Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Polyphenols and Stem Cells for Neuroregeneration in Parkinson’s Disease and Amyotrophic Lateral Sclerosis

Author(s): Shweta Goyal, Brashket Seth and Rajnish K. Chaturvedi*

Volume 28, Issue 10, 2022

Published on: 31 January, 2022

Page: [806 - 828] Pages: 23

DOI: 10.2174/1381612827666211115154450

Price: $65

Abstract

Parkinson’s disease (PD) and Amyotrophic lateral sclerosis (ALS) are neurological disorders pathologically characterized by chronic degeneration of dopaminergic neurons and motor neurons, respectively. There is still no cure or effective treatment against the disease progression and most of the treatments are symptomatic. The present review offers an overview of the different factors involved in the pathogenesis of these diseases. Subsequently, we focused on the recent advanced studies of dietary polyphenols and stem cell therapies, which have made it possible to slow down the progression of neurodegeneration. To date, stem cells and different polyphenols have been used for the directional induction of neural stem cells into dopaminergic neurons and motor neurons. We have also discussed their involvement in the modulation of different signal transduction pathways and growth factor levels in various in vivo and in vitro studies. Likewise stem cells, polyphenols also exhibit the potential of neuroprotection by their anti-apoptotic, anti-inflammatory, and anti-oxidant properties regulating the growth factors levels and molecular signaling events. Overall this review provides a detailed insight into recent strategies that promise the use of polyphenol with stem cell therapy for the possible treatment of PD and ALS.

Keywords: Neurodegenerative diseases, stem cell, neurodegeneration, polyphenols, neuroregeneration, therapeutics.

[1]
Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel) 2018; 11(2): 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[2]
Mohd Sairazi NS, Sirajudeen KNS. Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid Based Complement Alternat Med 2020; 6565396.
[http://dx.doi.org/10.1155/2020/6565396] [PMID: 32148547]
[3]
Cavaleri F. Review of Amyotrophic Lateral Sclerosis, Parkinson’s and Alzheimer’s diseases helps further define pathology of the novel paradigm for Alzheimer’s with heavy metals as primary disease cause. Med Hypotheses 2015; 85(6): 779-90.
[http://dx.doi.org/10.1016/j.mehy.2015.10.009] [PMID: 26604027]
[4]
Popa-Wagner A, Dumitrascu DI, Capitanescu B, et al. Dietary habits, lifestyle factors and neurodegenerative diseases. Neural Regen Res 2020; 15(3): 394-400.
[http://dx.doi.org/10.4103/1673-5374.266045] [PMID: 31571647]
[5]
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2020; 134: 104621.
[http://dx.doi.org/10.1016/j.nbd.2019.104621] [PMID: 31628992]
[6]
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42(7): 1073-101.
[http://dx.doi.org/10.1007/s10529-020-02886-1] [PMID: 32342435]
[7]
Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the parkinson pandemic. J Parkinsons Dis 2018; 8(s1): S3-8.
[http://dx.doi.org/10.3233/JPD-181474] [PMID: 30584159]
[8]
Arthur KC, Calvo A, Price TR, Geiger JT, Chiò A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun 2016; 7: 12408.
[http://dx.doi.org/10.1038/ncomms12408] [PMID: 27510634]
[9]
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor neuron susceptibility in ALS/FTD. Front Neurosci 2019; 13: 532.
[http://dx.doi.org/10.3389/fnins.2019.00532] [PMID: 31316328]
[10]
Logroscino G, Piccininni M. Amyotrophic lateral sclerosis descriptive epidemiology: The origin of geographic difference. Neuroepidemiology 2019; 52(1-2): 93-103.
[http://dx.doi.org/10.1159/000493386] [PMID: 30602169]
[11]
Watt FM, Driskell RR. The therapeutic potential of stem cells. Philos Trans R Soc Lond B Biol Sci 2010; 365(1537): 155-63.
[http://dx.doi.org/10.1098/rstb.2009.0149] [PMID: 20008393]
[12]
Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 2017; 8(10): e3108.
[http://dx.doi.org/10.1038/cddis.2017.504] [PMID: 29022921]
[13]
Romito A, Cobellis G. Pluripotent stem cells: Current understanding and future directions. Stem Cells Int 2016; 2016: 9451492.
[http://dx.doi.org/10.1155/2016/9451492] [PMID: 26798367]
[14]
Tandon A, Singh SJ, Chaturvedi RK. Stem cells as potential targets of polyphenols in multiple sclerosis and alzheimer’s disease. BioMed Res Int 2018; 2018: 1483791.
[http://dx.doi.org/10.1155/2018/1483791] [PMID: 30112360]
[15]
Ed Nignpense B, Chinkwo KA, Blanchard CL, Santhakumar AB. Polyphenols: Modulators of platelet function and platelet microparticle generation? Int J Mol Sci 2019; 21(1): 146.
[http://dx.doi.org/10.3390/ijms21010146] [PMID: 31878290]
[16]
Halbwirth H. The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci 2010; 11(2): 595-621.
[http://dx.doi.org/10.3390/ijms11020595] [PMID: 20386656]
[17]
Moga MA, Dimienescu OG, Arvatescu CA, Mironescu A, Dracea L, Ples L. The role of natural polyphenols in the prevention and treatment of cervical cancer-an overview. Molecules 2016; 21(8): 1055.
[http://dx.doi.org/10.3390/molecules21081055] [PMID: 27548122]
[18]
Bhullar KS, Rupasinghe HP. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev 2013; 2013: 891748.
[http://dx.doi.org/10.1155/2013/891748] [PMID: 23840922]
[19]
Velusamy T, Panneerselvam AS, Purushottam M, et al. Protective effect of antioxidants on neuronal dysfunction and plasticity in huntington’s disease. Oxid Med Cell Longev 2017; 2017: 3279061.
[http://dx.doi.org/10.1155/2017/3279061] [PMID: 28168008]
[20]
Li M, Tsang KS, Choi ST, Li K, Shaw PC, Lau KF. Neuronal differentiation of C17.2 neural stem cells induced by a natural flavonoid, baicalin. ChemBioChem 2011; 12(3): 449-56.
[http://dx.doi.org/10.1002/cbic.201000570] [PMID: 21290546]
[21]
Bosco DA, LaVoie MJ, Petsko GA, Ringe D. Proteostasis and movement disorders: Parkinson’s disease and amyotrophic lateral sclerosis. Cold Spring Harb Perspect Biol 2011; 3(10): a007500.
[http://dx.doi.org/10.1101/cshperspect.a007500] [PMID: 21844169]
[22]
Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 2018; 21(10): 1300-9.
[http://dx.doi.org/10.1038/s41593-018-0237-7] [PMID: 30258237]
[23]
Fields JA. Cognitive and neuropsychiatric features in Parkinson’s and lewy body dementias. Arch Clin Neuropsychol 2017; 32(7): 786-801.
[http://dx.doi.org/10.1093/arclin/acx085] [PMID: 28961866]
[24]
Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl Neurodegener 2017; 6: 28.
[http://dx.doi.org/10.1186/s40035-017-0099-z] [PMID: 29090092]
[25]
Breydo L, Wu JW, Uversky VN. Α-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 2012; 1822(2): 261-85.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.002] [PMID: 22024360]
[26]
Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 2020; 11: 356.
[http://dx.doi.org/10.3389/fphar.2020.00356] [PMID: 32390826]
[27]
Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol 2020; 19(2): 170-8.
[http://dx.doi.org/10.1016/S1474-4422(19)30287-X] [PMID: 31521533]
[28]
Selvaraj S, Piramanayagam S. Impact of gene mutation in the development of Parkinson’s disease. Genes Dis 2019; 6(2): 120-8.
[http://dx.doi.org/10.1016/j.gendis.2019.01.004] [PMID: 31193965]
[29]
Brás J, Guerreiro R, Hardy J. SnapShot: Genetics of Parkinson’s disease. Cell 2015; 160(3): 570-570.e1.
[http://dx.doi.org/10.1016/j.cell.2015.01.019] [PMID: 25635463]
[30]
Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 2016; 139(Suppl. 1): 59-74.
[http://dx.doi.org/10.1111/jnc.13593] [PMID: 27090875]
[31]
Zhang TM, Yu SY, Guo P, et al. Nonmotor symptoms in patients with Parkinson disease: A cross-sectional observational study. Medicine (Baltimore) 2016; 95(50): e5400.
[http://dx.doi.org/10.1097/MD.0000000000005400] [PMID: 27977578]
[32]
Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med 2001; 344(22): 1688-700.
[http://dx.doi.org/10.1056/NEJM200105313442207] [PMID: 11386269]
[33]
Chiò A, Mora G, Lauria G. Pain in amyotrophic lateral sclerosis. Lancet Neurol 2017; 16(2): 144-57.
[http://dx.doi.org/10.1016/S1474-4422(16)30358-1] [PMID: 27964824]
[34]
Alsultan AA, Waller R, Heath PR, Kirby J. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis 2016; 6: 49-64.
[PMID: 30050368]
[35]
Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2018; 17(1): 94-102.
[http://dx.doi.org/10.1016/S1474-4422(17)30401-5] [PMID: 29154141]
[36]
Soo KY, Farg M, Atkin JD. Molecular motor proteins and amyotrophic lateral sclerosis. Int J Mol Sci 2011; 12(12): 9057-82.
[http://dx.doi.org/10.3390/ijms12129057] [PMID: 22272119]
[37]
Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6: 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[38]
Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009; 4: 3.
[http://dx.doi.org/10.1186/1750-1172-4-3] [PMID: 19192301]
[39]
Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 2005; 113(9): 1250-6.
[http://dx.doi.org/10.1289/ehp.7567] [PMID: 16140637]
[40]
Migliore L, Coppedè F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 2009; 674(1-2): 73-84.
[http://dx.doi.org/10.1016/j.mrgentox.2008.09.013] [PMID: 18952194]
[41]
Farina M, Avila DS, da Rocha JB, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2013; 62(5): 575-94.
[http://dx.doi.org/10.1016/j.neuint.2012.12.006] [PMID: 23266600]
[42]
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019; 24(8): 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[43]
Aloizou AM, Siokas V, Vogiatzi C, et al. Pesticides, cognitive functions and dementia: A review. Toxicol Lett 2020; 326: 31-51.
[http://dx.doi.org/10.1016/j.toxlet.2020.03.005] [PMID: 32145396]
[44]
Kamel F, Umbach DM, Bedlack RS, et al. Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicology 2012; 33(3): 457-62.
[http://dx.doi.org/10.1016/j.neuro.2012.04.001] [PMID: 22521219]
[45]
Weisskopf MG, Morozova N, O’Reilly EJ, et al. Prospective study of chemical exposures and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2009; 80(5): 558-61.
[http://dx.doi.org/10.1136/jnnp.2008.156976] [PMID: 19372290]
[46]
Bozzoni V, Pansarasa O, Diamanti L, Nosari G, Cereda C, Ceroni M. Amyotrophic lateral sclerosis and environmental factors. Funct Neurol 2016; 31(1): 7-19.
[PMID: 27027889]
[47]
Bradley WG, Andrew AS, Traynor BJ, Chiò A, Butt TH, Stommel EW. Gene-environment-time interactions in neurodegenerative diseases: hypotheses and research approaches. Ann Neurosci 2018; 25(4): 261-7.
[http://dx.doi.org/10.1159/000495321] [PMID: 31000966]
[48]
Yang F, Luo J. Endoplasmic reticulum stress and ethanol neurotoxicity. Biomolecules 2015; 5(4): 2538-53.
[http://dx.doi.org/10.3390/biom5042538] [PMID: 26473940]
[49]
Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2014; 112: 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004] [PMID: 24211851]
[50]
Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol (Lausanne) 2018; 9: 400.
[http://dx.doi.org/10.3389/fendo.2018.00400] [PMID: 30072954]
[51]
Oskarsson B, Horton DK, Mitsumoto H. Potential environmental factors in amyotrophic lateral sclerosis. Neurol Clin 2015; 33(4): 877-88.
[http://dx.doi.org/10.1016/j.ncl.2015.07.009] [PMID: 26515627]
[52]
Bisaglia M, Bubacco L. Copper ions and Parkinson’s Disease: why is homeostasis so relevant? Biomolecules 2020; 10(2): 195.
[http://dx.doi.org/10.3390/biom10020195] [PMID: 32013126]
[53]
Sirangelo I, Iannuzzi C. The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase. Molecules 2017; 22(9): 1429.
[http://dx.doi.org/10.3390/molecules22091429] [PMID: 28850080]
[54]
Thomas GEC, Leyland LA, Schrag AE, Lees AJ, Acosta-Cabronero J, Weil RS. Brain iron deposition is linked with cognitive severity in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2020; 91(4): 418-25.
[http://dx.doi.org/10.1136/jnnp-2019-322042] [PMID: 32079673]
[55]
Wang L, Li C, Chen X, Li S, Shang H. Abnormal serum iron-status indicator changes in Amyotrophic Lateral Sclerosis (ALS) patients: A meta-analysis. Front Neurol 2020; 11: 380.
[http://dx.doi.org/10.3389/fneur.2020.00380] [PMID: 32508736]
[56]
Bu XL, Xiang Y, Guo Y. The role of iron in amyotrophic lateral sclerosis. Adv Exp Med Biol 2019; 1173: 145-52.
[http://dx.doi.org/10.1007/978-981-13-9589-5_8] [PMID: 31456209]
[57]
Harischandra DS, Ghaisas S, Zenitsky G, et al. Manganese-induced neurotoxicity: New insights into the triad of protein misfolding, mitochondrial impairment, and neuroinflammation. Front Neurosci 2019; 13: 654.
[http://dx.doi.org/10.3389/fnins.2019.00654] [PMID: 31293375]
[58]
Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 2011; 25(4): 191-203.
[http://dx.doi.org/10.1016/j.jtemb.2011.08.144] [PMID: 21963226]
[59]
Kumar V, Singh D, Singh BK, et al. Alpha-synuclein aggregation, Ubiquitin proteasome system impairment, and L-Dopa response in zinc-induced Parkinsonism: resemblance to sporadic Parkinson’s disease. Mol Cell Biochem 2018; 444(1-2): 149-60.
[http://dx.doi.org/10.1007/s11010-017-3239-y] [PMID: 29198021]
[60]
Parkin Kullmann JA, Pamphlett R. A Comparison of mercury exposure from seafood consumption and dental amalgam fillings in people with and without Amyotrophic Lateral Sclerosis (ALS): An international online case-control study. Int J Environ Res Public Health 2018; 15(12): 2874.
[http://dx.doi.org/10.3390/ijerph15122874] [PMID: 30558238]
[61]
Akinyemi AJ, Miah MR, Ijomone OM, et al. Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter. Toxicol Rep 2019; 6: 833-40.
[http://dx.doi.org/10.1016/j.toxrep.2019.08.001] [PMID: 31463204]
[62]
Trojsi F, Monsurrò MR, Tedeschi G. Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. Int J Mol Sci 2013; 14(8): 15286-311.
[http://dx.doi.org/10.3390/ijms140815286] [PMID: 23887652]
[63]
Ellwanger JH, Franke SI, Bordin DL, Prá D, Henriques JA. Biological functions of selenium and its potential influence on Parkinson’s disease. An Acad Bras Cienc 2016; 88(3)(Suppl.): 1655-74.
[http://dx.doi.org/10.1590/0001-3765201620150595] [PMID: 27556332]
[64]
Vinceti M, Filippini T, Malagoli C, et al. Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water: A long-term follow-up. Environ Res 2019; 179(Pt A): 108742.
[http://dx.doi.org/10.1016/j.envres.2019.108742] [PMID: 31629180]
[65]
Filippini T, Tesauro M, Fiore M, et al. Environmental and occupational risk factors of amyotrophic lateral sclerosis: A population-based case-control study. Int J Environ Res Public Health 2020; 17: 2882.
[http://dx.doi.org/10.3390/ijerph17082882]
[66]
Miyazaki I, Isooka N, Imafuku F, et al. Chronic systemic exposure to low-dose rotenone induced central and peripheral neuropathology and motor deficits in mice: reproducible animal model of parkinson’s disease. Int J Mol Sci 2020; 21(9): 3254.
[http://dx.doi.org/10.3390/ijms21093254] [PMID: 32375371]
[67]
Colle D, Santos DB, Naime AA, et al. Early postnatal exposure to paraquat and maneb in mice increases nigrostriatal dopaminergic susceptibility to a re-challenge with the same pesticides at adulthood: implications for Parkinson’s Disease. Neurotox Res 2020; 37(1): 210-26.
[http://dx.doi.org/10.1007/s12640-019-00097-9] [PMID: 31422567]
[68]
Nandipati S, Litvan I. Environmental exposures and Parkinson’s Disease. Int J Environ Res Public Health 2016; 13(9): 881.
[http://dx.doi.org/10.3390/ijerph13090881] [PMID: 27598189]
[69]
Drechsel DA, Patel M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 2008; 44(11): 1873-86.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.02.008] [PMID: 18342017]
[70]
Su FC, Goutman SA, Chernyak S, et al. Association of environmental toxins with amyotrophic lateral sclerosis. JAMA Neurol 2016; 73(7): 803-11.
[http://dx.doi.org/10.1001/jamaneurol.2016.0594] [PMID: 27159543]
[71]
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. Environ Sci Pollut Res Int 2020; 27(21): 26036-57.
[http://dx.doi.org/10.1007/s11356-020-08937-4] [PMID: 32399888]
[72]
Brown MK, Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 2012; 3: 263.
[http://dx.doi.org/10.3389/fphys.2012.00263] [PMID: 22934019]
[73]
Barlow BK, Cory-Slechta DA, Richfield EK, Thiruchelvam M. The gestational environment and Parkinson’s disease: evidence for neurodevelopmental origins of a neurodegenerative disorder. Reprod Toxicol 2007; 23(3): 457-70.
[http://dx.doi.org/10.1016/j.reprotox.2007.01.007] [PMID: 17350799]
[74]
Landers JE, Shi L, Cho TJ, et al. A common haplotype within the PON1 promoter region is associated with sporadic ALS. Amyotroph Lateral Scler 2008; 9(5): 306-14.
[http://dx.doi.org/10.1080/17482960802233177] [PMID: 18618303]
[75]
Park JS, Davis RL, Sue CM. Mitochondrial dysfunction in Parkinson’s Disease: New mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 2018; 18(5): 21.
[http://dx.doi.org/10.1007/s11910-018-0829-3] [PMID: 29616350]
[76]
Reddy PH. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 2008; 10(4): 291-315.
[http://dx.doi.org/10.1007/s12017-008-8044-z] [PMID: 18566920]
[77]
Martin LJ. Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006; 65(12): 1103-10.
[http://dx.doi.org/10.1097/01.jnen.0000248541.05552.c4] [PMID: 17146283]
[78]
Tanner CM, Goldman SM, Ross GW, Grate SJ. The disease intersection of susceptibility and exposure: chemical exposures and neurodegenerative disease risk. Alzheimers Dement 2014; 10(3)(Suppl.): S213-25.
[http://dx.doi.org/10.1016/j.jalz.2014.04.014] [PMID: 24924672]
[79]
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5(1): 125.
[http://dx.doi.org/10.1038/s41392-020-00233-4] [PMID: 32661235]
[80]
Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 2019; 710: 132933.
[http://dx.doi.org/10.1016/j.neulet.2017.06.052] [PMID: 28669745]
[81]
Bradley WG, Mash DC. Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler 2009; 10(Suppl. 2): 7-20.
[http://dx.doi.org/10.3109/17482960903286009] [PMID: 19929726]
[82]
Nunes-Costa D, Magalhães JD, G-Fernandes M, Cardoso SM, Empadinhas N. Microbial BMAA and the pathway for Parkinson’s Disease neurodegeneration. Front Aging Neurosci 2020; 12: 26.
[http://dx.doi.org/10.3389/fnagi.2020.00026] [PMID: 32317956]
[83]
Delcourt N, Claudepierre T, Maignien T, Arnich N, Mattei C. Cellular and molecular aspects of the β-N-Methylamino-l-alanine (BMAA) mode of action within the neurodegenerative pathway: facts and controversy. Toxins (Basel) 2017; 10(1): 6.
[http://dx.doi.org/10.3390/toxins10010006] [PMID: 29271898]
[84]
Levesque S, Taetzsch T, Lull ME, et al. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect 2011; 119(8): 1149-55.
[http://dx.doi.org/10.1289/ehp.1002986] [PMID: 21561831]
[85]
Liu R, Young MT, Chen JC, Kaufman JD, Chen H. Ambient air pollution exposures and risk of Parkinson Disease. Environ Health Perspect 2016; 124(11): 1759-65.
[http://dx.doi.org/10.1289/EHP135] [PMID: 27285422]
[86]
D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 2013; 65: 509-27.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.029] [PMID: 23797033]
[87]
Hu S, Hu M, Liu J, et al. Phosphorylation of Tau and α-Synuclein Induced neurodegeneration in MPTP mouse model of Parkinson’s Disease. Neuropsychiatr Dis Treat 2020; 16: 651-63.
[http://dx.doi.org/10.2147/NDT.S235562] [PMID: 32184604]
[88]
O’Reilly EJ, Wang H, Weisskopf MG, et al. Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14(3): 205-11.
[http://dx.doi.org/10.3109/21678421.2012.735240] [PMID: 23134505]
[89]
Gardner RC, Burke JF, Nettiksimmons J, Goldman S, Tanner CM, Yaffe K. Traumatic brain injury in later life increases risk for Parkinson disease. Ann Neurol 2015; 77(6): 987-95.
[http://dx.doi.org/10.1002/ana.24396] [PMID: 25726936]
[90]
Takagi Y. History of neural stem cell research and its clinical application. Neurol Med Chir (Tokyo) 2016; 56(3): 110-24.
[http://dx.doi.org/10.2176/nmc.ra.2015-0340] [PMID: 26888043]
[91]
Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol 2020; 49(1): 3-16.
[http://dx.doi.org/10.1111/ahe.12496] [PMID: 31568602]
[92]
Azari H, Rahman M, Sharififar S, Reynolds BA. Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp 2010; (45): 2393.
[http://dx.doi.org/10.3791/2393] [PMID: 21113123]
[93]
De Filippis L, Binda E. Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med 2012; 1(4): 298-308.
[http://dx.doi.org/10.5966/sctm.2011-0045] [PMID: 23197809]
[94]
Xu W, Lakshman N, Morshead CM. Building a central nervous system: The neural stem cell lineage revealed. Neurogenesis (Austin) 2017; 4(1): e1300037.
[http://dx.doi.org/10.1080/23262133.2017.1300037] [PMID: 28516107]
[95]
Zhou S, Szczesna K, Ochalek A, et al. Neurosphere based differentiation of human ipsc improves astrocyte differentiation. Stem Cells Int 2016; 2016: 4937689.
[http://dx.doi.org/10.1155/2016/4937689] [PMID: 26798357]
[96]
Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4(6): a008151.
[http://dx.doi.org/10.1101/cshperspect.a008151] [PMID: 22570373]
[97]
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the treatment of Parkinson’s Disease: Beyond dopamine. Front Aging Neurosci 2020; 12: 4.
[http://dx.doi.org/10.3389/fnagi.2020.00004] [PMID: 32076403]
[98]
Zucca FA, Segura-Aguilar J, Ferrari E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 2017; 155: 96-119.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.012] [PMID: 26455458]
[99]
Prakash N, Wurst W. Development of dopaminergic neurons in the mammalian brain. Cell Mol Life Sci 2006; 63(2): 187-206.
[http://dx.doi.org/10.1007/s00018-005-5387-6] [PMID: 16389456]
[100]
Tian C, Li Y, Huang Y, et al. Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Sci Rep 2015; 5: 12622.
[http://dx.doi.org/10.1038/srep12622] [PMID: 26224135]
[101]
Zhao H, Zuo X, Ren L, et al. Combined use of bFGF/EGF and all-trans-retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells. Neurosci Lett 2019; 690: 61-8.
[http://dx.doi.org/10.1016/j.neulet.2018.10.002] [PMID: 30300683]
[102]
Malik MA, Blusztajn JK, Greenwood CE. Nutrients as trophic factors in neurons and the central nervous system: role of retinoic acid. J Nutr Biochem 2000; 11(1): 2-13.
[http://dx.doi.org/10.1016/S0955-2863(99)00066-2] [PMID: 15539337]
[103]
Lai CL, Lu CC, Lin HC, et al. Valproate is protective against 6-OHDA-induced dopaminergic neurodegeneration in rodent midbrain: A potential role of BDNF up-regulation. J Formos Med Assoc 2019; 118(1 Pt 3): 420-8.
[http://dx.doi.org/10.1016/j.jfma.2018.06.017] [PMID: 30031602]
[104]
Chinta SJ, Andersen JK. Dopaminergic neurons. Int J Biochem Cell Biol 2005; 37(5): 942-6.
[http://dx.doi.org/10.1016/j.biocel.2004.09.009] [PMID: 15743669]
[105]
Mishra A, Singh S, Shukla S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: possible implication for Parkinson’s disease. J Exp Neurosci 2018; 12: 1179069518779829.
[http://dx.doi.org/10.1177/1179069518779829] [PMID: 29899667]
[106]
Krakora D, Macrander C, Suzuki M. Neuromuscular junction protection for the potential treatment of amyotrophic lateral sclerosis. Neurol Res Int 2012; 2012: 379657.
[http://dx.doi.org/10.1155/2012/379657] [PMID: 22919482]
[107]
Trawczynski M, Liu G, David BT, Fessler RG. Restoring motor neurons in spinal cord injury with induced pluripotent stem cells. Front Cell Neurosci 2019; 13: 369.
[http://dx.doi.org/10.3389/fncel.2019.00369] [PMID: 31474833]
[108]
Ko KD, El-Ghazawi T, Kim D, Morizono H. Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach. IEEE Symp Comput Intell Bioinforma Comput Biol Proc 2014; 14417042.
[http://dx.doi.org/10.1109/CIBCB.2014.6845506] [PMID: 25580472]
[109]
Nefussy B, Drory VE. Moving toward a predictive and personalized clinical approach in amyotrophic lateral sclerosis: novel developments and future directions in diagnosis, genetics, pathogenesis and therapies. EPMA J 2010; 1(2): 329-41.
[http://dx.doi.org/10.1007/s13167-010-0027-0] [PMID: 23199068]
[110]
Nishimune H, Shigemoto K. Practical anatomy of the neuromuscular junction in health and disease. Neurol Clin 2018; 36(2): 231-40.
[http://dx.doi.org/10.1016/j.ncl.2018.01.009] [PMID: 29655446]
[111]
Xu Z, Chu X, Jiang H, Schilling H, Chen S, Feng J. Induced dopaminergic neurons: A new promise for Parkinson’s disease. Redox Biol 2017; 11: 606-12.
[http://dx.doi.org/10.1016/j.redox.2017.01.009] [PMID: 28110217]
[112]
Ciervo Y, Ning K, Jun X, Shaw PJ, Mead RJ. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener 2017; 12(1): 85.
[http://dx.doi.org/10.1186/s13024-017-0227-3] [PMID: 29132389]
[113]
Mahla RS. Stem Cells Applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016; 2016: 6940283.
[http://dx.doi.org/10.1155/2016/6940283] [PMID: 27516776]
[114]
Simmnacher K, Lanfer J, Rizo T, Kaindl J, Winner B. Modeling cell-cell interactions in Parkinson’s Disease using human stem cell-based models. Front Cell Neurosci 2020; 13: 571.
[http://dx.doi.org/10.3389/fncel.2019.00571] [PMID: 32009903]
[115]
Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 2009; 30(5): 260-7.
[http://dx.doi.org/10.1016/j.tips.2009.03.001] [PMID: 19362379]
[116]
Paik DT, Chandy M, Wu JC. Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev 2020; 72(1): 320-42.
[http://dx.doi.org/10.1124/pr.116.013003] [PMID: 31871214]
[117]
Han F, Baremberg D, Gao J, et al. Development of stem cell-based therapy for Parkinson’s disease. Transl Neurodegener 2015; 4: 16.
[http://dx.doi.org/10.1186/s40035-015-0039-8] [PMID: 26339485]
[118]
Díaz ML. Regenerative medicine: could Parkinson’s be the first neurodegenerative disease to be cured? Future Sci OA 2019; 5(9): FSO418.
[http://dx.doi.org/10.2144/fsoa-2019-0035] [PMID: 31608157]
[119]
Mendes Filho D, Ribeiro PDC, Oliveira LF, et al. Therapy with mesenchymal stem cells in Parkinson Disease: History and perspectives. Neurologist 2018; 23(4): 141-7.
[http://dx.doi.org/10.1097/NRL.0000000000000188] [PMID: 29953040]
[120]
Karagiannis P, Takahashi K, Saito M, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev 2019; 99(1): 79-114.
[http://dx.doi.org/10.1152/physrev.00039.2017] [PMID: 30328784]
[121]
Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol 2015; 13: 9.
[http://dx.doi.org/10.1186/s12958-015-0005-4] [PMID: 25890180]
[122]
Fan Y, Winanto , Ng SY. Replacing what’s lost: a new era of stem cell therapy for Parkinson’s disease. Transl Neurodegener 2020; 9: 2.
[http://dx.doi.org/10.1186/s40035-019-0180-x] [PMID: 31911835]
[123]
Hoban DB, Shrigley S, Mattsson B, et al. Impact of α-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized α-synuclein rat model of PD. Proc Natl Acad Sci USA 2020; 117(26): 15209-20.
[http://dx.doi.org/10.1073/pnas.2001305117] [PMID: 32541058]
[124]
Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018; 15(1): 36-45.
[http://dx.doi.org/10.7150/ijms.21666] [PMID: 29333086]
[125]
Lige L, Zengmin T. Transplantation of neural precursor cells in the treatment of Parkinson Disease: An efficacy and safety analysis. Turk Neurosurg 2016; 26(3): 378-83.
[PMID: 27161464]
[126]
Androutsellis-Theotokis A, Rueger MA, Park DM, et al. Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proc Natl Acad Sci USA 2009; 106(32): 13570-5.
[http://dx.doi.org/10.1073/pnas.0905125106] [PMID: 19628689]
[127]
Tian LP, Zhang S, Xu L, et al. Selenite benefits embryonic stem cells therapy in Parkinson’s disease. Curr Mol Med 2012; 12(8): 1005-14.
[http://dx.doi.org/10.2174/156652412802480880] [PMID: 22804247]
[128]
Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci 2010; 28(4): 589-603.
[http://dx.doi.org/10.3233/RNN-2010-0543] [PMID: 20714081]
[129]
Vunjak-Novakovic G. Patterning stem cell differentiation. Cell Stem Cell 2008; 3(4): 362-3.
[http://dx.doi.org/10.1016/j.stem.2008.09.007] [PMID: 18940727]
[130]
Bjorklund LM, Sánchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99(4): 2344-9.
[http://dx.doi.org/10.1073/pnas.022438099] [PMID: 11782534]
[131]
Martínez-Morales PL, Liste I. Stem cells as in vitro model of Parkinson’s disease. Stem Cells Int 2012; 2012: 980941.
[http://dx.doi.org/10.1155/2012/980941] [PMID: 22619684]
[132]
Mao Z, Zhang S, Chen H. Stem cell therapy for amyotrophic lateral sclerosis. Cell Regen (Lond) 2015; 4: 11.
[http://dx.doi.org/10.1186/s13619-015-0026-7] [PMID: 26594318]
[133]
Hill ABT, Bressan FF, Murphy BD, Garcia JM. Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res Ther 2019; 10(1): 44.
[http://dx.doi.org/10.1186/s13287-019-1145-9] [PMID: 30678726]
[134]
Singh M, Kakkar A, Sharma R, et al. Synergistic Effect of BDNF and FGF2 in efficient generation of functional dopaminergic neurons from human mesenchymal stem cells. Sci Rep 2017; 7(1): 10378.
[http://dx.doi.org/10.1038/s41598-017-11028-z] [PMID: 28871128]
[135]
Theocharopoulou G. The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases. AIMS Neurosci 2020; 7(1): 43-65.
[http://dx.doi.org/10.3934/Neuroscience.2020004] [PMID: 32455165]
[136]
Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 2013; 106-107: 17-32.
[http://dx.doi.org/10.1016/j.pneurobio.2013.04.004] [PMID: 23643800]
[137]
Chen C, Turnbull DM, Reeve AK. Mitochondrial dysfunction in Parkinson’s disease-cause or consequence? Biology (Basel) 2019; 8(2): 38.
[http://dx.doi.org/10.3390/biology8020038] [PMID: 31083583]
[138]
Kim K, Kim SH, Kim J, Kim H, Yim J. Glutathione s-transferase omega 1 activity is sufficient to suppress neurodegeneration in a Drosophila model of Parkinson disease. J Biol Chem 2012; 287(9): 6628-41.
[http://dx.doi.org/10.1074/jbc.M111.291179] [PMID: 22219196]
[139]
Chang YH, Wu KC, Harn HJ, Lin SZ, Ding DC. Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant 2018; 27(3): 349-63.
[http://dx.doi.org/10.1177/0963689717723636] [PMID: 29692195]
[140]
Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis 2020; 11(4): 288.
[http://dx.doi.org/10.1038/s41419-020-2473-5] [PMID: 32341347]
[141]
Liu K, Ji K, Guo L, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res 2014; 92: 10-8.
[http://dx.doi.org/10.1016/j.mvr.2014.01.008] [PMID: 24486322]
[142]
Arduíno DM, Esteves AR, Cardoso SM. Mitochondrial fusion/fission, transport and autophagy in Parkinson’s disease: when mitochondria get nasty. Parkinsons Dis 2011; 2011: 767230.
[http://dx.doi.org/10.4061/2011/767230] [PMID: 21403911]
[143]
Ahmad T, Mukherjee S, Pattnaik B, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 2014; 33(9): 994-1010.
[http://dx.doi.org/10.1002/embj.201386030] [PMID: 24431222]
[144]
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 2016; 7(1): 125.
[http://dx.doi.org/10.1186/s13287-016-0363-7] [PMID: 27581859]
[145]
Canfrán-Duque A, Pastor O, Quintana-Portillo R, et al. Curcumin promotes exosomes/microvesicles secretion that attenuates lysosomal cholesterol traffic impairment. Mol Nutr Food Res 2014; 58(4): 687-97.
[http://dx.doi.org/10.1002/mnfr.201300350] [PMID: 24288129]
[146]
Cooper JM, Wiklander PB, Nordin JZ, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 2014; 29(12): 1476-85.
[http://dx.doi.org/10.1002/mds.25978] [PMID: 25112864]
[147]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[148]
Chen F, Liu Y, Wong NK, Xiao J, So KF. Oxidative stress in stem cell aging. Cell Transplant 2017; 26(9): 1483-95.
[http://dx.doi.org/10.1177/0963689717735407] [PMID: 29113471]
[149]
Martínez-Herrero S, Larráyoz IM, Ochoa-Callejero L, García-Sanmartín J, Martínez A. Adrenomedullin as a growth and cell fate regulatory factor for adult neural stem cells. Stem Cells Int 2012; 2012: 804717.
[http://dx.doi.org/10.1155/2012/804717] [PMID: 23049570]
[150]
Chi K, Fu RH, Huang YC, et al. Adipose-derived stem cells stimulated with n-butylidenephthalide exhibit therapeutic effects in a mouse model of Parkinson’s Disease. Cell Transplant 2018; 27(3): 456-70.
[http://dx.doi.org/10.1177/0963689718757408] [PMID: 29756519]
[151]
Wan W, Cao L, Kalionis B, Xia S, Tai X. Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells Int 2015; 2015: 382530.
[http://dx.doi.org/10.1155/2015/382530] [PMID: 26240571]
[152]
Kikuchi T, Morizane A, Doi D, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 2017; 548(7669): 592-6.
[http://dx.doi.org/10.1038/nature23664] [PMID: 28858313]
[153]
Sanders LH, Laganière J, Cooper O, et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol Dis 2014; 62: 381-6.
[http://dx.doi.org/10.1016/j.nbd.2013.10.013] [PMID: 24148854]
[154]
Sundberg M, Bogetofte H, Lawson T, et al. Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 2013; 31(8): 1548-62.
[http://dx.doi.org/10.1002/stem.1415] [PMID: 23666606]
[155]
Xiao B, Ng HH, Takahashi R, Tan EK. Induced pluripotent stem cells in Parkinson’s disease: scientific and clinical challenges. J Neurol Neurosurg Psychiatry 2016; 87(7): 697-702.
[http://dx.doi.org/10.1136/jnnp-2015-312036] [PMID: 26833176]
[156]
Yin X, Li L, Zhang X, et al. Development of neural stem cells at different sites of fetus brain of different gestational age. Int J Clin Exp Pathol 2013; 6(12): 2757-64.
[PMID: 24294362]
[157]
Sung PS, Lin PY, Liu CH, Su HC, Tsai KJ. Neuroinflammation and neurogenesis in Alzheimer’s Disease and potential therapeutic approaches. Int J Mol Sci 2020; 21(3): 701.
[http://dx.doi.org/10.3390/ijms21030701] [PMID: 31973106]
[158]
Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 2013; 33(5): 491-504.
[http://dx.doi.org/10.1111/neup.12020] [PMID: 23384285]
[159]
Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 2017; 106: 94-100.
[http://dx.doi.org/10.1016/j.neuint.2017.02.006] [PMID: 28219641]
[160]
Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 2009; 87(10): 2183-200.
[http://dx.doi.org/10.1002/jnr.22054] [PMID: 19301431]
[161]
Choi DH, Kim JH, Kim SM, Kang K, Han DW, Lee J. Therapeutic potential of induced neural stem cells for Parkinson’s Disease. Int J Mol Sci 2017; 18(1): 224.
[http://dx.doi.org/10.3390/ijms18010224] [PMID: 28117752]
[162]
Reisman M, Adams KT. Stem cell therapy: a look at current research, regulations, and remaining hurdles. P&T 2014; 39(12): 846-57.
[PMID: 25516694]
[163]
Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28(1): 31-40.
[http://dx.doi.org/10.1016/S0896-6273(00)00083-0] [PMID: 11086981]
[164]
Takagi Y, Takahashi J, Saiki H, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005; 115(1): 102-9.
[http://dx.doi.org/10.1172/JCI21137] [PMID: 15630449]
[165]
Chemmarappally JM, Pegram HCN, Abeywickrama N, et al. A co-culture nanofibre scaffold model of neural cell degeneration in relevance to Parkinson’s disease. Sci Rep 2020; 10(1): 2767.
[http://dx.doi.org/10.1038/s41598-020-59310-x] [PMID: 32066745]
[166]
Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene therapy for ALS-A perspective. Int J Mol Sci 2019; 20(18): 4388.
[http://dx.doi.org/10.3390/ijms20184388] [PMID: 31500113]
[167]
Cova L, Silani V. Amyotrophic lateral sclerosis: applications of stem cells - an update. Stem Cells Cloning 2010; 3: 145-56.
[PMID: 24198520]
[168]
Svendsen CN, Langston JW. Stem cells for Parkinson disease and ALS: replacement or protection? Nat Med 2004; 10(3): 224-5.
[http://dx.doi.org/10.1038/nm0304-224] [PMID: 14991036]
[169]
Clement AM, Nguyen MD, Roberts EA, et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 2003; 302(5642): 113-7.
[http://dx.doi.org/10.1126/science.1086071] [PMID: 14526083]
[170]
Forostyak S, Sykova E. Neuroprotective potential of cell-based therapies in ALS: from bench to bedside. Front Neurosci 2017; 11: 591.
[http://dx.doi.org/10.3389/fnins.2017.00591] [PMID: 29114200]
[171]
Gugliandolo A, Bramanti P, Mazzon E. Mesenchymal stem cells: A potential therapeutic approach for amyotrophic lateral sclerosis? Stem Cells Int 2019; 2019: 3675627.
[http://dx.doi.org/10.1155/2019/3675627] [PMID: 30956667]
[172]
Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: Results of phase 1/2 and 2a clinical trials. JAMA Neurol 2016; 73(3): 337-44.
[http://dx.doi.org/10.1001/jamaneurol.2015.4321] [PMID: 26751635]
[173]
Hajra A, Bandyopadhyay D, Hajra SK. Amyotrophic lateral sclerosis: promising therapeutic outcome-not far away? Neural Regen Res 2016; 11(5): 856.
[http://dx.doi.org/10.4103/1673-5374.182715] [PMID: 27335576]
[174]
Bonafede R, Mariotti R. ALS pathogenesis and therapeutic approaches: The role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci 2017; 11: 80.
[http://dx.doi.org/10.3389/fncel.2017.00080] [PMID: 28377696]
[175]
Hajivalili M, Pourgholi F, Kafil HS, Jadidi-Niaragh F, Yousefi M. Mesenchymal stem cells in the treatment of amyotrophic lateral sclerosis. Curr Stem Cell Res Ther 2016; 11(1): 41-50.
[http://dx.doi.org/10.2174/1574888X10666150902095031] [PMID: 26329483]
[176]
Lee M, Ban JJ, Kim KY, et al. Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem Biophys Res Commun 2016; 479(3): 434-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.069] [PMID: 27641665]
[177]
Nowicka N, Juranek J, Juranek JK, Wojtkiewicz J. Risk factors and emerging therapies in amyotrophic lateral sclerosis. Int J Mol Sci 2019; 20(11): 2616.
[http://dx.doi.org/10.3390/ijms20112616] [PMID: 31141951]
[178]
Xu L, Yan J, Chen D, et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 2006; 82(7): 865-75.
[http://dx.doi.org/10.1097/01.tp.0000235532.00920.7a] [PMID: 17038899]
[179]
Yan J, Xu L, Welsh AM, et al. Combined immunosuppressive agents or CD4 antibodies prolong survival of human neural stem cell grafts and improve disease outcomes in amyotrophic lateral sclerosis transgenic mice. Stem Cells 2006; 24(8): 1976-85.
[http://dx.doi.org/10.1634/stemcells.2005-0518] [PMID: 16644922]
[180]
Hefferan MP, Galik J, Kakinohana O, et al. Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation. PLoS One 2012; 7(8): e42614.
[http://dx.doi.org/10.1371/journal.pone.0042614] [PMID: 22916141]
[181]
Manninen T, Havela R, Linne ML. Computational models for calcium-mediated astrocyte functions. Front Comput Neurosci 2018; 12: 14.
[http://dx.doi.org/10.3389/fncom.2018.00014] [PMID: 29670517]
[182]
Barbeito L. Astrocyte-based cell therapy: new hope for amyotrophic lateral sclerosis patients? Stem Cell Res Ther 2018; 9(1): 241.
[http://dx.doi.org/10.1186/s13287-018-1006-y] [PMID: 30257722]
[183]
Noble M, Davies JE, Mayer-Pröschel M, Pröschel C, Davies SJ. Precursor cell biology and the development of astrocyte transplantation therapies: lessons from spinal cord injury. Neurotherapeutics 2011; 8(4): 677-93.
[http://dx.doi.org/10.1007/s13311-011-0071-z] [PMID: 21918888]
[184]
Han SS, Liu Y, Tyler-Polsz C, Rao MS, Fischer I. Transplantation of glial-restricted precursor cells into the adult spinal cord: survival, glial-specific differentiation, and preferential migration in white matter. Glia 2004; 45(1): 1-16.
[http://dx.doi.org/10.1002/glia.10282] [PMID: 14648541]
[185]
Falnikar A, Li K, Lepore AC. Therapeutically targeting astrocytes with stem and progenitor cell transplantation following traumatic spinal cord injury. Brain Res 2015; 1619: 91-103.
[http://dx.doi.org/10.1016/j.brainres.2014.09.037] [PMID: 25251595]
[186]
Rao MS, Noble M, Mayer-Pröschel M. A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci USA 1998; 95(7): 3996-4001.
[http://dx.doi.org/10.1073/pnas.95.7.3996] [PMID: 9520481]
[187]
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova AM. Glial cells-the strategic targets in amyotrophic lateral sclerosis treatment. J Clin Med 2020; 9(1): 261.
[http://dx.doi.org/10.3390/jcm9010261] [PMID: 31963681]
[188]
Pehar M, Harlan BA, Killoy KM, Vargas MR. Role and therapeutic potential of astrocytes in amyotrophic lateral sclerosis. Curr Pharm Des 2017; 23(33): 5010-21.
[PMID: 28641533]
[189]
Papadeas ST, Kraig SE, O’Banion C, Lepore AC, Maragakis NJ. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc Natl Acad Sci USA 2011; 108(43): 17803-8.
[http://dx.doi.org/10.1073/pnas.1103141108] [PMID: 21969586]
[190]
Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007; 10(5): 615-22.
[http://dx.doi.org/10.1038/nn1876] [PMID: 17435755]
[191]
Li XJ, Du ZW, Zarnowska ED, et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 2005; 23(2): 215-21.
[http://dx.doi.org/10.1038/nbt1063] [PMID: 15685164]
[192]
Wyatt TJ, Rossi SL, Siegenthaler MM, et al. Human motor neuron progenitor transplantation leads to endogenous neuronal sparing in 3 models of motor neuron loss. Stem Cells Int 2011; 2011: 207230.
[http://dx.doi.org/10.4061/2011/207230] [PMID: 21716648]
[193]
Liu Y, Deng W. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Res 2016; 1638(Pt A): 30-41.
[http://dx.doi.org/10.1016/j.brainres.2015.09.023] [PMID: 26423934]
[194]
Faravelli I, Bucchia M, Rinchetti P, et al. Motor neuron derivation from human embryonic and induced pluripotent stem cells: experimental approaches and clinical perspectives. Stem Cell Res Ther 2014; 5(4): 87.
[http://dx.doi.org/10.1186/scrt476] [PMID: 25157556]
[195]
Kaus A, Sareen D. ALS Patient stem cells for unveiling disease signatures of motoneuron susceptibility: perspectives on the deadly mitochondria, ER stress and calcium triad. Front Cell Neurosci 2015; 9: 448.
[http://dx.doi.org/10.3389/fncel.2015.00448] [PMID: 26635528]
[196]
Chen H, Qian K, Chen W, et al. Human-derived neural progenitors functionally replace astrocytes in adult mice. J Clin Invest 2015; 125(3): 1033-42.
[http://dx.doi.org/10.1172/JCI69097] [PMID: 25642771]
[197]
Popescu IR, Nicaise C, Liu S, et al. Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of amyotrophic lateral sclerosis. Stem Cells Transl Med 2013; 2(3): 167-74.
[http://dx.doi.org/10.5966/sctm.2012-0042] [PMID: 23413376]
[198]
Dutta D, Mohanakumar KP. Tea and Parkinson’s disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits. Neurochem Int 2015; 89: 181-90.
[http://dx.doi.org/10.1016/j.neuint.2015.08.005] [PMID: 26271432]
[199]
Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 2015; 7: 181-93.
[PMID: 25709501]
[200]
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377(9769): 942-55.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[201]
Tjaden K. Speech and swallowing in Parkinson’s Disease. Top Geriatr Rehabil 2008; 24(2): 115-26.
[http://dx.doi.org/10.1097/01.TGR.0000318899.87690.44] [PMID: 19946386]
[202]
Lau FC, Shukitt-Hale B, Joseph JA. The beneficial effects of fruit polyphenols on brain aging. Neurobiol Aging 2005; 26(Suppl. 1): 128-32.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.007] [PMID: 16194581]
[203]
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 2018; 5(3): 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[204]
Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr 2010; 64(Suppl. 3): S112-20.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[205]
Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: a mini-review. Front Nutr 2018; 5: 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[206]
Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 2012; 11(2): 329-45.
[http://dx.doi.org/10.1016/j.arr.2012.01.006] [PMID: 22336470]
[207]
Benkler C, Offen D, Melamed E, et al. Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. EPMA J 2010; 1(2): 343-61.
[http://dx.doi.org/10.1007/s13167-010-0026-1] [PMID: 23199069]
[208]
Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 2013; 68(1): 125-31.
[http://dx.doi.org/10.1016/j.phrs.2012.10.018] [PMID: 23174266]
[209]
Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Devel Ther 2015; 10: 23-42.
[PMID: 26730179]
[210]
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26(8): 1001-43.
[http://dx.doi.org/10.1039/b802662a] [PMID: 19636448]
[211]
Nawrocka D, Kornicka K, Śmieszek A, Marycz K. Spirulina platensis Improves mitochondrial function impaired by elevated oxidative stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) horses. Mar Drugs 2017; 15(8): 237.
[http://dx.doi.org/10.3390/md15080237] [PMID: 28771165]
[212]
Bachstetter AD, Jernberg J, Schlunk A, et al. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS One 2010; 5(5): e10496.
[http://dx.doi.org/10.1371/journal.pone.0010496] [PMID: 20463965]
[213]
Yasuhara T, Hara K, Maki M, et al. Dietary supplementation exerts neuroprotective effects in ischemic stroke model. Rejuvenation Res 2008; 11(1): 201-14.
[http://dx.doi.org/10.1089/rej.2007.0608] [PMID: 18260778]
[214]
Acosta S, Jernberg J, Sanberg CD, et al. NT-020, a natural therapeutic approach to optimize spatial memory performance and increase neural progenitor cell proliferation and decrease inflammation in the aged rat. Rejuvenation Res 2010; 13(5): 581-8.
[http://dx.doi.org/10.1089/rej.2009.1011] [PMID: 20586644]
[215]
Bickford PC, Tan J, Shytle RD, Sanberg CD, El-Badri N, Sanberg PR. Nutraceuticals synergistically promote proliferation of human stem cells. Stem Cells Dev 2006; 15(1): 118-23.
[http://dx.doi.org/10.1089/scd.2006.15.118] [PMID: 16522169]
[216]
Shytle DR, Tan J, Ehrhart J, et al. Effects of blue-green algae extracts on the proliferation of human adult stem cells in vitro: a preliminary study. Med Sci Monit 2010; 16(1): BR1-5.
[PMID: 20037479]
[217]
Shytle RD, Ehrhart J, Tan J, et al. Oxidative stress of neural, hematopoietic, and stem cells: protection by natural compounds. Rejuvenation Res 2007; 10(2): 173-8.
[http://dx.doi.org/10.1089/rej.2006.0515] [PMID: 17518694]
[218]
Yagi H, Tan J, Tuan RS. Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem 2013; 114(5): 1163-73.
[http://dx.doi.org/10.1002/jcb.24459] [PMID: 23192437]
[219]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[220]
Tandon A, Singh SJ, Gupta M, et al. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. J Hazard Mater 2020; 392: 122052.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122052] [PMID: 32151947]
[221]
Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017; 2017: 2525967.
[http://dx.doi.org/10.1155/2017/2525967] [PMID: 28785371]
[222]
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8(21): 2003-14.
[PMID: 25206509]
[223]
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[224]
Barber SC, Higginbottom A, Mead RJ, Barber S, Shaw PJ. An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radic Biol Med 2009; 46(8): 1127-38.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.019] [PMID: 19439221]
[225]
Spencer JP. Flavonoids: modulators of brain function? Br J Nutr 2008; 99(Suppl 1): ES60-77.
[http://dx.doi.org/10.1017/S0007114508965776]
[226]
Vauzour D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev 2012; 2012: 914273.
[http://dx.doi.org/10.1155/2012/914273] [PMID: 22701758]
[227]
Joshi G, Johnson JA. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Patents CNS Drug Discov 2012; 7(3): 218-29.
[http://dx.doi.org/10.2174/157488912803252023] [PMID: 22742419]
[228]
Chen SQ, Wang ZS, Ma YX, et al. Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Molecules 2018; 23(3): 512.
[http://dx.doi.org/10.3390/molecules23030512] [PMID: 29495349]
[229]
Naveed M, BiBi J, Kamboh AA, et al. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomed Pharmacother 2018; 100: 521-31.
[http://dx.doi.org/10.1016/j.biopha.2018.02.048] [PMID: 29482046]
[230]
Chaturvedi RK, Shukla S, Seth K, et al. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol Dis 2006; 22(2): 421-34.
[http://dx.doi.org/10.1016/j.nbd.2005.12.008] [PMID: 16480889]
[231]
Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol Psychiatry 2007; 62(12): 1353-62.
[http://dx.doi.org/10.1016/j.biopsych.2007.04.020] [PMID: 17624318]
[232]
Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS One 2010; 5(8): e11951.
[http://dx.doi.org/10.1371/journal.pone.0011951] [PMID: 20700524]
[233]
Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr 2005; 81(1)(Suppl.): 215S-7S.
[http://dx.doi.org/10.1093/ajcn/81.1.215S] [PMID: 15640483]
[234]
Kim HG, Ju MS, Shim JS, et al. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br J Nutr 2010; 104(1): 8-16.
[http://dx.doi.org/10.1017/S0007114510000218] [PMID: 20187987]
[235]
Mandel S, Maor G, Youdim MB. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci 2004; 24(3): 401-16.
[http://dx.doi.org/10.1385/JMN:24:3:401] [PMID: 15655262]
[236]
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[237]
Youdim MB, Grünblatt E, Mandel S. The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson’s disease with iron chelators. Ann N Y Acad Sci 1999; 890: 7-25.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb07977.x] [PMID: 10668410]
[238]
Grünblatt E, Mandel S, Youdim MB. MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson’s disease: neuroprotective strategies. J Neurol 2000; 247(Suppl. 2): II95-II102.
[PMID: 10991672]
[239]
Hsieh WT, Chiang BH. A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving Parkinson’s disease. J Agric Food Chem 2014; 62(27): 6326-36.
[http://dx.doi.org/10.1021/jf501640a] [PMID: 24933592]
[240]
Lee MK, Kang SJ, Poncz M, Song KJ, Park KS. Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med 2007; 39(3): 376-84.
[http://dx.doi.org/10.1038/emm.2007.42] [PMID: 17603292]
[241]
Jin F, Wu Q, Lu YF, Gong QH, Shi JS. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol 2008; 600(1-3): 78-82.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.005] [PMID: 18940189]
[242]
Chao J, Yu MS, Ho YS, Wang M, Chang RC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med 2008; 45(7): 1019-26.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.002] [PMID: 18675900]
[243]
Braidy N, Selvaraju S, Essa MM, et al. Neuroprotective effects of a variety of pomegranate juice extracts against MPTP-induced cytotoxicity and oxidative stress in human primary neurons. Oxid Med Cell Longev 2013; 2013: 685909.
[http://dx.doi.org/10.1155/2013/685909] [PMID: 24223235]
[244]
Caruana M, Cauchi R, Vassallo N. Putative role of red wine polyphenols against brain pathology in Alzheimer’s and Parkinson’s Disease. Front Nutr 2016; 3: 31.
[http://dx.doi.org/10.3389/fnut.2016.00031] [PMID: 27570766]
[245]
Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli MG. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxid Med Cell Longev 2012; 2012: 921941.
[http://dx.doi.org/10.1155/2012/921941] [PMID: 22919443]
[246]
Lv C, Hong T, Yang Z, et al. Effect of Quercetin in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-Induced mouse model of Parkinson’s Disease. Evid Based Complement Alternat Med 2012; 2012: 928643.
[http://dx.doi.org/10.1155/2012/928643] [PMID: 22454690]
[247]
Maiti P, Dunbar GL. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci 2018; 19(6): 1637.
[http://dx.doi.org/10.3390/ijms19061637] [PMID: 29857538]
[248]
Jagatha B, Mythri RB, Vali S, Bharath MM. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained viain silico studies. Free Radic Biol Med 2008; 44(5): 907-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.011] [PMID: 18166164]
[249]
Gautam S, Karmakar S, Batra R, et al. Polyphenols in combination with β-cyclodextrin can inhibit and disaggregate α-synuclein amyloids under cell mimicking conditions: A promising therapeutic alternative. Biochim Biophys Acta Proteins Proteomics 2017; 1865(5): 589-603.
[http://dx.doi.org/10.1016/j.bbapap.2017.02.014] [PMID: 28238838]
[250]
Gautam S, Karmakar S, Bose A, Chowdhury PK. β-cyclodextrin and curcumin, a potent cocktail for disaggregating and/or inhibiting amyloids: a case study with α-synuclein. Biochemistry 2014; 53(25): 4081-3.
[http://dx.doi.org/10.1021/bi500642f] [PMID: 24933427]
[251]
Limanaqi F, Biagioni F, Busceti CL, et al. Phytochemicals bridging autophagy induction and Alpha-Synuclein Degradation in Parkinsonism. Int J Mol Sci 2019; 20(13): 3274.
[http://dx.doi.org/10.3390/ijms20133274] [PMID: 31277285]
[252]
Koppula S, Kumar H, More SV, Lim HW, Hong SM, Choi DK. Recent updates in redox regulation and free radical scavenging effects by herbal products in experimental models of Parkinson’s disease. Molecules 2012; 17(10): 11391-420.
[http://dx.doi.org/10.3390/molecules171011391] [PMID: 23014498]
[253]
Wang J, Chen W, Wang Y. A ginkgo biloba extract promotes proliferation of endogenous neural stem cells in vascular dementia rats. Neural Regen Res 2013; 8(18): 1655-62.
[PMID: 25206462]
[254]
Kurauchi Y, Hisatsune A, Isohama Y, Mishima S, Katsuki H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br J Pharmacol 2012; 166(3): 1151-68.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01833.x] [PMID: 22224485]
[255]
Kim HG, Ju MS, Ha SK, et al. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol Pharm Bull 2012; 35(8): 1287-94.
[http://dx.doi.org/10.1248/bpb.b12-00127] [PMID: 22863927]
[256]
Zhu LH, Bi W, Qi RB, Wang HD, Lu DX. Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. Int J Neurosci 2011; 121(6): 329-36.
[http://dx.doi.org/10.3109/00207454.2011.569040] [PMID: 21631167]
[257]
Yamagata K. Do coffee polyphenols have a preventive action on metabolic syndrome associated endothelial dysfunctions? an assessment of the current evidence. Antioxidants 2018; 7(2): 26.
[http://dx.doi.org/10.3390/antiox7020026] [PMID: 29401716]
[258]
Singhal NK, Agarwal S, Bhatnagar P, et al. Mechanism of nanotization-mediated improvement in the efficacy of caffeine against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism. J Biomed Nanotechnol 2015; 11(12): 2211-22.
[http://dx.doi.org/10.1166/jbn.2015.2107] [PMID: 26510314]
[259]
Kakkar S, Bais S. A review on protocatechuic Acid and its pharmacological potential. ISRN Pharmacol 2014; 2014: 952943.
[http://dx.doi.org/10.1155/2014/952943] [PMID: 25006494]
[260]
Zhang Z, Li G, Szeto SSW, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015; 84: 331-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.030] [PMID: 25769424]
[261]
Nabavi SF, Daglia M, D’Antona G, Sobarzo-Sánchez E, Talas ZS, Nabavi SM. Natural compounds used as therapies targeting to amyotrophic lateral sclerosis. Curr Pharm Biotechnol 2015; 16(3): 211-8.
[http://dx.doi.org/10.2174/1389201016666150118132224] [PMID: 25601606]
[262]
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant alternatives in the treatment of amyotrophic lateral sclerosis: A comprehensive review. Front Physiol 2020; 11: 63.
[http://dx.doi.org/10.3389/fphys.2020.00063] [PMID: 32116773]
[263]
Mähler A, Mandel S, Lorenz M, et al. Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J 2013; 4(1): 5.
[http://dx.doi.org/10.1186/1878-5085-4-5] [PMID: 23418936]
[264]
Yu J, Jia Y, Guo Y, et al. Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level. FEBS Lett 2010; 584(13): 2921-5.
[http://dx.doi.org/10.1016/j.febslet.2010.05.011] [PMID: 20488180]
[265]
Bedlack RS, Joyce N, Carter GT, Paganoni S, Karam C. Complementary and alternative therapies in amyotrophic lateral sclerosis. Neurol Clin 2015; 33(4): 909-36.
[http://dx.doi.org/10.1016/j.ncl.2015.07.008] [PMID: 26515629]
[266]
Mancuso R, del Valle J, Modol L, et al. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 2014; 11(2): 419-32.
[PMID: 24414863]
[267]
Hu C, Li L. The application of resveratrol to mesenchymal stromal cell-based regenerative medicine. Stem Cell Res Ther 2019; 10(1): 307.
[http://dx.doi.org/10.1186/s13287-019-1412-9] [PMID: 31623691]
[268]
Jiang H, Tian X, Guo Y, Duan W, Bu H, Li C. Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol Pharm Bull 2011; 34(8): 1194-7.
[http://dx.doi.org/10.1248/bpb.34.1194] [PMID: 21804205]
[269]
Milani P, Ambrosi G, Gammoh O, Blandini F, Cereda C. SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev 2013; 2013: 836760.
[http://dx.doi.org/10.1155/2013/836760] [PMID: 23983902]
[270]
Tripodo G, Chlapanidas T, Perteghella S, et al. Mesenchymal stromal cells loading curcumin-INVITE-micelles: a drug delivery system for neurodegenerative diseases. Colloids Surf B Biointerfaces 2015; 125: 300-8.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.034] [PMID: 25524221]
[271]
Chi Y, Sauve AA. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr Opin Clin Nutr Metab Care 2013; 16(6): 657-61.
[http://dx.doi.org/10.1097/MCO.0b013e32836510c0] [PMID: 24071780]
[272]
Winter AN, Bickford PC. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants 2019; 8(9): 333.
[http://dx.doi.org/10.3390/antiox8090333] [PMID: 31443476]
[273]
Pohl F, Kong Thoo Lin P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials. Molecules 2018; 23(12): 3283.
[http://dx.doi.org/10.3390/molecules23123283] [PMID: 30544977]
[274]
Arbo BD, André-Miral C, Nasre-Nasser RG, et al. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s Disease. Front Aging Neurosci 2020; 12: 103.
[http://dx.doi.org/10.3389/fnagi.2020.00103] [PMID: 32362821]
[275]
Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I. Cell therapy for Parkinson’s disease. Cell Transplant 2017; 26(9): 1551-9.
[http://dx.doi.org/10.1177/0963689717735411] [PMID: 29113472]
[276]
Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta 2015; 1852(6): 1202-8.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.006] [PMID: 25315300]
[277]
Chen M, Wang T, Yue F, et al. Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys. Neuroscience 2015; 286: 383-92.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.003] [PMID: 25498223]
[278]
Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson Disease. J Nutr 2017; 147(10): 1926-31.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[279]
Levin J, Maaß S, Schuberth M, et al. PROMESA Study Group. Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2019; 18(8): 724-35.
[http://dx.doi.org/10.1016/S1474-4422(19)30141-3] [PMID: 31278067]
[280]
Bitan G. The recent failure of the PROMESA clinical trial for multiple system atrophy raises the question-are polyphenols a viable therapeutic option against proteinopathies? Ann Transl Med 2020; 8(11): 719.
[http://dx.doi.org/10.21037/atm.2020.01.117] [PMID: 32617339]
[281]
Concetta Scuto M, Mancuso C, Tomasello B, et al. Curcumin, hormesis and the nervous system. Nutrients 2019; 11(10): 2417.
[http://dx.doi.org/10.3390/nu11102417] [PMID: 31658697]
[282]
Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 2013; 11(4): 338-78.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[283]
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med 2016; 7(2): 205-33.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[284]
Figueira I, Menezes R, Macedo D, Costa I, Dos Santos CN. Polyphenols beyond barriers: a glimpse into the brain. Curr Neuropharmacol 2017; 15(4): 562-94.
[http://dx.doi.org/10.2174/1570159X14666161026151545] [PMID: 27784225]
[285]
Aryal S, Skinner T, Bridges B, Weber JT. The pathology of Parkinson’s Disease and potential benefit of dietary polyphenols. Molecules 2020; 25(19): 4382.
[http://dx.doi.org/10.3390/molecules25194382] [PMID: 32987656]
[286]
Figueira I, Garcia G, Pimpão RC, et al. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 2017; 7(1): 11456.
[http://dx.doi.org/10.1038/s41598-017-11512-6] [PMID: 28904352]
[287]
Ip P, Sharda PR, Cunningham A, Chakrabartty S, Pande V, Chakrabartty A. Quercitrin and quercetin 3-β-d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant. Protein Eng Des Sel 2017; 30(6): 431-40.
[http://dx.doi.org/10.1093/protein/gzx025] [PMID: 28475686]
[288]
Pasinetti GM, Wang J, Marambaud P, et al. Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp Neurol 2011; 232(1): 1-6.
[http://dx.doi.org/10.1016/j.expneurol.2011.08.014] [PMID: 21907197]
[289]
Sylla T, Pouységu L, Da Costa G, Deffieux D, Monti JP, Quideau S. Gallotannins and tannic acid: first chemical syntheses and in vitro inhibitory activity on Alzheimer’s Amyloid β-Peptide aggregation. Angew Chem Int Ed Engl 2015; 54(28): 8217-21.
[http://dx.doi.org/10.1002/anie.201411606] [PMID: 26013280]
[290]
Zhong X, Cui P, Cai Y, et al. Mitochondrial dynamics is critical for the full pluripotency and embryonic developmental potential of pluripotent stem cells. Cell Metab 2019; 29(4): 979-992.e4.
[http://dx.doi.org/10.1016/j.cmet.2018.11.007] [PMID: 30527743]
[291]
Rastogi A, Joshi P, Contreras E, Gama V. Remodeling of mitochondrial morphology and function: an emerging hallmark of cellular reprogramming. Cell Stress 2019; 3(6): 181-94.
[http://dx.doi.org/10.15698/cst2019.06.189] [PMID: 31225513]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy