Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

A New Series of Antileukemic Agents: Design, Synthesis, In Vitro and In Silico Evaluation of Thiazole-Based ABL1 Kinase Inhibitors

Author(s): Ebru Zeytün, Mehlika D. Altıntop*, Belgin Sever, Ahmet Özdemir, Doha E. Ellakwa, Zeynep Ocak, Halil I. Ciftci, Masami Otsuka, Mikako Fujita* and Mohamed O. Radwan*

Volume 21, Issue 9, 2021

Published on: 24 August, 2020

Page: [1099 - 1109] Pages: 11

DOI: 10.2174/1871520620666200824100408

Price: $65

Abstract

Background: After the approval of imatinib, more than 25 antitumor agents targeting kinases have been approved, and several promising candidates are at various stages of clinical evaluation. Objectives: Due to the importance of the thiazole scaffold in targeted anticancer drug discovery, the goal of this work is to identify new thiazolyl hydrazones as potent ABL1 kinase inhibitors for the management of Chronic Myeloid Leukemia (CML).

Methods: New thiazolyl hydrazones (2a-p) were synthesized and investigated for their cytotoxic effects on the K562 CML cell line. Compounds 2h, 2j and 2l showed potent anticancer activity against K562 cell line. The cytotoxic effects of these compounds on other leukemia (HL-60, MT-2 and Jurkat) and HeLa human cervical carcinoma cell lines were also investigated. Furthermore, their cytotoxic effects on Mitogen-Activated Peripheral Blood Mononuclear Cells (MA-PBMCs) were evaluated to determine their selectivity. Due to its selective and potent anticancer activity, compound 2j was benchmarked for its apoptosis-inducing potential on K562 cell line and inhibitory effects on eight different Tyrosine Kinases (TKs), including ABL1 kinase. In order to investigate the binding mode of compound 2j into the ATP binding site of ABL1 kinase (PDB: 1IEP), a molecular docking study was conducted using MOE 2018.01 program. The QikProp module of Schrödinger’s Molecular modelling package was used to predict the pharmacokinetic properties of compounds 2a-p.

Results: 4-(4-(Methylsulfonyl)phenyl)-2-[2-((1,3-benzodioxol-4-yl)methylene)hydrazinyl]thiazole (2j) showed antiproliferative activity against K562 cell line with an IC50 value of 8.87±1.93 μM similar to imatinib (IC50= 6.84±1.11μM). Compound 2j was found to be more effective than imatinib on HL-60, Jurkat and MT-2 cells. Compound 2j also showed cytotoxic activity against HeLa cell line similar to imatinib. The higher selectivity index value of compound 2j than imatinib indicated that its antiproliferative activity was selective. Compound 2j also induced apoptosis in K562 cell line more than imatinib. Among eight TKs, compound 2j showed the strongest inhibitory activity against ABL1 kinase enzyme (IC50= 5.37±1.17μM). According to molecular docking studies, compound 2j exhibited high affinity to the ATP binding site of ABL1 kinase, forming significant intermolecular interactions. On the basis of in silico studies, this compound did not violate Lipinski's rule of five and Jorgensen's rule of three.

Conclusion: Compound 2j stands out as a potential orally bioavailable ABL1 kinase inhibitor for the treatment of CML.

Keywords: Thiazole, ABL1 kinase, apoptosis, chronic myeloid leukemia, molecular docking, antileukemic agents.

Graphical Abstract

[1]
Pasic, I.; Lipton, J.H. Current approach to the treatment of chronic myeloid leukaemia. Leuk. Res., 2017, 55, 65-78.
[http://dx.doi.org/10.1016/j.leukres.2017.01.005] [PMID: 28135648]
[2]
Massaro, F.; Colafigli, G.; Molica, M.; Breccia, M. Novel tyrosine-kinase inhibitors for the treatment of chronic myeloid leukemia: Safety and efficacy. Expert Rev. Hematol., 2018, 11(4), 301-306.
[http://dx.doi.org/10.1080/17474086.2018.1451322] [PMID: 29522367]
[3]
Singh, V.K.; Coumar, M.S. Chronic myeloid leukemia: Existing therapeutic options and strategies to overcome drug resistance. Mini Rev. Med. Chem., 2019, 19(4), 333-345.
[http://dx.doi.org/10.2174/1389557518666181017124854] [PMID: 30332954]
[4]
Heffron, T.P. Small molecule kinase inhibitors for the treatment of brain cancer. J. Med. Chem., 2016, 59(22), 10030-10066.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00618] [PMID: 27414067]
[5]
Nagar, B.; Bornmann, W.G.; Pellicena, P.; Schindler, T.; Veach, D.R.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res., 2002, 62(15), 4236-4243.
[PMID: 12154025]
[6]
Mazola, Y.; Rodríguez, R.; Mazola, Y. Protein kinases as targets for drug design. Biotecnol. Apl., 2008, 25, 7-15.
[7]
Krishnamurty, R.; Maly, D.J. Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors. ACS Chem. Biol., 2010, 5(1), 121-138.
[http://dx.doi.org/10.1021/cb9002656] [PMID: 20044834]
[8]
Cohen, P.; Alessi, D.R. Kinase drug discovery--what’s next in the field? ACS Chem. Biol., 2013, 8(1), 96-104.
[http://dx.doi.org/10.1021/cb300610s] [PMID: 23276252]
[9]
Gross, S.; Rahal, R.; Stransky, N.; Lengauer, C.; Hoeflich, K.P. Targeting cancer with kinase inhibitors. J. Clin. Invest., 2015, 125(5), 1780-1789.
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
[10]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439.
[http://dx.doi.org/10.1016/j.tips.2015.04.005] [PMID: 25975227]
[11]
Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov. Today, 2016, 21(1), 5-10.
[http://dx.doi.org/10.1016/j.drudis.2015.07.008] [PMID: 26210956]
[12]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[13]
Das, D.; Sikdar, P.; Bairagi, M. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur. J. Med. Chem., 2016, 109, 89-98.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.022] [PMID: 26771245]
[14]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862.
[http://dx.doi.org/10.2174/1568026616666160506130731] [PMID: 27150376]
[15]
Morigi, R.; Locatelli, A.; Leoni, A.; Rambaldi, M. Recent patents on thiazole derivatives endowed with antitumor activity. Recent Patents Anticancer Drug Discov., 2015, 10(3), 280-297.
[http://dx.doi.org/10.2174/1574892810666150708110432] [PMID: 26152151]
[16]
Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M. Novel thiazole derivatives: A patent review (2008-2012; Part 1). Expert Opin. Ther. Pat., 2014, 24(2), 201-216.
[http://dx.doi.org/10.1517/13543776.2014.858121] [PMID: 24215328]
[17]
Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 2019, 11(15), 1929-1952.
[http://dx.doi.org/10.4155/fmc-2018-0416] [PMID: 31313595]
[18]
Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem., 2020, 188112016
[http://dx.doi.org/10.1016/j.ejmech.2019.112016] [PMID: 31926469]
[19]
Sever, B.; Altintop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem., 2019, 182111648
[http://dx.doi.org/10.1016/j.ejmech.2019.111648] [PMID: 31493743]
[20]
Mathew, B.; Suresh, J.; Ahsan, M.J.; Mathew, G.E.; Usman, D.; Subramanyan, P.N.S.; Safna, K.F.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: A review. Infect. Disord. Drug Targets, 2015, 15(2), 76-88.
[http://dx.doi.org/10.2174/1871526515666150724104411] [PMID: 26205803]
[21]
Narang, R.; Narasimhan, B.; Sharma, S. A review on biological activities and chemical synthesis of hydrazide derivatives. Curr. Med. Chem., 2012, 19(4), 569-612.
[http://dx.doi.org/10.2174/092986712798918789] [PMID: 22204327]
[22]
Kumar, P.; Narasimhan, B. Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium. Mini Rev. Med. Chem., 2013, 13(7), 971-987.
[http://dx.doi.org/10.2174/1389557511313070003] [PMID: 23621689]
[23]
Alam, M.S.; Lee, D.U. Synthesis, biological evaluation, drug-likeness, and in silico screening of novel benzylidene-hydrazone analogues as small molecule anticancer agents. Arch. Pharm. Res., 2016, 39(2), 191-201.
[http://dx.doi.org/10.1007/s12272-015-0699-z] [PMID: 26694484]
[24]
Han, M.İ.; Bekçi, H.; Uba, A.I.; Yıldırım, Y.; Karasulu, E.; Cumaoğlu, A.; Karasulu, H.Y.; Yelekçi, K.; Yılmaz, Ö.; Küçükgüzel, Ş.G. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-naproxen. Arch. Pharm. (Weinheim), 2019, 352(6)e1800365
[http://dx.doi.org/10.1002/ardp.201800365] [PMID: 31115928]
[25]
Bak, Y.; Kim, H.; Kang, J.W.; Lee, D.H.; Kim, M.S.; Park, Y.S.; Kim, J.H.; Jung, K.Y.; Lim, Y.; Hong, J.; Yoon, D.Y. A synthetic naringenin derivative, 5-hydroxy-7,4′-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), induces apoptosis through up-regulation of Fas/FasL expression and inhibition of PI3K/Akt signaling pathways in non-small-cell lung cancer cells. J. Agric. Food Chem., 2011, 59(18), 10286-10297.
[http://dx.doi.org/10.1021/jf2017594] [PMID: 21877710]
[26]
Viswanathan, A.; Kute, D.; Musa, A.; Konda Mani, S.; Sipilä, V.; Emmert-Streib, F.; Zubkov, F.I.; Gurbanov, A.V.; Yli-Harja, O.; Kandhavelu, M. 2-(2-(2,4-Dioxopentan-3-ylidene)hydrazineyl) benzonitrile as novel inhibitor of receptor tyrosine kinase and PI3K/AKT/mTOR signaling pathway in glioblastoma. Eur. J. Med. Chem., 2019, 166, 291-303.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.021] [PMID: 30731398]
[27]
Altintop, M.D.; Özdemir, A.; Ilgın, S.; Atlı, Ö. Synthesis and biological evaluation of new pyrazole-based thiazolyl hydrazone derivatives as potential anticancer agents. Lett. Drug Des. Discov., 2014, 11, 833-839.
[http://dx.doi.org/10.2174/1570180811666140226235350]
[28]
Altintop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı, Ö.; Demirci, F.; Kaplancıklı, Z.A. Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents. Molecules, 2014, 19(9), 14809-14820.
[http://dx.doi.org/10.3390/molecules190914809] [PMID: 25232704]
[29]
Kaplancıklı, Z.A.; Sever, B.; Altintop, M.D.; Atlı, Ö.; Baysal, M.; Özdemir, A. Synthesis and evaluation of new thiazolyl hydrazone derivatives as potential anticancer agents. Lett. Drug Des. Discov., 2017, 14, 672-677.
[http://dx.doi.org/10.2174/1570180814666161104161711]
[30]
Altintop, M.D.; Sever, B.; Akalın Çiftçi, G.; Özdemir, A. Design, synthesis, and evaluation of a new series of thiazole-based anticancer agents as potent Akt inhibitors. Molecules, 2018, 23(6), 1318.
[http://dx.doi.org/10.3390/molecules23061318] [PMID: 29857484]
[31]
Lin, P.; Ding, B.; Wu, Y.; Dong, K.; Li, Q. Mitogen-stimulated cell proliferation and cytokine production in major depressive disorder patients. BMC Psychiatry, 2018, 18(1), 330.
[http://dx.doi.org/10.1186/s12888-018-1906-5] [PMID: 30314474]
[32]
Altintop, M.D.; Ciftci, H.I.; Radwan, M.O.; Sever, B.; Kaplancıklı, Z.A.; Ali, T.F.S.; Koga, R.; Fujita, M.; Otsuka, M.; Özdemir, A. Design, synthesis, and biological evaluation of novel 1,3,4-thiadiazole derivatives as potential antitumor agents against chronic myelogenous leukemia: Striking effect of nitrothiazole moiety. Molecules, 2017, 23(1), 59.
[http://dx.doi.org/10.3390/molecules23010059] [PMID: 29280989]
[33]
Ciftci, H.I.; Can, M.; Ellakwa, D.E.; Suner, S.C.; Ibrahim, M.A.; Oral, A.; Sekeroglu, N.; Özalp, B.; Otsuka, M.; Fujita, M.; Alparslan, M.; Radwan, M.O. Anticancer activity of Turkish marine extracts: A purple sponge extract induces apoptosis with multitarget kinase inhibition activity. Invest. New Drugs, 2020, 38, 1326-1333.
[http://dx.doi.org/10.1007/s10637-020-00911-8.]]
[34]
Shida, W.; Tateishi, H.; Tahara, Y.; Fujita, M.; Husham Majeed Alsaadi, D.; Watanabe, M.; Koga, R.; Radwan, M.O.; Ciftci, H.I.; Gezici, S.; Kurauchi, Y.; Katsuki, H.; Otsuka, M.; Sugimura, K.; Wada, M.; Sekeroglu, N.; Watanabe, T. Antileukemic activity of twig components of caucasian beech in Turkey. Molecules, 2019, 24(21), 3850.
[http://dx.doi.org/10.3390/molecules24213850] [PMID: 31731511]
[35]
Zhou, H-Y.; Dong, F-Q.; Du, X-L.; Zhou, Z-K.; Huo, H-R.; Wang, W-H.; Zhan, H-D.; Dai, Y-F.; Jing, M.; Sui, Y-P.; Li, J.; Sui, F.; Zhai, Y-H. Antitumor activities of biscoumarin and dihydropyran derivatives. Bioorg. Med. Chem. Lett., 2016, 26(16), 3876-3880.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.023] [PMID: 27432761]
[36]
Ciftci, H.I.; Radwan, M.O.; Ozturk, S.E.; Ulusoy, N.G.; Sozer, E.; Ellakwa, D.E.; Ocak, Z.; Can, M.; Ali, T.F.S.; Abd-Alla, H.I.; Yayli, N.; Tateishi, H.; Otsuka, M.; Fujita, M. Design, synthesis and biological evaluation of pentacyclic triterpene derivatives: Optimization of Anti-ABL kinase activity. Molecules, 2019, 24(19), 3535.
[http://dx.doi.org/10.3390/molecules24193535] [PMID: 31574910]
[37]
Ciftci, H.I.; Bayrak, N.; Yıldırım, H.; Yıldız, M.; Radwan, M.O.; Otsuka, M.; Fujita, M.; Tuyun, A.F. Discovery and structure-activity relationship of plastoquinone analogs as anticancer agents against chronic myelogenous leukemia cells. Arch. Pharm. (Weinheim), 2019, 352(12)e1900170
[http://dx.doi.org/10.1002/ardp.201900170] [PMID: 31602720]
[38]
Çiftçi, H. Effects of glycyrrhetic acid on human chronic myelogenous leukemia cells. Turk. J. Pharm. Sci., 2020, 17(1), 49-55.
[http://dx.doi.org/10.4274/tjps.galenos.2018.49389] [PMID: 32454760]
[39]
Bayrak, N.; Yıldırım, H.; Yıldız, M.; Radwan, M.O.; Otsuka, M.; Fujita, M.; Ciftci, H.I.; Tuyun, A.F. A novel series of chlorinated plastoquinone analogs: Design, synthesis, and evaluation of anticancer activity. Chem. Biol. Drug Des., 2020, 95(3), 343-354.
[http://dx.doi.org/10.1111/cbdd.13651] [PMID: 31785034]
[40]
Radwan, M.O.; Koga, R.; Hida, T.; Ejima, T.; Kanemaru, Y.; Tateishi, H.; Okamoto, Y.; Inoue, J.I.; Fujita, M.; Otsuka, M. Minimum structural requirements for inhibitors of the zinc finger protein TRAF6. Bioorg. Med. Chem. Lett., 2019, 29(16), 2162-2167.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.050] [PMID: 31272791]
[41]
El-Shaheny, R.; Radwan, M.; Yamada, K.; El-Maghrabey, M. Estimation of nizatidine gastric nitrosatability and product toxicity via an integrated approach combining HILIC, in silico toxicology, and molecular docking. J. Food Drug Anal., 2019, 27(4), 915-925.
[http://dx.doi.org/10.1016/j.jfda.2019.08.001] [PMID: 31590763]
[42]
Radwan, M.O.; Takaya, D.; Koga, R.; Iwamaru, K.; Tateishi, H.; Ali, T.F.S.; Takaori-Kondo, A.; Otsuka, M.; Honma, T.; Fujita, M. Interruption of Vif/Elongin C interaction: In silico and experimental elucidation of the underlying molecular mechanism of benzimidazole-based APOBEC3G stabilizers. Bioorg. Med. Chem., 2020, 28(8)115409
[http://dx.doi.org/10.1016/j.bmc.2020.115409] [PMID: 32169404]
[43]
Nishimura, N.; Radwan, M.O.; Amano, M.; Endo, S.; Fujii, E.; Hayashi, H.; Ueno, S.; Ueno, N.; Tatetsu, H.; Hata, H.; Okamoto, Y.; Otsuka, M.; Mitsuya, H.; Matsuoka, M.; Okuno, Y. Novel p97/VCP inhibitor induces endoplasmic reticulum stress and apoptosis in both bortezomib-sensitive and -resistant multiple myeloma cells. Cancer Sci., 2019, 110(10), 3275-3287.
[http://dx.doi.org/10.1111/cas.14154] [PMID: 31368616]
[44]
Bayrak, N.; Yıldırım, H.; Yıldız, M.; Radwan, M.O.; Otsuka, M.; Fujita, M.; Tuyun, A.F.; Ciftci, H.I. Design, synthesis, and biological activity of Plastoquinone analogs as a new class of anticancer agents. Bioorg. Chem., 2019, 92103255
[http://dx.doi.org/10.1016/j.bioorg.2019.103255] [PMID: 31542717]
[45]
Ciftci, H.I. Antiproliferative activity of α-tomatine and molecular target identification. Turk. J. Agric. Nat. Sci., 2020, 7(2), 290-300.
[http://dx.doi.org/10.30910/turkjans.706098]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy