, D.; Talwar, B.; Maraini, G.; Camparini, M.; Nonyane, B.A.; Smeeth, L.; Chakravarthy, U.; Hejtmancik, J.F.; Fletcher, A.E. EPHA2 polymorphisms and age-related cataract in India. PLoS One, 2012, 7(3), e33001.
[http://dx.doi.org/10.1371/journal.pone.0033001] [PMID: 22412971]
[72]
Kaul, H.; Riazuddin, S.A.; Shahid, M.; Kousar, S.; Butt, N.H.; Zafar, A.U.; Khan, S.N.; Husnain, T.; Akram, J.; Hejtmancik, J.F.; Riazuddin, S. Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family. Mol. Vis., 2010, 16, 511-517.
[PMID: 20361013]
[73]
Jun, G.; Guo, H.; Klein, B.E.; Klein, R.; Wang, J.J.; Mitchell, P.; Miao, H.; Lee, K.E.; Joshi, T.; Buck, M.; Chugha, P.; Bardenstein, D.; Klein, A.P.; Bailey-Wilson, J.E.; Gong, X.; Spector, T.D.; Andrew, T.; Hammond, C.J.; Elston, R.C.; Iyengar, S.K.; Wang, B. EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet., 2009, 5(7), e1000584.
[http://dx.doi.org/10.1371/journal.pgen.1000584] [PMID: 19649315]
[74]
Zhang, T.; Hua, R.; Xiao, W.; Burdon, K.P.; Bhattacharya, S.S.; Craig, J.E.; Shang, D.; Zhao, X.; Mackey, D.A.; Moore, A.T.; Luo, Y.; Zhang, J.; Zhang, X. Mutations of the EPHA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum. Mutat., 2009, 30(5), E603-E611.
[http://dx.doi.org/10.1002/humu.20995] [PMID: 19306328]
[75]
Lisabeth, E.M.; Falivelli, G.; Pasquale, E.B. Eph receptor signaling and ephrins. Cold Spring Harb. Perspect. Biol., 2013, 5(9), a009159.
[http://dx.doi.org/10.1101/cshperspect.a009159] [PMID: 24003208]
[76]
Shi, Y.; De Maria, A.; Bennett, T.; Shiels, A.; Bassnett, S. A role for epha2 in cell migration and refractive organization of the ocular lens. Invest. Ophthalmol. Vis. Sci., 2012, 53(2), 551-559.
[http://dx.doi.org/10.1167/iovs.11-8568] [PMID: 22167091]
[77]
Kaplan, N.; Ventrella, R.; Peng, H.; Pal-Ghosh, S.; Arvanitis, C.; Rappoport, J.Z.; Mitchell, B.J.; Stepp, M.A.; Lavker, R.M.; Getsios, S. EphA2/Ephrin-A1 mediate corneal epithelial cell compartmentalization via ADAM10 regulation of EGFR signaling. Invest. Ophthalmol. Vis. Sci., 2018, 59(1), 393-406.
[http://dx.doi.org/10.1167/iovs.17-22941] [PMID: 29351356]
[78]
Wang, Y.; Li, Q.; Zheng, Y.; Li, G.; Liu, W. Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus. Biochem. Biophys. Res. Commun., 2016, 473(4), 1281-1287.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.059] [PMID: 27086853]
[79]
Shiels, A.; Bennett, T.M.; Knopf, H.L.; Maraini, G.; Li, A.; Jiao, X.; Hejtmancik, J.F. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol. Vis., 2008, 14, 2042-2055.
[PMID: 19005574]
[80]
Mercurio, F.A.; Di Natale, C.; Pirone, L.; Iannitti, R.; Marasco, D.; Pedone, E.M.; Palumbo, R.; Leone, M. The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors. Sci. Rep., 2017, 7(1), 17474.
[http://dx.doi.org/10.1038/s41598-017-17684-5] [PMID: 29234063]
[81]
UniProt: the universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169.
[http://dx.doi.org/10.1093/nar/gkw1099] [PMID: 27899622]
[82]
Haikarainen, T.; Krauss, S.; Lehtio, L. Tankyrases: structure, function and therapeutic implications in cancer. Curr. Pharm. Des., 2014, 20(41), 6472-6488.
[http://dx.doi.org/10.2174/1381612820666140630101525] [PMID: 24975604]
[83]
Kamal, A.; Riyaz, S.; Srivastava, A.K.; Rahim, A. Tankyrase inhibitors as therapeutic targets for cancer. Curr. Top. Med. Chem., 2014, 14(17), 1967-1976.
[http://dx.doi.org/10.2174/1568026614666140929115831] [PMID: 25262803]
[84]
Bhardwaj, A.; Yang, Y.; Ueberheide, B.; Smith, S. Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation. Nat. Commun., 2017, 8(1), 2214.
[http://dx.doi.org/10.1038/s41467-017-02363-w] [PMID: 29263426]
[85]
Chang, P.; Coughlin, M.; Mitchison, T.J. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol. Biol. Cell, 2009, 20(21), 4575-4585.
[http://dx.doi.org/10.1091/mbc.e09-06-0477] [PMID: 19759176]
[86]
Chi, N.W.; Lodish, H.F. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem., 2000, 275(49), 38437-38444.
[http://dx.doi.org/10.1074/jbc.M007635200] [PMID: 10988299]
[87]
Nagy, Z.; Kalousi, A.; Furst, A.; Koch, M.; Fischer, B.; Soutoglou, E. Tankyrases promote homologous recombination and check point activation in response to DSBs. PLoS Genet., 2016, 12(2)e1005791
[http://dx.doi.org/10.1371/journal.pgen.1005791] [PMID: 26845027]
[88]
Kulak, O.; Chen, H.; Holohan, B.; Wu, X.; He, H.; Borek, D.; Otwinowski, Z.; Yamaguchi, K.; Garofalo, L.A.; Ma, Z.; Wright, W.; Chen, C.; Shay, J.W.; Zhang, X.; Lum, L. Disruption of Wnt/beta-Catenin signaling and telomeric shortening are inextricable consequences of tankyrase inhibition in human cells. Mol. Cell. Biol., 2015, 35(14), 2425-2435.
[http://dx.doi.org/10.1128/MCB.00392-15] [PMID: 25939383]
[89]
Nayak, L.; Bhattacharyya, N.P.; De, R.K. Wnt signal transduction pathways: modules, development and evolution. BMC Syst. Biol., 2016, 10(Suppl. 2), 44.
[http://dx.doi.org/10.1186/s12918-016-0299-7] [PMID: 27490822]
[90]
Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis, 2008, 4(2), 68-75.
[http://dx.doi.org/10.4161/org.4.2.5851] [PMID: 19279717]
[91]
Mariotti, L.; Pollock, K.; Guettler, S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Br. J. Pharmacol., 2017, 174(24), 4611-4636.
[http://dx.doi.org/10.1111/bph.14038] [PMID: 28910490]
[92]
Huang, S.M.; Mishina, Y.M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G.A.; Charlat, O.; Wiellette, E.; Zhang, Y.; Wiessner, S.; Hild, M.; Shi, X.; Wilson, C.J.; Mickanin, C.; Myer, V.; Fazal, A.; Tomlinson, R.; Serluca, F.; Shao, W.; Cheng, H.; Shultz, M.; Rau, C.; Schirle, M.; Schlegl, J.; Ghidelli, S.; Fawell, S.; Lu, C.; Curtis, D.; Kirschner, M.W.; Lengauer, C.; Finan, P.M.; Tallarico, J.A.; Bouwmeester, T.; Porter, J.A.; Bauer, A.; Cong, F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 2009, 461(7264), 614-620.
[http://dx.doi.org/10.1038/nature08356] [PMID: 19759537]
[93]
DaRosa, P.A.; Ovchinnikov, S.; Xu, W.; Klevit, R.E. Structural insights into SAM domain-mediated tankyrase oligomerization. Protein Sci., 2016, 25(9), 1744-1752.
[http://dx.doi.org/10.1002/pro.2968] [PMID: 27328430]
[94]
Riccio, A.A.; McCauley, M.; Langelier, M.F.; Pascal, J.M. Tankyrase Sterile alpha motif domain polymerization is required for its role in Wnt signaling. Structure, 2016, 24(9), 1573-1581.
[http://dx.doi.org/10.1016/j.str.2016.06.022] [PMID: 27499439]
[95]
Lacronique, V.; Boureux, A.; Valle, V.D.; Poirel, H.; Quang, C.T.; Mauchauffé, M.; Berthou, C.; Lessard, M.; Berger, R.; Ghysdael, J.; Bernard, O.A.A.A. TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science, 1997, 278(5341), 1309-1312.
[http://dx.doi.org/10.1126/science.278.5341.1309] [PMID: 9360930]
[96]
Carroll, M.; Tomasson, M.H.; Barker, G.F.; Golub, T.R.; Gilliland, D.G. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc. Natl. Acad. Sci. USA, 1996, 93(25), 14845-14850.
[http://dx.doi.org/10.1073/pnas.93.25.14845] [PMID: 8962143]
[97]
Shi, X.; Hapiak, V.; Zheng, J.; Muller-Greven, J.; Bowman, D.; Lingerak, R.; Buck, M.; Wang, B.C.; Smith, A.W. A role of the SAM domain in EphA2 receptor activation. Sci. Rep., 2017, 7, 45084.
[http://dx.doi.org/10.1038/srep45084] [PMID: 28338017]
[98]
Singh, D.R.; Ahmed, F.; Paul, M.D.; Gedam, M.; Pasquale, E.B.; Hristova, K. The SAM domain inhibits EphA2 interactions in the plasma membrane. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(1), 31-38.
[http://dx.doi.org/10.1016/j.bbamcr.2016.10.011] [PMID: 27776928]
[99]
Zelinski, D.P.; Zantek, N.D.; Stewart, J.C.; Irizarry, A.R.; Kinch, M.S. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res., 2001, 61(5), 2301-2306.
[PMID: 11280802]
[100]
Kinch, M.S.; Carles-Kinch, K. Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin. Exp. Metastasis, 2003, 20(1), 59-68.
[http://dx.doi.org/10.1023/A:1022546620495] [PMID: 12650608]
[101]
Wang, H.; Lin, H.; Pan, J.; Mo, C.; Zhang, F.; Huang, B.; Wang, Z.; Chen, X.; Zhuang, J.; Wang, D.; Qiu, S. Vasculogenic mimicry in prostate cancer: the roles of EphA2 and PI3K. J. Cancer, 2016, 7(9), 1114-1124.
[http://dx.doi.org/10.7150/jca.14120] [PMID: 27326255]
[102]
Liu, F.; Park, P.J.; Lai, W.; Maher, E.; Chakravarti, A.; Durso, L.; Jiang, X.; Yu, Y.; Brosius, A.; Thomas, M.; Chin, L.; Brennan, C.; DePinho, R.A.; Kohane, I.; Carroll, R.S.; Black, P.M.; Johnson, M.D. A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res., 2006, 66(22), 10815-10823.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1408] [PMID: 17090523]
[103]
Margaryan, N.V.; Strizzi, L.; Abbott, D.E.; Seftor, E.A.; Rao, M.S.; Hendrix, M.J.C.; Hess, A.R. EphA2 as a promoter of melanoma tumorigenicity. Cancer Biol. Ther., 2009, 8(3), 279-288.
[http://dx.doi.org/10.4161/cbt.8.3.7485] [PMID: 19223760]
[104]
Thaker, P.H.; Deavers, M.; Celestino, J.; Thornton, A.; Fletcher, M.S.; Landen, C.N.; Kinch, M.S.; Kiener, P.A.; Sood, A.K. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin. Cancer Res., 2004, 10(15), 5145-5150.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0589] [PMID: 15297418]
[105]
Brannan, J.M.; Dong, W.; Prudkin, L.; Behrens, C.; Lotan, R.; Bekele, B.N.; Wistuba, I.; Johnson, F.M. Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin. Cancer Res., 2009, 15(13), 4423-4430.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0473] [PMID: 19531623]
[106]
Taddei, M.L.; Parri, M.; Angelucci, A.; Onnis, B.; Bianchini, F.; Giannoni, E.; Raugei, G.; Calorini, L.; Rucci, N.; Teti, A.; Bologna, M.; Chiarugi, P. Kinase-dependent and -independent roles of EphA2 in the regulation of prostate cancer invasion and metastasis. Am. J. Pathol., 2009, 174(4), 1492-1503.
[http://dx.doi.org/10.2353/ajpath.2009.080473] [PMID: 19264906]
[107]
Herrem, C.J.; Tatsumi, T.; Olson, K.S.; Shirai, K.; Finke, J.H.; Bukowski, R.M.; Zhou, M.; Richmond, A.L.; Derweesh, I.; Kinch, M.S.; Storkus, W.J. Expression of EphA2 is prognostic of disease-free interval and overall survival in surgically treated patients with renal cell carcinoma. Clin. Cancer Res., 2005, 11(1), 226-231.
[PMID: 15671550]
[108]
Vaught, D.; Brantley-Sieders, D.M.; Chen, J. Eph receptors in breast cancer: roles in tumor promotion and tumor suppression. Breast Cancer Res., 2008, 10(6), 217.
[http://dx.doi.org/10.1186/bcr2207] [PMID: 19144211]
[109]
Kaenel, P.; Mosimann, M.; Andres, A.C. The multifaceted roles of Eph/ephrin signaling in breast cancer. Cell Adhes. Migr., 2012, 6(2), 138-147.
[http://dx.doi.org/10.4161/cam.20154] [PMID: 22568950]
[110]
Miao, H.; Li, D.Q.; Mukherjee, A.; Guo, H.; Petty, A.; Cutter, J.; Basilion, J.P.; Sedor, J.; Wu, J.; Danielpour, D.; Sloan, A.E.; Cohen, M.L.; Wang, B. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell, 2009, 16(1), 9-20.
[http://dx.doi.org/10.1016/j.ccr.2009.04.009] [PMID: 19573808]
[111]
Macrae, M.; Neve, R.M.; Rodriguez-Viciana, P.; Haqq, C.; Yeh, J.; Chen, C.; Gray, J.W.; McCormick, F. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell, 2005, 8(2), 111-118.
[http://dx.doi.org/10.1016/j.ccr.2005.07.005] [PMID: 16098464]
[112]
Pasquale, E.B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat. Rev. Cancer, 2010, 10(3), 165-180.
[http://dx.doi.org/10.1038/nrc2806] [PMID: 20179713]
[113]
Yang, N.Y.; Fernandez, C.; Richter, M.; Xiao, Z.; Valencia, F.; Tice, D.A.; Pasquale, E.B. Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell. Signal., 2011, 23(1), 201-212.
[http://dx.doi.org/10.1016/j.cellsig.2010.09.004] [PMID: 20837138]
[114]
Barquilla, A.; Pasquale, E.B. Eph receptors and ephrins: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2015, 55, 465-487.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140226] [PMID: 25292427]
[115]
Boyd, A.W.; Lackmann, M. Signals from Eph and ephrin proteins: a developmental tool kit. Sci. STKE, 2001, 2001(112), re20.
[PMID: 11741094]
[116]
Borthakur, S.; Lee, H.; Kim, S.; Wang, B.C.; Buck, M. Binding and function of phosphotyrosines of the Ephrin A2 (EphA2) receptor using synthetic sterile α motif (SAM) domains. J. Biol. Chem., 2014, 289(28), 19694-19703.
[http://dx.doi.org/10.1074/jbc.M114.567602] [PMID: 24825902]
[117]
Lim, R.C.; Price, J.T.; Wilce, J.A. Context-dependent role of Grb7 in HER2+ve and triple-negative breast cancer cell lines. Breast Cancer Res. Treat., 2014, 143(3), 593-603.
[http://dx.doi.org/10.1007/s10549-014-2838-5] [PMID: 24464577]
[118]
Krugmann, S.; Anderson, K.E.; Ridley, S.H.; Risso, N.; McGregor, A.; Coadwell, J.; Davidson, K.; Eguinoa, A.; Ellson, C.D.; Lipp, P.; Manifava, M.; Ktistakis, N.; Painter, G.; Thuring, J.W.; Cooper, M.A.; Lim, Z.Y.; Holmes, A.B.; Dove, S.K.; Michell, R.H.; Grewal, A.; Nazarian, A.; Erdjument-Bromage, H.; Tempst, P.; Stephens, L.R.; Hawkins, P.T. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell, 2002, 9(1), 95-108.
[http://dx.doi.org/10.1016/S1097-2765(02)00434-3] [PMID: 11804589]
[119]
Raaijmakers, J.H.; Deneubourg, L.; Rehmann, H.; de Koning, J.; Zhang, Z.; Krugmann, S.; Erneux, C.; Bos, J.L. The PI3K effector Arap3 interacts with the PI(3,4,5)P3 phosphatase SHIP2 in a SAM domain-dependent manner. Cell. Signal., 2007, 19(6), 1249-1257.
[http://dx.doi.org/10.1016/j.cellsig.2006.12.015] [PMID: 17314030]
[120]
Kim, J.; Lee, H.; Kim, Y.; Yoo, S.; Park, E.; Park, S. The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors. Mol. Cell. Biol., 2010, 30(7), 1582-1592.
[http://dx.doi.org/10.1128/MCB.01605-09] [PMID: 20100865]
[121]
Lee, H.; Noh, H.; Mun, J.; Gu, C.; Sever, S.; Park, S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat. Commun., 2016, 7, 12799.
[http://dx.doi.org/10.1038/ncomms12799] [PMID: 27619642]
[122]
Mercurio, F.A.; Di Natale, C.; Pirone, L.; Scognamiglio, P.L.; Marasco, D.; Pedone, E.M.; Saviano, M.; Leone, M. Peptide fragments of Odin-Sam1: conformational analysis and interaction studies with EphA2-Sam. ChemBioChem, 2015, 16(11), 1629-1636.
[http://dx.doi.org/10.1002/cbic.201500197] [PMID: 26120079]
[123]
Mercurio, F.A.; Scognamiglio, P.L.; Di Natale, C.; Marasco, D.; Pellecchia, M.; Leone, M. CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of Ship2-Sam. Biopolymers, 2014, 101(11), 1088-1098.
[http://dx.doi.org/10.1002/bip.22512] [PMID: 24889333]
[124]
Mercurio, F.A.; Marasco, D.; Di Natale, C.; Pirone, L.; Costantini, S.; Pedone, E.M.; Leone, M. Targeting EphA2-Sam and its interactome: design and evaluation of helical peptides enriched in charged residues. ChemBioChem, 2016, 17(22), 2179-2188.
[http://dx.doi.org/10.1002/cbic.201600413] [PMID: 27763725]
[125]
Mercurio, F.A.; Pirone, L.; Di Natale, C.; Marasco, D.; Pedone, E.M.; Leone, M. Sam domain-based stapled peptides: Structural analysis and interaction studies with the Sam domains from the EphA2 receptor and the lipid phosphatase Ship2. Bioorg. Chem., 2018, 80, 602-610.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.013] [PMID: 30036816]
[126]
Forbes, S.A.; Beare, D.; Boutselakis, H.; Bamford, S.; Bindal, N.; Tate, J.; Cole, C.G.; Ward, S.; Dawson, E.; Ponting, L.; Stefancsik, R.; Harsha, B.; Kok, C.Y.; Jia, M.; Jubb, H.; Sondka, Z.; Thompson, S.; De, T.; Campbell, P.J. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res., 2017, 45(D1), D777-D783.
[http://dx.doi.org/10.1093/nar/gkw1121] [PMID: 27899578]
[127]
Pagnan, N.A.; Visinoni, A.F. Update on ectodermal dysplasias clinical classification. Am. J. Med. Genet. A., 2014, 164A(10), 2415-2423.
[http://dx.doi.org/10.1002/ajmg.a.36616] [PMID: 25098893]
[128]
Pansky, B. Review of medical embryology; Macmillan: New York, 1982.
[129]
Mues, G.I.; Griggs, R.; Hartung, A.J.; Whelan, G.; Best, L.G.; Srivastava, A.K.; D’Souza, R. From ectodermal dysplasia to selective tooth agenesis. Am. J. Med. Genet. A., 2009, 149A(9), 2037-2041.
[http://dx.doi.org/10.1002/ajmg.a.32801] [PMID: 19504606]
[130]
Deshmukh, S.; Prashanth, S. Ectodermal dysplasia: a genetic review. Int. J. Clin. Pediatr. Dent., 2012, 5(3), 197-202.
[http://dx.doi.org/10.5005/jp-journals-10005-1165] [PMID: 25206167]
[131]
Okamura, E.; Suda, N.; Baba, Y.; Fukuoka, H.; Ogawa, T.; Ohkuma, M.; Ahiko, N.; Yasue, A.; Tengan, T.; Shiga, M.; Tsuji, M.; Moriyama, K. Dental and maxillofacial characteristics of six Japanese individuals with ectrodactyly-ectodermal dysplasia-clefting syndrome. Cleft Palate Craniofac. J., 2013, 50(2), 192-200.
[http://dx.doi.org/10.1597/11-123] [PMID: 22236363]
[132]
McGrath, J.A.; Duijf, P.H.; Doetsch, V.; Irvine, A.D.; de Waal, R.; Vanmolkot, K.R.; Wessagowit, V.; Kelly, A.; Atherton, D.J.; Griffiths, W.A.; Orlow, S.J.; van Haeringen, A.; Ausems, M.G.; Yang, A.; McKeon, F.; Bamshad, M.A.; Brunner, H.G.; Hamel, B.C.; van Bokhoven, H. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum. Mol. Genet., 2001, 10(3), 221-229.
[http://dx.doi.org/10.1093/hmg/10.3.221] [PMID: 11159940]
[133]
Bougeard, G.; Hadj-Rabia, S.; Faivre, L.; Sarafan-Vasseur, N.; Frébourg, T. The Rapp-Hodgkin syndrome results from mutations of the TP63 gene. Eur. J. Hum. Genet., 2003, 11(9), 700-704.
[http://dx.doi.org/10.1038/sj.ejhg.5201004] [PMID: 12939657]
[134]
Sutton, V.R.; van Bokhoven, H. TP63-related disorders; in: GeneReviews. Adam, M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Stephens. K.; Amemiya, A. (Eds). Seattle (WA): University of Washington, Seattle;. 1993-2020.
[PMID: 20556892]
[135]
Rinne, T.; Hamel, B.; van Bokhoven, H.; Brunner, H.G. Pattern of p63 mutations and their phenotypes--update. Am. J. Med. Genet. A., 2006, 140(13), 1396-1406.
[http://dx.doi.org/10.1002/ajmg.a.31271] [PMID: 16691622]
[136]
Cambiaghi, S.; Tadini, G.; Barbareschi, M.; Menni, S.; Caputo, R. Rapp-Hodgkin syndrome and AEC syndrome: are they the same entity? Br. J. Dermatol., 1994, 130(1), 97-101.
[http://dx.doi.org/10.1111/j.1365-2133.1994.tb06891.x] [PMID: 8305327]
[137]
Crum, C.P.; McKeon, F.D. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu. Rev. Pathol., 2010, 5, 349-371.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102117] [PMID: 20078223]
[138]
Lee, H.O.; Lee, J.H.; Choi, E.; Seol, J.Y.; Yun, Y.; Lee, H. A dominant negative form of p63 inhibits apoptosis in a p53-independent manner. Biochem. Biophys. Res. Commun., 2006, 344(1), 166-172.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.128] [PMID: 16616891]
[139]
Amelio, I.; Grespi, F.; Annicchiarico-Petruzzelli, M.; Melino, G. p63 the guardian of human reproduction. Cell Cycle, 2012, 11(24), 4545-4551.
[http://dx.doi.org/10.4161/cc.22819] [PMID: 23165243]
[140]
Yang, A.; Kaghad, M.; Wang, Y.; Gillett, E.; Fleming, M.D.; Dötsch, V.; Andrews, N.C.; Caput, D.; McKeon, F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell, 1998, 2(3), 305-316.
[http://dx.doi.org/10.1016/S1097-2765(00)80275-0] [PMID: 9774969]
[141]
Augustin, M.; Bamberger, C.; Paul, D.; Schmale, H. Cloning and chromosomal mapping of the human p53-related KET gene to chromosome 3q27 and its murine homolog Ket to mouse chromosome 16. Mamm. Genome, 1998, 9(11), 899-902.
[http://dx.doi.org/10.1007/s003359900891] [PMID: 9799841]
[142]
Moll, U.M.; Slade, N. p63 and p73: roles in development and tumor formation. Mol. Cancer Res., 2004, 2(7), 371-386.
[PMID: 15280445]
[143]
Rinne, T.; Bolat, E.; Meijer, R.; Scheffer, H.; van Bokhoven, H. Spectrum of p63 mutations in a selected patient cohort affected with ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). Am. J. Med. Genet. A., 2009, 149A(9), 1948-1951.
[http://dx.doi.org/10.1002/ajmg.a.32793] [PMID: 19676060]
[144]
Sathyamurthy, A.; Freund, S.M.; Johnson, C.M.; Allen, M.D.; Bycroft, M. Structural basis of p63α SAM domain mutants involved in AEC syndrome. FEBS J., 2011, 278(15), 2680-2688.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08194.x] [PMID: 21615690]
[145]
Kawai, T.; Hayashi, R.; Nakai, H.; Shimomura, Y.; Kurban, M.; Hamie, L.; Fujikawa, H.; Fujimoto, A.; Abe, R. A heterozygous mutation in the SAM domain of p63 underlies a mild form of ectodermal dysplasia. J. Dermatol. Sci., 2018, 90(3), 360-363.
[http://dx.doi.org/10.1016/j.jdermsci.2018.02.006] [PMID: 29526522]
[146]
Raymond, F.L. X linked mental retardation: a clinical guide. J. Med. Genet., 2006, 43(3), 193-200.
[http://dx.doi.org/10.1136/jmg.2005.033043] [PMID: 16118346]
[147]
Ropers, H.H.; Hamel, B.C. X-linked mental retardation. Nat. Rev. Genet., 2005, 6(1), 46-57.
[http://dx.doi.org/10.1038/nrg1501] [PMID: 15630421]
[148]
Stafford, R.L.; Ear, J.; Knight, M.J.; Bowie, J.U. The molecular basis of the Caskin1 and Mint1 interaction with CASK. J. Mol. Biol., 2011, 412(1), 3-13.
[http://dx.doi.org/10.1016/j.jmb.2011.07.005] [PMID: 21763699]
[149]
Hsueh, Y.P. The role of the MAGUK protein CASK in neural development and synaptic function. Curr. Med. Chem., 2006, 13(16), 1915-1927.
[http://dx.doi.org/10.2174/092986706777585040] [PMID: 16842202]
[150]
Tabuchi, K.; Biederer, T.; Butz, S.; Sudhof, T.C. CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. J. Neurosci., 2002, 22(11), 4264-4273.
[http://dx.doi.org/10.1523/JNEUROSCI.22-11-04264.2002] [PMID: 12040031]
[151]
Balázs, A.; Csizmok, V.; Buday, L.; Rakács, M.; Kiss, R.; Bokor, M.; Udupa, R.; Tompa, K.; Tompa, P. High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK-interactive protein1. FEBS J., 2009, 276(14), 3744-3756.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07090.x] [PMID: 19523119]
[152]
Wang, J.T.; Medress, Z.A.; Barres, B.A. Axon degeneration: molecular mechanisms of a self-destruction pathway. J. Cell Biol., 2012, 196(1), 7-18.
[http://dx.doi.org/10.1083/jcb.201108111] [PMID: 22232700]
[153]
Coleman, M.P.; Freeman, M.R. Wallerian degeneration, wld(s), and nmnat. Annu. Rev. Neurosci., 2010, 33, 245-267.
[http://dx.doi.org/10.1146/annurev-neuro-060909-153248] [PMID: 20345246]
[154]
Conforti, L.; Gilley, J.; Coleman, M.P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci., 2014, 15(6), 394-409.
[http://dx.doi.org/10.1038/nrn3680] [PMID: 24840802]
[155]
Saxena, S.; Caroni, P. Mechanisms of axon degeneration: from development to disease. Prog. Neurobiol., 2007, 83(3), 174-191.
[http://dx.doi.org/10.1016/j.pneurobio.2007.07.007] [PMID: 17822833]
[156]
Chahwan, C.; Chahwan, R. Aicardi-Goutieres syndrome: from patients to genes and beyond. Clin. Genet., 2012, 81(5), 413-420.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01825.x] [PMID: 22149989]
[157]
Crow, Y.J.; Hayward, B.E.; Parmar, R.; Robins, P.; Leitch, A.; Ali, M.; Black, D.N.; van Bokhoven, H.; Brunner, H.G.; Hamel, B.C.; Corry, P.C.; Cowan, F.M.; Frints, S.G.; Klepper, J.; Livingston, J.H.; Lynch, S.A.; Massey, R.F.; Meritet, J.F.; Michaud, J.L.; Ponsot, G.; Voit, T.; Lebon, P.; Bonthron, D.T.; Jackson, A.P.; Barnes, D.E.; Lindahl, T. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet., 2006, 38(8), 917-920.
[http://dx.doi.org/10.1038/ng1845] [PMID: 16845398]
[158]
Crow, Y.J.; Leitch, A.; Hayward, B.E.; Garner, A.; Parmar, R.; Griffith, E.; Ali, M.; Semple, C.; Aicardi, J.; Babul-Hirji, R.; Baumann, C.; Baxter, P.; Bertini, E.; Chandler, K.E.; Chitayat, D.; Cau, D.; Déry, C.; Fazzi, E.; Goizet, C.; King, M.D.; Klepper, J.; Lacombe, D.; Lanzi, G.; Lyall, H.; Martínez-Frías, M.L.; Mathieu, M.; McKeown, C.; Monier, A.; Oade, Y.; Quarrell, O.W.; Rittey, C.D.; Rogers, R.C.; Sanchis, A.; Stephenson, J.B.P.; Tacke, U.; Till, M.; Tolmie, J.L.; Tomlin, P.; Voit, T.; Weschke, B.; Woods, C.G.; Lebon, P.; Bonthron, D.T.; Ponting, C.P.; Jackson, A.P. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat. Genet., 2006, 38(8), 910-916.
[http://dx.doi.org/10.1038/ng1842] [PMID: 16845400]
[159]
Rice, G.I.; Bond, J.; Asipu, A.; Brunette, R.L.; Manfield, I.W.; Carr, I.M.; Fuller, J.C.; Jackson, R.M.; Lamb, T.; Briggs, T.A.; Ali, M.; Gornall, H.; Couthard, L.R.; Aeby, A.; Attard-Montalto, S.P.; Bertini, E.; Bodemer, C.; Brockmann, K.; Brueton, L.A.; Corry, P.C.; Desguerre, I.; Fazzi, E.; Cazorla, A.G.; Gener, B.; Hamel, B.C.J.; Heiberg, A.; Hunter, M.; van der Knaap, M.S.; Kumar, R.; Lagae, L.; Landrieu, P.G.; Lourenco, C.M.; Marom, D.; McDermott, M.F.; van der Merwe, W.; Orcesi, S.; Prendiville, J.S.; Rasmussen, M.; Shalev, S.A.; Soler, D.M.; Shinawi, M.; Spiegel, R.; Tan, T.Y.; Vanderver, A.; Wakeling, E.L.; Wassmer, E.; Whittaker, E.; Lebon, P.; Stetson, D.B.; Bonthron, D.T.; Crow, Y.J. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet., 2009, 41(7), 829-832.
[http://dx.doi.org/10.1038/ng.373] [PMID: 19525956]
[160]
Beloglazova, N.; Flick, R.; Tchigvintsev, A.; Brown, G.; Popovic, A.; Nocek, B.; Yakunin, A.F. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J. Biol. Chem., 2013, 288(12), 8101-8110.
[http://dx.doi.org/10.1074/jbc.M112.431148] [PMID: 23364794]
[161]
Seamon, K.J.; Sun, Z.; Shlyakhtenko, L.S.; Lyubchenko, Y.L.; Stivers, J.T. SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res., 2015, 43(13), 6486-6499.
[http://dx.doi.org/10.1093/nar/gkv633] [PMID: 26101257]
[162]
Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Ségéral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature, 2011, 474(7353), 654-657.
[http://dx.doi.org/10.1038/nature10117] [PMID: 21613998]
[163]
Buzovetsky, O.; Tang, C.; Knecht, K.M.; Antonucci, J.M.; Wu, L.; Ji, X.; Xiong, Y. The SAM domain of mouse SAMHD1 is critical for its activation and regulation. Nat. Commun., 2018, 9(1), 411.
[http://dx.doi.org/10.1038/s41467-017-02783-8] [PMID: 29379009]
[164]
Crow, Y.J.; Rehwinkel, J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet., 2009, 18(R2), R130-R136.
[http://dx.doi.org/10.1093/hmg/ddp293] [PMID: 19808788]
[165]
Shi, R.; Redman, P.; Ghose, D.; Hwang, H.; Liu, Y.; Ren, X.; Ding, L.J.; Liu, M.; Jones, K.J.; Xu, W. Shank proteins differentially regulate synaptic transmission. eNeuro,, 2017, 4(6), ENEURO.0163-15.2017.
[http://dx.doi.org/10.1523/ENEURO.0163-15.2017] [PMID: 29250591]
[166]
Baron, M.K.; Boeckers, T.M.; Vaida, B.; Faham, S.; Gingery, M.; Sawaya, M.R.; Salyer, D.; Gundelfinger, E.D.; Bowie, J.U. An architectural framework that may lie at the core of the postsynaptic density. Science, 2006, 311(5760), 531-535.
[http://dx.doi.org/10.1126/science.1118995] [PMID: 16439662]
[167]
Boeckers, T.M.; Liedtke, T.; Spilker, C.; Dresbach, T.; Bockmann, J.; Kreutz, M.R.; Gundelfinger, E.D. C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3. J. Neurochem., 2005, 92(3), 519-524.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02910.x] [PMID: 15659222]
[168]
Boeckers, T.M. The postsynaptic density. Cell Tissue Res., 2006, 326(2), 409-422.
[http://dx.doi.org/10.1007/s00441-006-0274-5] [PMID: 16865346]
[169]
Kaizuka, T.; Takumi, T. Postsynaptic density proteins and their involvement in neurodevelopmental disorders. J. Biochem., 2018, 163(6), 447-455.
[http://dx.doi.org/10.1093/jb/mvy022] [PMID: 29415158]
[170]
Jiang, Y.H.; Ehlers, M.D. Modeling autism by SHANK gene mutations in mice. Neuron, 2013, 78(1), 8-27.
[http://dx.doi.org/10.1016/j.neuron.2013.03.016] [PMID: 23583105]
[171]
Scannevin, R.H.; Huganir, R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci., 2000, 1(2), 133-141.
[http://dx.doi.org/10.1038/35039075] [PMID: 11252776]
[172]
Boeckers, T.M.; Bockmann, J.; Kreutz, M.R.; Gundelfinger, E.D. ProSAP/Shank proteins - a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J. Neurochem., 2002, 81(5), 903-910.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00931.x] [PMID: 12065602]
[173]
Monteiro, P.; Feng, G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci., 2017, 18(3), 147-157.
[http://dx.doi.org/10.1038/nrn.2016.183] [PMID: 28179641]
[174]
Gauthier, J.; Spiegelman, D.; Piton, A.; Lafrenière, R.G.; Laurent, S.; St-Onge, J.; Lapointe, L.; Hamdan, F.F.; Cossette, P.; Mottron, L.; Fombonne, E.; Joober, R.; Marineau, C.; Drapeau, P.; Rouleau, G.A. Novel de novo SHANK3 mutation in autistic patients. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(3), 421-424.
[http://dx.doi.org/10.1002/ajmg.b.30822] [PMID: 18615476]
[175]
Boccuto, L.; Lauri, M.; Sarasua, S.M.; Skinner, C.D.; Buccella, D.; Dwivedi, A.; Orteschi, D.; Collins, J.S.; Zollino, M.; Visconti, P.; Dupont, B.; Tiziano, D.; Schroer, R.J.; Neri, G.; Stevenson, R.E.; Gurrieri, F.; Schwartz, C.E. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur. J. Hum. Genet., 2013, 21(3), 310-316.
[http://dx.doi.org/10.1038/ejhg.2012.175] [PMID: 22892527]
[176]
Sala, C.; Vicidomini, C.; Bigi, I.; Mossa, A.; Verpelli, C. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J. Neurochem., 2015, 135(5), 849-858.
[http://dx.doi.org/10.1111/jnc.13232] [PMID: 26338675]
[177]
Wang, X.; Xu, Q.; Bey, A.L.; Lee, Y.; Jiang, Y.H. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol. Autism, 2014, 5(30), 30.
[http://dx.doi.org/10.1186/2040-2392-5-30] [PMID: 25071925]
[178]
Durand, C.M.; Betancur, C.; Boeckers, T.M.; Bockmann, J.; Chaste, P.; Fauchereau, F.; Nygren, G.; Rastam, M.; Gillberg, I.C.; Anckarsäter, H.; Sponheim, E.; Goubran-Botros, H.; Delorme, R.; Chabane, N.; Mouren-Simeoni, M.C.; de Mas, P.; Bieth, E.; Rogé, B.; Héron, D.; Burglen, L.; Gillberg, C.; Leboyer, M.; Bourgeron, T. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet., 2007, 39(1), 25-27.
[http://dx.doi.org/10.1038/ng1933] [PMID: 17173049]
[179]
Aloj, G.; Giardino, G.; Valentino, L.; Maio, F.; Gallo, V.; Esposito, T.; Naddei, R.; Cirillo, E.; Pignata, C. Severe combined immunodeficiences: new and old scenarios. Int. Rev. Immunol., 2012, 31(1), 43-65.
[http://dx.doi.org/10.3109/08830185.2011.644607] [PMID: 22251007]
[180]
Picard, C.; McCarl, C.A.; Papolos, A.; Khalil, S.; Lüthy, K.; Hivroz, C.; LeDeist, F.; Rieux-Laucat, F.; Rechavi, G.; Rao, A.; Fischer, A.; Feske, S. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med., 2009, 360(19), 1971-1980.
[http://dx.doi.org/10.1056/NEJMoa0900082] [PMID: 19420366]
[181]
Novello, M.J.; Zhu, J.; Feng, Q.; Ikura, M.; Stathopulos, P.B. Structural elements of stromal interaction molecule function. Cell Calcium, 2018, 73, 88-94.
[http://dx.doi.org/10.1016/j.ceca.2018.04.006] [PMID: 29698850]
[182]
Feske, S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol. Rev., 2009, 231(1), 189-209.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00818.x] [PMID: 19754898]
[183]
Ma, G.; Zheng, S.; Ke, Y.; Zhou, L.; He, L.; Huang, Y.; Wang, Y.; Zhou, Y. Molecular Determinants for STIM1 activation during store- operated Ca2+ entry. Curr. Mol. Med., 2017, 17(1), 60-69.
[http://dx.doi.org/10.2174/1566524017666170220103731] [PMID: 28231751]
[184]
Prakriya, M.; Lewis, R.S. Store-operated calcium channels. Physiol. Rev., 2015, 95(4), 1383-1436.
[http://dx.doi.org/10.1152/physrev.00020.2014] [PMID: 26400989]
[185]
Lacruz, R.S.; Feske, S. Diseases caused by mutations in ORAI1 and STIM1. Ann. N. Y. Acad. Sci., 2015, 1356, 45-79.
[http://dx.doi.org/10.1111/nyas.12938] [PMID: 26469693]
[186]
Daoudi, C.; Boutimzine, N.; Haouzi, S.E.; Lezrek, O.; Tachfouti, S.; Lezrek, M.; Laghmari, M.; Daoudi, R. [Usher syndrome: about a case]. Pan Afr. Med. J., 2017, 27(217), 217.
[PMID: 28979619]
[187]
Yan, J.; Pan, L.; Chen, X.; Wu, L.; Zhang, M. The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4040-4045.
[http://dx.doi.org/10.1073/pnas.0911385107] [PMID: 20142502]
[188]
Ben-Rebeh, I.; Grati, M.; Bonnet, C.; Bouassida, W.; Hadjamor, I.; Ayadi, H.; Ghorbel, A.; Petit, C.; Masmoudi, S. Genetic analysis of Tunisian families with Usher syndrome type 1: toward improving early molecular diagnosis. Mol. Vis., 2016, 22, 827-835.
[PMID: 27440999]
[189]
Verpy, E.; Leibovici, M.; Zwaenepoel, I.; Liu, X.Z.; Gal, A.; Salem, N.; Mansour, A.; Blanchard, S.; Kobayashi, I.; Keats, B.J.B.; Slim, R.; Petit, C. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat. Genet., 2000, 26(1), 51-55.
[http://dx.doi.org/10.1038/79171] [PMID: 10973247]
[190]
Weil, D.; El-Amraoui, A.; Masmoudi, S.; Mustapha, M.; Kikkawa, Y.; Lainé, S.; Delmaghani, S.; Adato, A.; Nadifi, S.; Zina, Z.B.; Hamel, C.; Gal, A.; Ayadi, H.; Yonekawa, H.; Petit, C. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum. Mol. Genet., 2003, 12(5), 463-471.
[http://dx.doi.org/10.1093/hmg/ddg051] [PMID: 12588794]
[191]
Bolz, H.; von Brederlow, B.; Ramírez, A.; Bryda, E.C.; Kutsche, K.; Nothwang, H.G.; Seeliger, M. del C-Salcedó Cabrera, M.; Vila, M.C.; Molina, O.P.; Gal, A.; Kubisch, C. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat. Genet., 2001, 27(1), 108-112.
[http://dx.doi.org/10.1038/83667] [PMID: 11138009]
[192]
Ahmed, Z.M.; Riazuddin, S.; Bernstein, S.L.; Ahmed, Z.; Khan, S.; Griffith, A.J.; Morell, R.J.; Friedman, T.B.; Riazuddin, S.; Wilcox, E.R. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am. J. Hum. Genet., 2001, 69(1), 25-34.
[http://dx.doi.org/10.1086/321277] [PMID: 11398101]
[193]
Kalay, E.; de Brouwer, A.P.M.; Caylan, R.; Nabuurs, S.B.; Wollnik, B.; Karaguzel, A.; Heister, J.G.A.M.; Erdol, H.; Cremers, F.P.M.; Cremers, C.W.R.J.; Brunner, H.G.; Kremer, H. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome. J. Mol. Med. (Berl.), 2005, 83(12), 1025-1032.
[http://dx.doi.org/10.1007/s00109-005-0719-4] [PMID: 16283141]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy