Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

脊髓损伤对阿尔茨海默氏病TgCRND8小鼠模型中β-淀粉样蛋白斑块病理的影响

卷 17, 期 6, 2020

页: [576 - 586] 页: 11

弟呕挨: 10.2174/1567205017666200807191447

价格: $65

摘要

背景:在其他神经系统疾病(例如脑外伤)中,发现了Aβ作为淀粉样斑块的积累和聚集,这是阿尔茨海默氏病的标志性病理。轴突损伤可能有助于Aβ斑块的形成。迄今为止的研究都集中在大脑上,没有对脊髓进行任何研究,尽管大脑和脊髓共享相同的细胞成分。 目的:我们利用脊髓横断模型研究了在TgCRND8转基因AD模型中,脊髓损伤在损伤后3天是否急性诱导Aβ斑块的发作或促进了Aβ斑块的进展。 方法:分别在3和20个月大的TgCRND8小鼠及其同窝出生的野生型小鼠中进行脊髓横切。免疫组织化学反应/ ELISA法测定TgCRND8小鼠脊髓中轴突损伤的程度和Aβ斑块的发生/改变或不同年龄的Aβ水平。 结果:损伤后,在3和20个月大的TgCRND8小鼠的脊髓周围病变区域中观察到APP及其产物Aβ的轴突内共蓄积表明了广泛的轴突病理。匹配的非TgCRND8小鼠。然而,在3个月大的TgCRND8小鼠中未发现Aβ斑块。与邻近于脊髓横断后的假手术小鼠的受伤区域和相应区域的组织相比,在脊髓中已建立淀粉样变性的20个月大的TgCRND8小鼠在病变部位的斑块负担减少而不是增加。与假手术动物相比,受伤小鼠的脊髓区域病变部位被CD68阳性巨噬细胞/活化的小胶质细胞占据。这些结果表明,脊髓损伤不诱导TgCRND8小鼠的脊髓中Aβ斑块的急性发作和进展。相反,它会诱导TgCRND8小鼠Aβ斑块沉积的消退。 结论:这些发现强调了轴突损伤在控制急性Aβ斑块形成中的依赖性,并提供证据表明Aβ斑块病理可能在脊髓损伤后的继发性损伤级联中不起作用。

关键词: 轴突损伤,β淀粉样蛋白,淀粉样前体蛋白,阿尔茨海默氏病,淀粉样蛋白斑块,脊髓损伤。

« Previous
[1]
Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6(8): 734-46.
[http://dx.doi.org/10.1016/S1474-4422(07)70178-3] [PMID: 17616482]
[2]
Jack CR Jr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 257-62.
[http://dx.doi.org/10.1016/j.jalz.2011.03.004] [PMID: 21514247]
[3]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[4]
Yu E, Liao Z, Mao D, et al. Directed functional connectivity of posterior cingulate cortex and whole brain in Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res 2017; 14(6): 628-35.
[http://dx.doi.org/10.2174/1567205013666161201201000] [PMID: 27915993]
[5]
Yang Z, Wen W, Jiang J, et al. Structural MRI biomarkers of mild cognitive impairment from young elders to centenarians. Curr Alzheimer Res 2016; 13(3): 256-67.
[http://dx.doi.org/10.2174/1567205013666151218150534] [PMID: 26679854]
[6]
Harper L, Barkhof F, Scheltens P, Schott JM, Fox NC. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014; 85(6): 692-8.
[http://dx.doi.org/10.1136/jnnp-2013-306285] [PMID: 24133287]
[7]
Jack CR Jr, Shiung MM, Gunter JL, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004; 62(4): 591-600.
[http://dx.doi.org/10.1212/01.WNL.0000110315.26026.EF] [PMID: 14981176]
[8]
Fennema-Notestine C, McEvoy LK, Hagler DJ Jr, Jacobson MW, Dale AM. The Alzheimer’s Disease Neuroimaging Initiative. Structural neuroimaging in the detection and prognosis of pre clinical and early AD. Behav Neurol 2009; 21(1): 3-12.
[http://dx.doi.org/10.1155/2009/698156] [PMID: 19847040]
[9]
Liu Y, Paajanen T, Zhang Y, et al. AddNeuroMed Consortium. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging 2010; 31(8): 1375-85.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.01.022] [PMID: 20447732]
[10]
Vemuri P, Jack CR Jr. Role of structural MRI in Alzheimer’s disease. Alzheimers Res Ther 2010; 2(4): 23.
[http://dx.doi.org/10.1186/alzrt47] [PMID: 20807454]
[11]
Mrzílkova J, Koutela A, Kutová M, et al. Hippocampal spatial position evaluation on MRI for research and clinical practice. PLoS One 2014; 9(12) e115174
[http://dx.doi.org/10.1371/journal.pone.0115174] [PMID: 25502906]
[12]
Ten Kate M, Barkhof F, Boccardi M, et al. Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers. Clinical validity of medial temporal atrophy as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52: 167-182.e1.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.05.024] [PMID: 28317647]
[13]
Bartos A, Gregus D, Ibrahim I, Tintěra J. Brain volumes and their ratios in Alzheimer’s disease on magnetic resonance imaging segmented using Freesurfer 6.0. Psychiatry Res Neuroimaging 2019; 287: 70-4.
[http://dx.doi.org/10.1016/j.pscychresns.2019.01.014] [PMID: 31003044]
[14]
Ishii K, Kawachi T, Sasaki H, et al. Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. AJNR Am J Neuroradiol 2005; 26(2): 333-40.
[PMID: 15709131]
[15]
Frisoni GB, Pievani M, Testa C, et al. The topography of grey matter involvement in early and late onset Alzheimer’s disease. Brain 2007; 130(Pt 3): 720-30.
[http://dx.doi.org/10.1093/brain/awl377] [PMID: 17293358]
[16]
Shiino A, Watanabe T, Kitagawa T, et al. Different atrophic patterns in early- and late-onset Alzheimer’s disease and evaluation of clinical utility of a method of regional z-score analysis using voxel-based morphometry. Dement Geriatr Cogn Disord 2008; 26(2): 175-86.
[http://dx.doi.org/10.1159/000151241] [PMID: 18698140]
[17]
Lehmann M, Koedam EL, Barnes J, et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiol Aging 2012; 33(3): 627.e1-627.e12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.04.003] [PMID: 21596458]
[18]
Mrzilková J, Zach P, Bartoš A, Tintěra J, Řípová D. Volumetric analysis of the pons, cerebellum and hippocampi in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 2012; 34(3-4): 224-34.
[http://dx.doi.org/10.1159/000343445] [PMID: 23128238]
[19]
Rathakrishnan BG, Doraiswamy PM, Petrella JR. Science to practice: Translating automated brain MRI volumetry in Alzheimer’s disease from research to routine diagnostic use in the work-up of dementia. Front Neurol 2014; 4: 216.
[http://dx.doi.org/10.3389/fneur.2013.00216] [PMID: 24409168]
[20]
Mulder ER, de Jong RA, Knol DL, et al. Alzheimer’s Disease Neuroimaging Initiative. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage 2014; 92: 169-81.
[http://dx.doi.org/10.1016/j.neuroimage.2014.01.058] [PMID: 24521851]
[21]
Cover KS, van Schijndel RA, Versteeg A, et al. Alzheimer’s Disease Neuroimaging Initiative, neuGRID. Reproducibility of hippocampal atrophy rates measured with manual, FreeSurfer, AdaBoost, FSL/FIRST and the MAPS-HBSI methods in Alzheimer’s disease. Psychiatry Res Neuroimaging 2016; 252: 26-35.
[http://dx.doi.org/10.1016/j.pscychresns.2016.04.006] [PMID: 27179313]
[22]
Harper L, Barkhof F, Fox NC, Schott JM. Using visual rating to diagnose dementia: A critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatry 2015; 86(11): 1225-33.
[http://dx.doi.org/10.1136/jnnp-2014-310090] [PMID: 25872513]
[23]
Harper L, Fumagalli GG, Barkhof F, et al. MRI visual rating scales in the diagnosis of dementia: Evaluation in 184 post-mortem confirmed cases. Brain 2016; 139(Pt 4): 1211-25.
[http://dx.doi.org/10.1093/brain/aww005] [PMID: 26936938]
[24]
Rhodius-Meester HFM, Benedictus MR, Wattjes MP, et al. MRI visual ratings of brain atrophy and white matter hyperintensities across the spectrum of cognitive decline are differently affected by age and diagnosis. Front Aging Neurosci 2017; 9: 117.
[http://dx.doi.org/10.3389/fnagi.2017.00117] [PMID: 28536518]
[25]
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1): 159-74.
[http://dx.doi.org/10.2307/2529310] [PMID: 843571]
[26]
Král J, Jonszta T, Marcian V, Tomaskova H, Bar M. Congruence in evaluating early ischemic changes using the ASPECT score between the neurologist and the interventional neuroradiologist in patients with acute cerebral ischemia. Cesk Slov Neurol N 2018; 81/114: 304-7.
[http://dx.doi.org/10.14735/amcsnn2018304]
[27]
Koedam EL, Lehmann M, van der Flier WM, et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21(12): 2618-25.
[http://dx.doi.org/10.1007/s00330-011-2205-4] [PMID: 21805370]
[28]
Silhan D, Ibrahim I, Tintera J, Bartos A. Parietal atrophy score on magnetic resonance imaging of the brain in normally aging people. Cesk Slov Neurol N 2018; 81(4): 414-9.
[http://dx.doi.org/10.14735/amcsnn2018414]
[29]
Silhan D, Ibrahim I, Tintera J, Bartos A. Magnetic resonance imaging showing parietal atrophy of the brain in late-onset Alzheimer’s disease. Cesk Slov Neurol N 2019; 82(1): 91-5.
[http://dx.doi.org/10.14735/amcsnn201991]
[30]
Kuchtova B, Wurst Z, Mrzilkova J, et al. Compensatory shift of subcallosal area and paraterminal gyrus white matter parameters on DTI in patients with Alzheimer disease. Curr Alzheimer Res 2018; 15(6): 590-9.
[http://dx.doi.org/10.2174/1567205015666171227155510] [PMID: 29283048]
[31]
Ibrahim I, Horacek J, Bartos A, et al. Combination of voxel based morphometry and diffusion tensor imaging in patients with Alzheimer’s disease. Neuroendocrinol Lett 2009; 30(1): 39-45.
[PMID: 19300399]
[32]
Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: Interobserver reliability. J Neurol 1995; 242(9): 557-60.
[http://dx.doi.org/10.1007/BF00868807] [PMID: 8551316]
[33]
Bujang MA, Baharum N. Guidelines of the minimum sample size requirements for Cohen’s Kappa. Epidemiol Biostat Public Health 2017; 14(2)

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy