Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Nanophotocatalysis for the Removal of Pharmaceutical Residues from Water Bodies: State of Art and Recent Trends

Author(s): Mekha Susan Rajan, Anju John and Jesty Thomas*

Volume 18, Issue 3, 2022

Published on: 12 April, 2021

Page: [288 - 308] Pages: 21

DOI: 10.2174/1573411017666210412095354

Price: $65

Abstract

Background: The occurrence of pharmaceuticals in surface and drinking water is ubiquitous and is a major concern of researchers. These compounds cause a destructive impact on aquatic and terrestrial life forms, and the removal of these compounds from the environment is a challenging issue. Existent conventional wastewater treatment processes are generally inefficacious because of their low degradation efficiency and inadequate techniques associated with the disposal of adsorbed pollutants during comparatively effective methods like the adsorption process.

Remediation Method: Semiconductor-mediated photocatalysis is an attractive technology for the efficient removal of pharmaceutical compounds. Among various semiconductors, TiO2 and ZnObased photocatalysts gained much interest during the last years because of their efficiency in decomposing and mineralizing the lethal organic pollutants with the utilization of UV-visible light. Incessant efforts are being undertaken for tuning the physicochemical, optical, and electronic properties of these photocatalysts to strengthen their overall photocatalytic performance with good recycling efficiency.

Results: This review attempts to showcase the recent progress in the rational design and fabrication of nanosized TiO2 and ZnO photocatalysts for the removal of pollutants derived from the pharmaceutical industry and hospital wastes.

Conclusion: Photocatalysis involving TiO2 and ZnO provides a positive impact on pollution management and could be successfully applied to remove pharmaceuticals from wastewater streams. Structure modifications, the introduction of heteroatoms, and the integration of polymers with these nano photocatalysts offer leapfrogging opportunities for broader applications in the field of photocatalysis.

Keywords: Photocatalysis, TiO2, ZnO, solar light, pharmaceuticals, wastewater

Graphical Abstract

[1]
Liu, J.; Dan, X.; Lu, G.; Shen, J.; Wu, D.; Yan, Z. Investigation of pharmaceutically active compounds in an urban receiving water: Occurrence, fate and environmental risk assessment. Ecotoxicol. Environ. Saf., 2018, 154, 214-220.
[http://dx.doi.org/10.1016/j.ecoenv.2018.02.052] [PMID: 29476970]
[2]
Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int., 2013, 59, 208-224.
[http://dx.doi.org/10.1016/j.envint.2013.06.012] [PMID: 23838081]
[3]
Zhu, X.; Wang, Y.; Zhou, D. TiO2 photocatalytic degradation of tetracycline as affected by a series of environmental factors. J. Soils Sediments, 2014, 14(8), 1350-1358.
[http://dx.doi.org/10.1007/s11368-014-0883-7]
[4]
Reyes, C.; Fernandez, J.; Freer, J.; Mondaca, M.A.; Zaror, C.; Malato, S.; Mansilla, H.D. Degradation and inactivation of tetracycline by TiO2 photocatalysis. J. Photochem. Photobiol. Chem., 2006, 184(1-2), 141-146.
[http://dx.doi.org/10.1016/j.jphotochem.2006.04.007]
[5]
Kanakaraju, D.; Glass, B.D.; Oelgemoller, M. Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ. Chem. Lett., 2014, 12(1), 27-47.
[http://dx.doi.org/10.1007/s10311-013-0428-0]
[6]
Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J., 2017, 323, 361-380.
[http://dx.doi.org/10.1016/j.cej.2017.04.106]
[7]
Khasawneh, O.F.S.; Palaniandy, P. Photocatalytic degradation of pharmaceuticals usingTiO2 based nanocomposite catalyst-Review. Civil Environ. Eng. Reports, 2019, 29(3), 1-33.
[http://dx.doi.org/10.2478/ceer-2019-0021]
[8]
Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev., 2019, 119(6), 3510-3673.
[http://dx.doi.org/10.1021/acs.chemrev.8b00299] [PMID: 30830758]
[9]
Bagheri, H.; Afkhami, A.; Noroozi, A. Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review. Anal. Bioanal. Chem. Res, 2016, 3(1), 1-18.
[10]
Bundschuh, M.; Hahn, T.; Ehrlich, B.; Höltge, S.; Kreuzig, R.; Schulz, R. Acute toxicity and environmental risks of five veterinary pharmaceuticals for aquatic macroinvertebrates. Bull. Environ. Contam. Toxicol., 2016, 96(2), 139-143.
[http://dx.doi.org/10.1007/s00128-015-1656-8] [PMID: 26408031]
[11]
Lee, C.M.; Palaniandy, P.; Dahlan, I. Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review. Environ. Earth Sci., 2017, 76(17), 611.
[http://dx.doi.org/10.1007/s12665-017-6924-y]
[12]
Mirzaei, R.; Mesdaghinia, A.; Hoseini, S.S.; Yunesian, M. Antibiotics in urban wastewater and rivers of Tehran, Iran: Consumption, mass load, occurrence, and ecological risk. Chemosphere, 2019, 221, 55-66.
[http://dx.doi.org/10.1016/j.chemosphere.2018.12.187] [PMID: 30634149]
[13]
Li, Q.; Jia, R.; Shao, J.; He, Y. Photocatalytic degradation of amoxicillin via TiO2 nanoparticle coupling with a novel submerged porous ceramic membrane reactor. J. Clean. Prod., 2019, 209, 755-761.
[http://dx.doi.org/10.1016/j.jclepro.2018.10.183]
[14]
O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations., 2016. Available from: https://amr-review. org/sites/default/files/160518_Final%20paper_with%20cover.pdf
[15]
Cai, Z.; Dwivedi, A.D.; Lee, W.N.; Zhao, X.; Liu, W.; Sillanpaa, M.; Zhao, D.; Huang, C.H.; Fu, J. Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environ. Sci. Nano, 2018, 5(1), 27-47.
[http://dx.doi.org/10.1039/C7EN00644F]
[16]
Kaur, A.; Saluanke, D.B.; Umar, A.; Mehta, S.K.; Sinha, A.S.K.; Kansal, S.K. Visible light driven photocatalytic degradation of fluoroquinolone levofloxacin drug using Ag2O/TiO2 quantum dots: A mechanistic study and degradation pathway. New J. Chem., 2017, 41(20), 12079-12090.
[http://dx.doi.org/10.1039/C7NJ02053H]
[17]
Ebele, A.J.; Abdallah, M.A.E.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam, 2017, 3(1), 1-16.
[http://dx.doi.org/10.1016/j.emcon.2016.12.004]
[18]
Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ., 2007, 377(2-3), 255-272.
[http://dx.doi.org/10.1016/j.scitotenv.2007.01.095] [PMID: 17363035]
[19]
Vieno, N.M.; Härkki, H.; Tuhkanen, T.; Kronberg, L. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ. Sci. Technol., 2007, 41(14), 5077-5084.
[http://dx.doi.org/10.1021/es062720x] [PMID: 17711226]
[20]
Shekofteh-Gohari, M.; Habibi-Yangjeh, A. Fe3O4/ZnO/CoWO4 nanocomposites: novel magnetically separable visible-light-driven photocatalysts with enhanced activity in degradation of different dye pollutants. Ceram. Int., 2017, 43(3), 3063-3071.
[http://dx.doi.org/10.1016/j.ceramint.2016.11.115]
[21]
Anirudhan, T.S.; Shainy, F.; Mohan, A.M. Fabrication of zinc oxide nanorod incorporated carboxylic graphene/polyaniline composite and its photocatalytic activity for the effective degradation of diuron from aqueous solutions. Sol. Energy, 2018, 171, 534-546.
[http://dx.doi.org/10.1016/j.solener.2018.06.111]
[22]
Ganiyu, S.O.; Van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separ. Purif. Tech., 2015, 156, 891-914.
[http://dx.doi.org/10.1016/j.seppur.2015.09.059]
[23]
Van der Bruggen, B.; Manttari, M.; Nystrom, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Separ. Purif. Tech., 2008, 63(2), 251-263.
[http://dx.doi.org/10.1016/j.seppur.2008.05.010]
[24]
Zhou, T.; Lim, T.T.; Chin, S.S.; Fane, A.G. Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment. Chem. Eng. J., 2011, 166(3), 932-939.
[http://dx.doi.org/10.1016/j.cej.2010.11.078]
[25]
Zaho, C.; Zhou, Y.; de Ridder, D.J.; Zhai, J.; Wei, Y.; Deng, H. Advantages of TiO2/5A composite catalyst for photocatalytic degradation of antibiotic oxytetracycline in aqueous solution: comparison between TiO2 and TiO2/5A composite system. Chem. Eng. J., 2014, 248, 280-289.
[http://dx.doi.org/10.1016/j.cej.2014.03.050]
[26]
Xu, C.; Wu, H.; Gu, F.L. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites. J. Hazard. Mater., 2014, 275, 185-192.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.064] [PMID: 24857901]
[27]
Farre, M.J.; Brosillon, S.; Domenech, X.; Peral, J. Evaluation of the intermediates generated during the degradation of Diuron and Linuron herbicides by the photo- Fenton reaction. J. Photochem. Photobiol. Chem., 2007, 189(2-3), 364-373.
[http://dx.doi.org/10.1016/j.jphotochem.2007.02.028]
[28]
Klauson, D.; Babkina, J.; Stepanova, K.; Krichevskaya, M.; Preis, S. Aqueous photocatalytic oxidation of amoxicillin. Catal. Today, 2010, 151(1-2), 39-45.
[http://dx.doi.org/10.1016/j.cattod.2010.01.015]
[29]
Palaminos, R.; Freer, J.; Mondaca, M.A.; Mansilla, H.D. Evidence for hole participation during photocatalytic oxidation of the antibiotic flumequine. J. Photochem. Photobiol. Chem., 2008, 193(2-3), 139-145.
[http://dx.doi.org/10.1016/j.jphotochem.2007.06.017]
[30]
Zhang, T.; Wang, X.; Zhang, X. Recent progress in TiO2-mediated solar photocatalysis for industrial wastewater treatment. Int. J. Photoenergy, 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/607954]
[31]
Lakshmi, G.S.; Lakshmi, M.V.V.C. Removal of organic pollutants from the pharmaceutical effluent by TiO2 based photocatalysis. Int J Innov Res Sci Eng Technol, 2016, 5(8), 15831-15838.
[32]
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63(12), 515-582.
[http://dx.doi.org/10.1016/j.surfrep.2008.10.001]
[33]
Haque, F.; Vaisman, E.; Langford, C.H.; Kantzas, A. Preparation and performance of integrated photocatalyst adsorbent (IPCA) employed to degrade model organic compounds in synthetic wastewater. J. Photochem. Photobiol. Chem., 2005, 169(1), 21-27.
[http://dx.doi.org/10.1016/j.jphotochem.2004.05.019]
[34]
Kathiravan, A.; Jhonsi, M.A.; Renganathan, R. Photoinduced interaction of colloidal TiO2 nanoparticles with lysozyme: Evidences from spectroscopic studies. J. Lumin., 2011, 131(9), 1975-1981.
[http://dx.doi.org/10.1016/j.jlumin.2011.04.004]
[35]
Minero, C. Kinetic analysis of photoinduced reactions at the water semiconductor interface. Catal. Today, 1999, 54(2-3), 205-216.
[http://dx.doi.org/10.1016/S0920-5861(99)00183-2]
[36]
Hunge, Y.M.; Yadav, A.A. Basics and advanced developments in photocatalysis – a review (Mini review). Int. J. Hydrol, 2018, 2(4), 539-540.
[http://dx.doi.org/10.15406/ijh.2018.02.00122]
[37]
Fanourakis, S. K.; Pena-Bahamonde, J.; Bandara, P. C.; Rodrigues, D. F. Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. npj Clean Water, 2020, 3(1), 1-5.
[38]
Mestre, A.S.; Carvalho, A.P. Photocatalytic degradation of pharmaceuticals carbamazepine, diclofenac, and sulfamethoxazole by semiconductor and carbon materials: A review. Molecules, 2019, 24(20), 3702.
[http://dx.doi.org/10.3390/molecules24203702] [PMID: 31618947]
[39]
Dutta, V.; Singh, P.; Shandilya, P.; Sharma, S.; Raizada, P.; Saini, A.K.; Gupta, V.K.; Hosseini-Bandegharaei, A.; Agarwal, S.; Rahmani-Sani, A. Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. J. Environ. Chem. Eng., 2019, 7(3)103132
[http://dx.doi.org/10.1016/j.jece.2019.103132]
[40]
Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater., 2012, 24(2), 229-251.
[http://dx.doi.org/10.1002/adma.201102752] [PMID: 21972044]
[41]
Ge, J.; Zhang, Y.; Heo, Y.J.; Park, S.J. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. Catalysts, 2019, 9(2), 122.
[http://dx.doi.org/10.3390/catal9020122]
[42]
Kumar, P.; Kundu, V.S.; Kumar, S.; Saharan, B.; Kumar, V.; Chauhan, N. Hydrothermal synthesis of Cu-ZnO-/TiO2-based engineered nanomaterials for the efficient removal of organic pollutants and bacteria from water. Bionanoscience, 2017, 7(4), 574-582.
[http://dx.doi.org/10.1007/s12668-017-0452-9]
[43]
Deng, X.; Wang, C.; Zhou, E.; Huang, J.; Shao, M.; Wei, X.; Liu, X.; Ding, M.; Xu, X. One-step solvothermal method to prepare Ag/Cu2O composite with enhanced photocatalytic properties. Nanoscale Res. Lett., 2016, 11(1), 29.
[http://dx.doi.org/10.1186/s11671-016-1246-7] [PMID: 26781287]
[44]
Yang, X.J.; Shu, W.A.N.G.; Sun, H.M.; Wang, X.B.; Lian, J.S. Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans. Nonferrous Met. Soc. China, 2015, 25(2), 504-509.
[http://dx.doi.org/10.1016/S1003-6326(15)63631-7]
[45]
Mittal, M.; Sharma, M.; Pandey, O.P. UV-Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol. Energy, 2014, 110, 386-397.
[http://dx.doi.org/10.1016/j.solener.2014.09.026]
[46]
Teh, C.Y.; Wu, T.Y.; Juan, J.C. Facile sonochemical synthesis of N, Cl-codoped TiO2: Synthesis effects, mechanism and photocatalytic performance. Catal. Today, 2015, 256, 365-374.
[http://dx.doi.org/10.1016/j.cattod.2015.02.014]
[47]
Teixeira, S.; Gurke, R.; Eckert, H.; Kuhn, K.; Fauler, J.; Cuniberti, G. Photocatalytic degradation of pharmaceuticals present in conventional treated wastewater by nanoparticle suspensions. J. Environ. Chem. Eng., 2016, 4(1), 287-292.
[http://dx.doi.org/10.1016/j.jece.2015.10.045]
[48]
Tian, J.; Chen, L.; Dai, J.; Wang, X.; Yin, Y.; Wu, P. Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol-gel process. Ceram. Int., 2009, 35(6), 2261-2270.
[http://dx.doi.org/10.1016/j.ceramint.2008.12.010]
[49]
Siwińska-Stefańska, K.; Kubiaka, A.; Piasecki, A.; Goscianska, J.; Nowaczyk, G.; Jurga, S.; Jesionowski, T. TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity. Materials (Basel), 2018, 11(5), 841.
[http://dx.doi.org/10.3390/ma11050841] [PMID: 29783700]
[50]
Kumar, S.G.; Rao, K.K. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Advances, 2015, 5(5), 3306-3351.
[http://dx.doi.org/10.1039/C4RA13299H]
[51]
Pan, L.; Liu, X.; Sun, Z.; Sun, C.Q. Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(29), 8299-8326.
[http://dx.doi.org/10.1039/c3ta10981j]
[52]
Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res., 2016, 88, 428-448.
[http://dx.doi.org/10.1016/j.watres.2015.09.045] [PMID: 26519627]
[53]
Peng, F.; Wang, H.; Yu, H.; Chen, S. Preparation of aluminum foil-supported nano-sized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation. Mater. Res. Bull., 2006, 41(11), 2123-2129.
[http://dx.doi.org/10.1016/j.materresbull.2006.03.029]
[54]
Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A Gen., 2006, 304, 55-61.
[http://dx.doi.org/10.1016/j.apcata.2006.02.020]
[55]
Kamat, P.V.; Huehn, R.; Nicolaescu, R.A. “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J. Phys. Chem. B, 2002, 106(4), 788-794.
[http://dx.doi.org/10.1021/jp013602t]
[56]
Tanveer, M.; Guyer, G.T.; Abbas, G. Photocatalytic degradation of ibuprofen in water using TiO2 and ZnO under artificial UV and solar irradiation. Water Environ. Res., 2019, 91(9), 822-829.
[http://dx.doi.org/10.1002/wer.1104] [PMID: 30884028]
[57]
Behravesh, S.; Mirghaffari, N.; Alemrajabi, A.A.; Davar, F.; Soleimani, M. Photocatalytic degradation of acetaminophen and codeine medicines using a novel zeolite-supported TiO2 and ZnO under UV and sunlight irradiation. Environ. Sci. Pollut. Res. Int., 2020, 27(21), 26929-26942.
[http://dx.doi.org/10.1007/s11356-020-09038-y] [PMID: 32385818]
[58]
Oppong, S.O.B.; Anku, W.W.; Shukla, S.K.; Agorku, E.S.; Govender, P.P. Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites. J. Sol-Gel Sci. Technol., 2016, 80(1), 38-49.
[http://dx.doi.org/10.1007/s10971-016-4062-8]
[59]
Lozano-Morales, S.A.; Morales, G.; Lopez Zavala, M.A.; Arce-Sarria, A.; Machuca-Martínez, F. Photocatalytic treatment of paracetamol using TiO2 nanotubes: effect of pH. Processes (Basel), 2019, 7(6), 319.
[http://dx.doi.org/10.3390/pr7060319]
[60]
Zhang, H.; Banfield, J.F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem. Rev., 2014, 114(19), 9613-9644.
[http://dx.doi.org/10.1021/cr500072j] [PMID: 25026219]
[61]
Kaplan, R.; Erjavec, B.; Drazic, G.; Grdadolnik, J.; Pintar, A. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B, 2016, 181, 465-474.
[http://dx.doi.org/10.1016/j.apcatb.2015.08.027]
[62]
Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater., 2009, 170(2-3), 520-529.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.039] [PMID: 19505759]
[63]
Palma, T.L.; Vieira, B.; Nunes, J.; Lourenço, J.P.; Monteiro, O.C.; Costa, M.C. Photodegradation of chloramphenicol and paracetamol using PbS/TiO2 nanocomposites produced by green synthesis. J. Iran. Chem. Soc 2020, 1-19.
[64]
Biancullo, F.; Moreira, N.F.; Ribeiro, A.R.; Manaia, C.M.; Faria, J.L.; Nunes, O.C.; Castro-Silva, S.M.; Silva, A.M. Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents. Chem. Eng. J., 2019, 367, 304-313.
[http://dx.doi.org/10.1016/j.cej.2019.02.012]
[65]
Chinnaiyan, P.; Thampi, S.G.; Kumar, M.; Balachandran, M. Photocatalytic degradation of metformin and amoxicillin in synthetic hospital wastewater: effect of classical parameters. Int. J. Environ. Sci. Technol., 2019, 16(10), 5463-5474.
[http://dx.doi.org/10.1007/s13762-018-1935-0]
[66]
Safari, G.H.; Hoseini, M.; Seyedsalehi, M.; Kamani, H.; Jaafari, J.; Mahvi, A.H. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int. J. Environ. Sci. Technol., 2015, 12(2), 603-616.
[http://dx.doi.org/10.1007/s13762-014-0706-9]
[67]
Belhouchet, N.; Hamdi, B.; Chenchouni, H.; Bessekhouad, Y. Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites. J. Photochem. Photobiol. Chem., 2019, 372, 196-205.
[http://dx.doi.org/10.1016/j.jphotochem.2018.12.016]
[68]
Thomas, J.; Radhika, S.; Yoon, M. Nd3+-doped TiO2 nanoparticles incorporated with heteropoly phosphotungstic acid: A novel solar photocatalyst for degradation of4-chlorophenol in water. J. Mol. Catal. Chem., 2016, 411, 146-156.
[http://dx.doi.org/10.1016/j.molcata.2015.10.021]
[69]
Kumar, S.G.; Devi, L.G. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A, 2011, 115(46), 13211-13241.
[http://dx.doi.org/10.1021/jp204364a] [PMID: 21919459]
[70]
Arthur, R.B.; Ahern, J.C.; Patterson, H.H. Application of BiOX photocatalysts in remediation of persistent organic pollutants. Catalysts, 2018, 8(12), 604.
[http://dx.doi.org/10.3390/catal8120604]
[71]
Boxi, S.S.; Paria, S. Effect of silver doping on TiO2, CdS, and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light. RSC Advances, 2014, 4(71), 37752-37760.
[http://dx.doi.org/10.1039/C4RA06192F]
[72]
Akel, S.; Boughaled, R.; Dillert, R.; El Azzouzi, M.; Bahnemann, D.W. UV/Vis Light Induced Degradation of Oxytetracycline Hydrochloride Mediated byCo-TiO2 Nanoparticles. Molecules, 2020, 25(2), 249.
[http://dx.doi.org/10.3390/molecules25020249] [PMID: 31936177]
[73]
Do, T.C.M.V.; Nguyen, D.Q.; Nguyen, K.T.; Le, P.H. TiO2 and Au-TiO2 nanomaterials for rapid photocatalytic degradation of antibiotic residues in aquaculture wastewater. Materials (Basel), 2019, 12(15), 2434.
[http://dx.doi.org/10.3390/ma12152434] [PMID: 31370138]
[74]
Duran-Alvarez, J.C.; Avella, E.; Ramírez-Zamora, R.M.; Zanella, R. Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au-Ag and Au-Cu) metallic nanoparticles supported on TiO2under UV-C and simulated sunlight. Catal. Today, 2016, 266, 175-187.
[http://dx.doi.org/10.1016/j.cattod.2015.07.033]
[75]
Simsek, E.B. Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. BorDergisi, 2017, 2(1), 18-27.
[76]
Shetty, R.; Chavan, V.B.; Kulkarni, P.S.; Kulkarni, B.D.; Kamble, S.P. Photocatalytic degradation of pharmaceuticals pollutants using N-doped TiO2 photocatalyst: identification of CFX degradation intermediates. Indian Chem. Eng, 2017, 59(3), 177-199.
[http://dx.doi.org/10.1080/00194506.2016.1150794]
[77]
Wu, S.; Hu, H.; Lin, Y.; Zhang, J.; Hu, Y.H. Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J., 2020, 382122842
[http://dx.doi.org/10.1016/j.cej.2019.122842]
[78]
Lan, N.T.; Anh, V.H.; An, H.D.; Hung, N.P.; Nhiem, D.N.; VanThang, B.; Lieu, P.K.; Khieu, D.Q. Synthesis of C-N-S-Tridoped TiO2 from vietnam ilmenite ore and its visible light-driven-photocatalytic activity for tetracycline degradation. J. Nanomater., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/1523164]
[79]
El-Sheikh, S.M.; Khedr, T.M.; Hakki, A.; Ismail, A.A.; Badawy, W.A.; Bahnemann, D.W. Visible light activated carbon and nitrogen co‐doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separ. Purif. Tech., 2017, 173, 258-268.
[http://dx.doi.org/10.1016/j.seppur.2016.09.034]
[80]
Khedr, T.M.; El-Sheikh, S.M.; Hakki, A.; Ismail, A.A.; Badawy, W.A.; Bahnemann, D.W. Highly active nonmetals doped mixed phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. J. Photochem. Photobiol. Chem., 2017, 346, 530-540.
[http://dx.doi.org/10.1016/j.jphotochem.2017.07.004]
[81]
Du, J.; Ma, S.; Yan, Y.; Li, K.; Zhao, F.; Zhou, J. Corn-silk-templated synthesis of TiO2 nanotube arrays with Ag3PO4 nanoparticles for efficient oxidation of organic pollutants and pathogenic bacteria under solar light. Colloids Surf. A Physicochem. Eng. Asp., 2019, 572, 237-249.
[http://dx.doi.org/10.1016/j.colsurfa.2019.04.018]
[82]
Mehmood, C.T.; Zhong, Z.; Zhou, H.; Zhang, C.; Xiao, Y. Immobilizing a visible light-responsive photocatalyst on a recyclable polymeric composite for floating and suspended applications in water treatment. RSC Advances, 2020, 10(60), 36349-36362.
[http://dx.doi.org/10.1039/D0RA06864K]
[83]
Sharma, S.; Ibhadon, A.O.; Francesconi, M.G.; Mehta, S.K.; Elumalai, S.; Kansal, S.K.; Umar, A.; Baskoutas, S. Bi2WO6/C-Dots/TiO2: A Novel Z-Scheme Photocatalyst for the Degradation of Fluoroquinolone Levofloxacin from Aqueous Medium. Nanomaterials (Basel), 2020, 10(5), 910.
[http://dx.doi.org/10.3390/nano10050910] [PMID: 32397293]
[84]
Li, R.; Liu, J.; Jia, Y.; Zhen, Q. Photocatalytic degradation mechanism of oxytetracyclines using Fe2O3-TiO2 Nanopowders. J. Nanosci. Nanotechnol., 2017, 17(5), 3010-3015.
[http://dx.doi.org/10.1166/jnn.2017.13076]
[85]
Li, W.; Ding, H.; Ji, H.; Dai, W.; Guo, J.; Du, G. Photocatalytic degradation of tetracycline hydrochloride via a CdS-TiO2 heterostructure composite under visible light irradiation. Nanomaterials (Basel), 2018, 8(6), 415.
[http://dx.doi.org/10.3390/nano8060415]
[86]
Mugunthan, E.; Saidutta, M.B.; Jagadeeshbabu, P.E. Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts. Environ. Nanotechnol. Monit. Manag., 2018, 10, 322-330.
[http://dx.doi.org/10.1016/j.enmm.2018.07.012]
[87]
Arce-Sarria, A.; Machuca-Martinez, F.; Bustillo-Lecompte, C.; Hernandez-Ramírez, A.; Colina-Marquez, J. Degradation and loss of antibacterial activity of commercial amoxicillin with TiO2/WO3-assisted solar photocatalysis. Catalysts, 2018, 8(6), 222.
[http://dx.doi.org/10.3390/catal8060222]
[88]
Jiang, W.; Zhu, Y.; Zhu, G.; Zhang, Z.; Chen, X.; Yao, W. Three-dimensional photocatalysts with a network structure. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(12), 5661-5679.
[http://dx.doi.org/10.1039/C7TA00398F]
[89]
Khan, S.A.; Arshad, Z.; Shahid, S.; Arshad, I.; Rizwan, K.; Sher, M.; Fatima, U. Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos. B. Eng, 2019, 175107120
[http://dx.doi.org/10.1016/j.compositesb.2019.107120]
[90]
Cao, M.; Wang, P.; Ao, Y.; Wang, C.; Hou, J.; Qian, J. Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania. J. Colloid Interface Sci., 2016, 467, 129-139.
[http://dx.doi.org/10.1016/j.jcis.2016.01.005] [PMID: 26799623]
[91]
Wang, W.; Xiao, K.; Zhu, L.; Yin, Y.; Wang, Z. Graphene oxide supported titanium dioxide &ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation. RSC Advances, 2017, 7(34), 21287-21297.
[http://dx.doi.org/10.1039/C6RA28224E]
[92]
Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Catal. A Gen., 2013, 462, 178-195.
[http://dx.doi.org/10.1016/j.apcata.2013.04.039]
[93]
Melinte, V.; Stroea, L.; Chibac-Scutaru, A.L. Polymer Nanocomposites for Photocatalytic Applications. Catalysts, 2019, 9(12), 986.
[http://dx.doi.org/10.3390/catal9120986]
[94]
Martins, P.M.; Ribeiro, J.M.; Teixeira, S.; Petrovykh, D.Y.; Cuniberti, G.; Pereira, L.; Lanceros-Méndez, S. Photocatalytic microporous membrane against the increasing problem of water emerging pollutants. Materials (Basel), 2019, 12(10), 1649.
[http://dx.doi.org/10.3390/ma12101649] [PMID: 31117217]
[95]
Bobirica, C.; Bobirica, L.; Rapa, M.; Matei, E.; Predescu, A.M.; Orbeci, C. Photocatalytic degradation of ampicillin using PLA/TiO2 hybrid nanofibers coated on different types of fiberglass. Water, 2020, 12(1), 176.
[http://dx.doi.org/10.3390/w12010176]
[96]
Mohamed, A.; Salama, A.; Nasser, W.S.; Uheida, A. Photodegradation of ibuprofen, cetirizine, and naproxen by PAN-MWCNT/TiO2-NH2 nanofiber membrane under UV light irradiation. Environ. Sci. Eur., 2018, 30(1), 47.
[http://dx.doi.org/10.1186/s12302-018-0177-6] [PMID: 30595997]
[97]
Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev., 2018, 81, 536-551.
[http://dx.doi.org/10.1016/j.rser.2017.08.020]
[98]
Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review. Sustain. Cities Soc, 2016, 27, 407-418.
[http://dx.doi.org/10.1016/j.scs.2016.08.004]
[99]
Upadhyay, G.K.; Rajput, J.K.; Pathak, T.K.; Kumar, V.; Purohit, L.P. Synthesis of ZnO: TiO2 nanocomposites for photocatalyst application in visible light. Vacuum, 2019, 160, 154-163.
[http://dx.doi.org/10.1016/j.vacuum.2018.11.026]
[100]
Elmolla, E.S.; Chaudhuri, M. Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination, 2010, 256(1-3), 43-47.
[http://dx.doi.org/10.1016/j.desal.2010.02.019]
[101]
Available from: https://commons.wikimedia.org/wiki/File:Wurtzite_polyhedra.pngAccessed on: 17 August 2019
[102]
Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 2016, 605, 2-19.
[http://dx.doi.org/10.1016/j.tsf.2015.12.064]
[103]
Yi, Z.; Wang, J.; Jiang, T.; Tang, Q.; Cheng, Y. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies. R. Soc. Open Sci., 2018, 5(4)171457
[http://dx.doi.org/10.1098/rsos.171457] [PMID: 29765630]
[104]
Pourmoslemi, S.; Mohammadi, A.; Kobarfard, F.; Assi, N. Photocatalytic removal of two antibiotic compounds from aqueous solutions using ZnO nanoparticles. Desalination Water Treat., 2016, 57(31), 14774-14784.
[http://dx.doi.org/10.1080/19443994.2015.1069215]
[105]
Ding, C.; Fu, K.; Pan, Y.; Liu, J.; Deng, H.; Shi, J. Comparison of Ag and AgI-Modified ZnO as heterogeneous photocatalysts for simulated sunlight driven photodegradation of metronidazole. Catalysts, 2020, 10(9), 1097.
[http://dx.doi.org/10.3390/catal10091097]
[106]
Das, S.; Ghosh, S.; Misra, A.J.; Tamhankar, A.J.; Mishra, A.; Lundborg, C.S.; Tripathy, S.K. Sunlight assisted photocatalytic degradation of ciprofloxacin in water using Fe doped ZnO nanoparticles for potential public health applications. Int. J. Environ. Res. Public Health, 2018, 15(11), 2440.
[http://dx.doi.org/10.3390/ijerph15112440] [PMID: 30388857]
[107]
Jiang, J.Q.; Zhou, Z.; Pahl, O. Preliminary study of ciprofloxacin (CIP) removal by potassium ferrate (VI). Separ. Purif. Tech., 2012, 88, 95-98.
[http://dx.doi.org/10.1016/j.seppur.2011.12.021]
[108]
Khataee, A.; Saadi, S.; Vahid, B. Kinetic modeling of sonocatalytic degradation of reactive orange 29 in the presence of lanthanide-doped ZnO nanoparticles. Ultrason. Sonochem., 2017, 34, 98-106.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.026] [PMID: 27773330]
[109]
Vaiano, V.; Matarangolo, M.; Sacco, O.; Sannino, D. Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl. Catal. B, 2017, 209, 621-630.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.015]
[110]
George, A.; Sharma, S.K.; Chawla, S.; Malik, M.M.; Qureshi, M.S. Detailed of X-ray diffraction and photoluminescence studies of Ce doped ZnO nanocrystals. J. Alloys Compd., 2011, 509(20), 5942-5946.
[http://dx.doi.org/10.1016/j.jallcom.2011.03.017]
[111]
Yayapao, O.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. Ultrasonic-assisted synthesis of Nd-doped ZnO for photocatalysis. Mater. Lett., 2013, 90, 83-86.
[http://dx.doi.org/10.1016/j.matlet.2012.09.027]
[112]
Al Abri, R.; Al Marzouqi, F.; Kuvarega, A.T.; Meetani, M.A.; Al Kindy, S.M.; Karthikeyan, S.; Kim, Y.; Selvaraj, R. Nanostructured cerium-doped ZnO for photocatalytic degradation of pharmaceuticals in aqueous solution. J. Photochem. Photobiol. Chem., 2019, 384112065
[http://dx.doi.org/10.1016/j.jphotochem.2019.112065]
[113]
Zammit, I.; Vaiano, V.; Ribeiro, A.R.; Silva, A.M.; Manaia, C.M.; Rizzo, L. Immobilised cerium-doped zinc oxide as a photocatalyst for the degradation of antibiotics and the inactivation of antibiotic-resistant bacteria. Catalysts, 2019, 9(3), 222.
[http://dx.doi.org/10.3390/catal9030222]
[114]
Shakir, M.; Faraz, M.; Sherwani, M.A.; Al-Resayes, S.I. Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J. Lumin., 2016, 176, 159-167.
[http://dx.doi.org/10.1016/j.jlumin.2016.03.027]
[115]
Thi, V.H.T.; Lee, B.K. Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Mater. Res. Bull., 2017, 96, 171-182.
[http://dx.doi.org/10.1016/j.materresbull.2017.04.028]
[116]
Chen, L.C.; Tu, Y.J.; Wang, Y.S.; Kan, R.S.; Huang, C.M. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J. Photochem. Photobiol. Chem., 2008, 199(2-3), 170-178.
[http://dx.doi.org/10.1016/j.jphotochem.2008.05.022]
[117]
Liu, S.; Li, C.; Yu, J.; Xiang, Q. Improved visible light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm, 2011, 13(7), 2533-2541.
[http://dx.doi.org/10.1039/c0ce00295j]
[118]
Rueda-Salaya, L.; Hernandez-Ramirez, A.; Hinojosa-Reyes, L.; Guzman-Mar, J.L.; Villanueva-Rodriguez, M.; Sanchez-Cervantes, E. Solar photocatalytic degradation of diclofenac aqueous solution using fluorine doped zinc oxide as catalyst. J. Photochem. Photobiol. Chem., 2020, 391112364
[http://dx.doi.org/10.1016/j.jphotochem.2020.112364]
[119]
Sharma, S.; Mehta, S.K.; Kansal, S.K. N doped ZnO/C-dots nanoflowers as visible light driven photocatalyst for the degradation of malachite green dye in aqueous phase. J. Alloys Compd., 2017, 699, 323-333.
[http://dx.doi.org/10.1016/j.jallcom.2016.12.408]
[120]
Ansari, S.H.; Giahi, M. Photochemical Degradation of Fluocinolone Acetonidin Drug in Aqueous Solutions Using NanophotocatalystZnO Doped by C, N, and S. IRAN. J. Chem. Chem. Eng., 2017, 36(3), 183-189.
[121]
Ranjith Kumar, D.; Ranjith, K.S.; Haldorai, Y.; Kandasami, A.; Rajendra Kumar, R.T. Nitrogen-Implanted ZnO nanorod arrays for visible light photocatalytic degradation of a pharmaceutical drug acetaminophen. ACS Omega, 2019, 4(7), 11973-11979.
[http://dx.doi.org/10.1021/acsomega.9b00557] [PMID: 31460308]
[122]
Qu, Y.; Xu, X.; Huang, R.; Qi, W.; Su, R.; He, Z. Enhanced photocatalytic degradation of antibiotics in water over functionalized N,S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation. Chem. Eng. J., 2020, 382123016
[http://dx.doi.org/10.1016/j.cej.2019.123016]
[123]
Alhaddad, M.; Mohamed, R.M. Synthesis and characterizations of ZnMn2O4-ZnO nanocomposite photocatalyst for enlarged photocatalytic oxidation of ciprofloxacin using visible light irradiation. Appl. Nanosci., 2020, 10, 2269-2278.
[http://dx.doi.org/10.1007/s13204-020-01359-1]
[124]
Davari, N.; Farhadian, M.; Solaimany Nazar, A.R. Synthesis and characterization of Fe2O3 doped ZnO supported on clinoptilolite for photocatalytic degradation of metronidazole. Environ. Technol., 2019, 1-13.
[http://dx.doi.org/10.1080/09593330.2019.1680738] [PMID: 31621507]
[125]
Semeraro, P.; Bettini, S.; Sawalha, S.; Pal, S.; Licciulli, A.; Marzo, F.; Lovergine, N.; Valli, L.; Giancane, G. Photocatalytic Degradation of Tetracycline by ZnO/γ-Fe2O3 Paramagnetic Nanocomposite Material. Nanomaterials (Basel), 2020, 10(8), 1458.
[http://dx.doi.org/10.3390/nano10081458] [PMID: 32722422]
[126]
Lwin, H.M.; Zhan, W.; Song, S.; Jia, F.; Zhou, J. Visible-light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2 heterojunction nanocatalyst. Chem. Phys. Lett., 2019, 736136806
[http://dx.doi.org/10.1016/j.cplett.2019.136806]
[127]
Liu, J.; Yu, X.; Wang, L.; Guo, M.; Tian, S.; Zhu, W. Photocatalytic degradation of oxytetracycline hydrochloride pollutants in marine aquaculture wastewater under visible light. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2019, 54(14), 1423-1429.
[http://dx.doi.org/10.1080/10934529.2019.1651589] [PMID: 31403388]
[128]
Song, S.; Wu, K.; Wu, H.; Guo, J.; Zhang, L. Synthesis of Z-scheme multi-shelled ZnO/AgVO3 spheres as photocatalysts for the degradation of ciprofloxacin and reduction of chromium(VI). J. Mater. Sci., 2020, 55(12), 4987-5007.
[http://dx.doi.org/10.1007/s10853-019-04316-8]
[129]
Ji, B.; Zhang, J.; Zhang, C.; Li, N.; Zhao, T.; Chen, F.; Hu, L.; Zhang, S.; Wang, Z. Vertically-aligned ZnO@ZnS nanorod chip with improved photocatalytic activity for antibiotics degradation. ACS Appl. Nano Mater, 2018, 1(2), 793-799.
[http://dx.doi.org/10.1021/acsanm.7b00242]
[130]
Akkari, M.; Aranda, P.; Belver, C.; Bedia, J.; Amara, A.B.H.; Ruiz-Hitzky, E. Reprint of ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Appl. Clay Sci., 2018, 160, 3-8.
[http://dx.doi.org/10.1016/j.clay.2018.02.027]
[131]
Kashinath, L.; Namratha, K.; Byrappa, K. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes. Appl. Surf. Sci., 2015, 357, 1849-1856.
[http://dx.doi.org/10.1016/j.apsusc.2015.09.072]
[132]
Anirudhan, T.S.; Deepa, J.R. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci., 2017, 490, 343-356.
[http://dx.doi.org/10.1016/j.jcis.2016.11.042] [PMID: 27914333]
[133]
Huo, P.; Zhou, M.; Tang, Y.; Liu, X.; Ma, C.; Yu, L.; Yan, Y. Incorporation of N-ZnO/CdS/Graphene oxide composite photocatalyst for enhanced photocatalytic activity under visible light. J. Alloys Compd., 2016, 670, 198-209.
[http://dx.doi.org/10.1016/j.jallcom.2016.01.247]
[134]
Arunpandian, M.; Selvakumar, K.; Raja, A.; Thiruppathi, M.; Rajasekaran, P.; Rameshkumar, P.; Nagarajan, E.R.; Arunachalam, S. Development of novel Nd2WO6/ZnO incorporated on GO nanocomposite for the photocatalytic degradation of organic pollutants and biological studies. J. Mater. Sci. Mater. Electron., 2019, 30(20), 18557-18574.
[http://dx.doi.org/10.1007/s10854-019-02209-9]
[135]
Qiu, R.; Song, L.; Mo, Y.; Zhang, D.; Brewer, E. Visible light induced photocatalytic degradation of phenol by polymer modified semiconductors: study of the influencing factors and the kinetics. React. Kinet. Catal. Lett., 2008, 94(1), 183.
[http://dx.doi.org/10.1007/s11144-008-5262-1]
[136]
Qiu, R.; Zhang, D.; Mo, Y.; Song, L.; Brewer, E.; Huang, X.; Xiong, Y. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J. Hazard. Mater., 2008, 156(1-3), 80-85.
[http://dx.doi.org/10.1016/j.jhazmat.2007.11.114] [PMID: 18248886]
[137]
Faisal, M.; Harraz, F.A.; Jalalah, M.; Alsaiari, M.A.; Al-Sayari, S.A.; Al-Assiri, M.S. Polythiophene doped ZnO nanostructures synthesized by modified sol-gel and oxidative polymerization for efficient photodegradation of methylene blue and gemifloxacin antibiotic. Mater. Today Commun., 2020, 24101048
[http://dx.doi.org/10.1016/j.mtcomm.2020.101048]
[138]
Peng, X.; Chen, Y.; Li, F.; Zhou, W.; Hu, Y. Preparation and optical properties of ZnO@PPEGMA nanoparticles. Appl. Surf. Sci., 2009, 255(16), 7158-7163.
[http://dx.doi.org/10.1016/j.apsusc.2009.03.050]
[139]
Yang, Y.; Chu, Y.; Zhang, Y.; Yang, F.; Liu, J. Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates. J. Solid State Chem., 2006, 179(2), 470-475.
[http://dx.doi.org/10.1016/j.jssc.2005.10.011]
[140]
Nosrati, R.; Olad, A.; Maramifar, R. Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Environ. Sci. Pollut. Res. Int., 2012, 19(6), 2291-2299.
[http://dx.doi.org/10.1007/s11356-011-0736-5] [PMID: 22270755]
[141]
Silvestri, S.; Ferreira, C.D.; Oliveira, V.; Varejao, J.M.; Labrincha, J.A.; Tobaldi, D.M. Synthesis of PPy-ZnO composite used as photocatalyst for the degradation of diclofenac under simulated solar irradiation. J. Photochem. Photobiol. Chem., 2019, 375, 261-269.
[http://dx.doi.org/10.1016/j.jphotochem.2019.02.034]
[142]
Singh, J.; Kumar, S.; Manna, A.K.; Soni, R.K. Fabrication of ZnO-TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules. Opt. Mater., 2020, 107110138
[http://dx.doi.org/10.1016/j.optmat.2020.110138]
[143]
Belver, C.; Hinojosa, M.; Bedia, J.; Tobajas, M.; Alvarez, M.A.; Rodríguez-González, V.; Rodriguez, J.J. Ag-coated heterostructures of ZnO-TiO2/delaminated montmorillonite as solar photocatalysts. Materials (Basel), 2017, 10(8), 960.
[http://dx.doi.org/10.3390/ma10080960] [PMID: 28817106]
[144]
Changanaqui, K.; Brillas, E.; Alarcón, H.; Sires, I. ZnO/TiO2/Ag2Se nanostructures as photoelectrocatalysts for the degradation of oxytetracycline in water. Electrochim. Acta, 2020, 331135194
[http://dx.doi.org/10.1016/j.electacta.2019.135194]
[145]
Simsek, E.B.; Kilic, B.; Asgin, M.; Akan, A. Graphene oxide based heterojunction TiO2-ZnO catalysts with outstanding photocatalytic performance for bisphenol-A, ibuprofen and flurbiprofen. J. Ind. Eng. Chem., 2018, 59, 115-126.
[http://dx.doi.org/10.1016/j.jiec.2017.10.014]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy