Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

MicroRNAs: The New Challenge for Traumatic Brain Injury Diagnosis

Author(s): Enrica Pinchi*, Cipolloni Luigi, Santoro Paola, Volonnino Gianpietro, Tomassi Raoul, Arcangeli Mauro and Frati Paola

Volume 18, Issue 4, 2020

Page: [319 - 331] Pages: 13

DOI: 10.2174/1570159X17666191113100808

Price: $65

Abstract

The acronym TBI refers to traumatic brain injury, an alteration of brain function, or an evidence of brain pathology, that is caused by an external force. TBI is estimated to become the third leading cause of permanent disability and mortality worldwide. TBI-related injuries can be classified in many ways, according to the degree of severity or the pathophysiology of brain injury (primary and secondary damage). Numerous cellular pathways act in secondary brain damage: excitotoxicity (mediated by excitatory neurotransmitters), free radical generation (due to mitochondrial impairment), neuroinflammatory response (due to central nervous system and immunoactivation) and apoptosis. In this scenario, microRNAs are implicated in the regulation of almost all genes at the post-transcriptional level. Several microRNAs have been demonstrated to be specifically expressed in particular cerebral areas; moreover, physiological changes in microRNA expression during normal cerebral development upon the establishment of neural networks have been characterized. More importantly, microRNAs show profound alteration in expression in response to brain pathological states, both traumatic or not. This review summarizes the most important molecular networks involved in TBI and examines the most recent and important findings on TBI-related microRNAs, both in animal and clinical studies. The importance of microRNA research holds promise to find biomarkers able to unearth primary and secondary molecular patterns altered upon TBI, to ultimately identify key points of regulation, as a valuable support in forensic pathology and potential therapeutic targets for clinical treatment.

Keywords: Traumatic brain injury, molecular pathways, microRNAs, animal models, clinical studies, forensic pathology, therapeutic biomarkers.

Graphical Abstract

[1]
Management of Concussion/mTBI Working Group. VA/DoD clinical Practice Guideline for management of concussion/mild traumatic brain injury. J. Rehabil. Res. Dev., 2009, 46(6), CP1-CP68.
[PMID: 20108447]
[2]
Finfer, S.R.; Cohen, J. Severe traumatic brain injury. Resuscitation, 2001, 48(1), 77-90.
[http://dx.doi.org/10.1016/S0300-9572(00)00321-X] [PMID: 11162885]
[3]
Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill. Summ., 2017, 66(9), 1-16.
[http://dx.doi.org/10.15585/mmwr.ss6609a1] [PMID: 28301451]
[4]
Gerber, L.M.; Chiu, Y.L.; Carney, N.; Härtl, R.; Ghajar, J. Marked reduction in mortality in patients with severe traumatic brain injury. J. Neurosurg., 2013, 119(6), 1583-1590.
[http://dx.doi.org/10.3171/2013.8.JNS13276] [PMID: 24098983]
[5]
Abou-Abbass, H.; Bahmad, H.; Ghandour, H.; Fares, J.; Wazzi-Mkahal, R.; Yacoub, B.; Darwish, H.; Mondello, S.; Harati, H.; El Sayed, M.J.; Tamim, H.; Kobeissy, F. Epidemiology and clinical characteristics of traumatic brain injury in Lebanon: A systematic review. Medicine (Baltimore), 2016, 95(47)e5342
[http://dx.doi.org/10.1097/MD.0000000000005342] [PMID: 27893670]
[6]
Veenith, T.; Goon, S.Sh.; Burnstein, R.M. Molecular mechanisms of traumatic brain injury: the missing link in management. World J. Emerg. Surg., 2009, 4, 7.
[http://dx.doi.org/10.1186/1749-7922-4-7] [PMID: 19187555]
[7]
Di Pietro, V.; Ragusa, M.; Davies, D.; Su, Z.; Hazeldine, J.; Lazzarino, G.; Hill, L.J.; Crombie, N.; Foster, M.; Purrello, M.; Logan, A.; Belli, A. MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild and severe traumatic brain injury. J. Neurotrauma, 2017, 34(11), 1948-1956.
[http://dx.doi.org/10.1089/neu.2016.4857] [PMID: 28279125]
[8]
Pan, Y.B.; Sun, Z.L.; Feng, D.F. The role of microRNA in traumatic brain injury. Neuroscience, 2017, 367, 189-199.
[http://dx.doi.org/10.1016/j.neuroscience.2017.10.046] [PMID: 29113926]
[9]
Bešenski, N. Traumatic injuries: imaging of head injuries. Eur. Radiol., 2002, 12(6), 1237-1252.
[http://dx.doi.org/10.1007/s00330-002-1355-9] [PMID: 12042929]
[10]
Jalali, R.; Rezaei, M. A comparison of the glasgow coma scale score with full outline of unresponsiveness scale to predict patients’ traumatic brain injury outcomes in intensive care units. Crit. Care Res. Pract., 2014, 2014289803
[http://dx.doi.org/10.1155/2014/289803] [PMID: 25013727]
[11]
Wijdicks, E.F.M.; Bamlet, W.R.; Maramattom, B.V.; Manno, E.M.; McClelland, R.L. Validation of a new coma scale: The four score. Ann. Neurol., 2005, 58(4), 585-593.
[http://dx.doi.org/10.1002/ana.20611] [PMID: 16178024]
[12]
Sadaka, F.; Patel, D.; Lakshmanan, R. The four score predicts outcome in patients after traumatic brain injury. Neurocrit. Care, 2012, 16(1), 95-101.
[http://dx.doi.org/10.1007/s12028-011-9617-5] [PMID: 21845490]
[13]
Cohen, J. Interrater reliability and predictive validity of the four score coma scale in a pediatric population. J. Neurosci. Nurs., 2009, 41(5), 261-267.
[http://dx.doi.org/10.1097/JNN.0b013e3181b2c766] [PMID: 19835239]
[14]
Stoica, B.A.; Faden, A.I. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics, 2010, 7(1), 3-12.
[http://dx.doi.org/10.1016/j.nurt.2009.10.023] [PMID: 20129492]
[15]
Povlishock, J.T.; Katz, D.I. Update of neuropathology and neurological recovery after traumatic brain injury. J. Head Trauma Rehabil., 2005, 20(1), 76-94.
[http://dx.doi.org/10.1097/00001199-200501000-00008] [PMID: 15668572]
[16]
Sahuquillo, J.; Poca, M.A.; Amoros, S. Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr. Pharm. Des., 2001, 7(15), 1475-1503.
[http://dx.doi.org/10.2174/1381612013397311] [PMID: 11562294]
[17]
Frati, A.; Cerretani, D.; Fiaschi, A.I.; Frati, P.; Gatto, V.; La Russa, R.; Pesce, A.; Pinchi, E.; Santurro, A.; Fraschetti, F.; Fineschi, V. Diffuse axonal injury and oxidative stress: A comprehensive review. Int. J. Mol. Sci., 2017, 18(12)E2600
[http://dx.doi.org/10.3390/ijms18122600] [PMID: 29207487]
[18]
Colicos, M.A.; Dash, P.K. Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Res., 1996, 739(1-2), 120-131.
[http://dx.doi.org/10.1016/S0006-8993(96)00824-4] [PMID: 8955932]
[19]
Hausmann, R.; Biermann, T.; Wiest, I.; Tübel, J.; Betz, P. Neuronal apoptosis following human brain injury. Int. J. Legal Med., 2004, 118(1), 32-36.
[http://dx.doi.org/10.1007/s00414-003-0413-4] [PMID: 14625778]
[20]
Marciano, P.G.; Brettschneider, J.; Manduchi, E.; Davis, J.E.; Eastman, S.; Raghupathi, R.; Saatman, K.E.; Speed, T.P.; Stoeckert, C.J., Jr; Eberwine, J.H.; McIntosh, T.K. Neuron-specific mRNA complexity responses during hippocampal apoptosis after traumatic brain injury. J. Neurosci., 2004, 24(12), 2866-2876.
[http://dx.doi.org/10.1523/JNEUROSCI.5051-03.2004] [PMID: 15044525]
[21]
Bullock, J. Head injury; Reilly, P; Bullock, R., Ed.; Chapman & Hall: London, 1997, pp. 121-141.
[22]
Marshall, L.F. Head injury: recent past, present, and future. Neurosurgery, 2000, 47(3), 546-561.
[PMID: 10981741]
[23]
Smith, D.H.; Meaney, D.F. Axonal damage in traumatic brain Injury. Neuroscientist, 2000, 6, 483-495.
[http://dx.doi.org/10.1177/107385840000600611]
[24]
Bullock, R.; Zauner, A.; Woodward, J.J.; Myseros, J.; Choi, S.C.; Ward, J.D.; Marmarou, A.; Young, H.F. Factors affecting excitatory amino acid release following severe human head injury. J. Neurosurg., 1998, 89(4), 507-518.
[http://dx.doi.org/10.3171/jns.1998.89.4.0507] [PMID: 9761042]
[25]
Benveniste, H.; Drejer, J.; Schousboe, A.; Diemer, N.H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem., 1984, 43(5), 1369-1374.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb05396.x] [PMID: 6149259]
[26]
Rothman, S.M.; Olney, J.W. Glutamate and the pathophysiology of hypoxic--ischemic brain damage. Ann. Neurol., 1986, 19(2), 105-111.
[http://dx.doi.org/10.1002/ana.410190202] [PMID: 2421636]
[27]
Choi, D.W.; Viseskul, V.; Amirthanayagam, M.; Monyer, H. Aspartate neurotoxicity on cultured cortical neurons. J. Neurosci. Res., 1989, 23(1), 116-121.
[http://dx.doi.org/10.1002/jnr.490230115] [PMID: 2746696]
[28]
Jenkins, L.W.; Moszynski, K.; Lyeth, B.G.; Lewelt, W.; DeWitt, D.S.; Allen, A.; Dixon, C.E.; Povlishock, J.T.; Majewski, T.J.; Clifton, G.L.; Young, H.F.; Becker, D.P.; Hayes, R.L. Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res., 1989, 477(1-2), 211-224.
[http://dx.doi.org/10.1016/0006-8993(89)91409-1] [PMID: 2702484]
[29]
Rothman, S.M.; Olney, J.W. Excitotoxicity and the NMDA receptor. Trends Neurosci., 1987, 10(7), 299-302.
[http://dx.doi.org/10.1016/0166-2236(87)90177-9] [PMID: 7537407]
[30]
Smith, D.H.; Okiyama, K.; Thomas, M.J.; Nolan, B.; Mclntosh, T.K. The effects of two novel NMDA antagonists on regional cation concentration and edema formation following experimental brain injury. J. Cereb. Blood Flow Metab., 1991, 11(Suppl. 2), S300.
[31]
Smith, D.H.; Okiyama, K.; Thomas, M.; Nolan, B.; Mclntosh, T.K. An NMDA receptor associated glycine site antagonist attenuates memory loss after experimental brain injury. Soc. Neurosci. Abstr., 1990, 16, 779.
[32]
During, M.J.; Spencer, D.D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet, 1993, 341(8861), 1607-1610.
[http://dx.doi.org/10.1016/0140-6736(93)90754-5] [PMID: 8099987]
[33]
Kirino, T.; Tamura, A.; Sano, K. Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol., 1984, 64(2), 139-147.
[http://dx.doi.org/10.1007/BF00695577] [PMID: 6475501]
[34]
Kotapka, M.J.; Graham, D.I.; Adams, J.H.; Gennarelli, T.A. Hippocampal pathology in fatal non-missile human head injury. Acta Neuropathol., 1992, 83(5), 530-534.
[http://dx.doi.org/10.1007/BF00310031] [PMID: 1621508]
[35]
Nilsson, P.; Hillered, L.; Pontén, U.; Ungerstedt, U. Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J. Cereb. Blood Flow Metab., 1990, 10(5), 631-637.
[http://dx.doi.org/10.1038/jcbfm.1990.115] [PMID: 2384536]
[36]
Shimada, N.; Graf, R.; Rosner, G.; Heiss, W.D. Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid. J. Neurochem., 1993, 60(1), 66-71.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb05823.x] [PMID: 8417167]
[37]
Bullock, R.; Zauner, A.; Tsuji, O.; Woodward, J.J.; Marmarou, A.T.; Young, H.F. Neurochemical monitoring in the intensive care unit;; Tsubokawa, T.; Marmarou, A.; Robertson, C.; Teasdale, G., Eds. . Springer-Verlag: Tokyo, 1995, pp. 64-67.
[http://dx.doi.org/10.1007/978-4-431-68522-7_7]
[38]
Katayama, Y.; Becker, D.P.; Tamura, T.; Hovda, D.A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg., 1990, 73(6), 889-900.
[http://dx.doi.org/10.3171/jns.1990.73.6.0889] [PMID: 1977896]
[39]
Hillered, L.; Hallström, A.; Segersvärd, S.; Persson, L.; Ungerstedt, U. Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J. Cereb. Blood Flow Metab., 1989, 9(5), 607-616.
[http://dx.doi.org/10.1038/jcbfm.1989.87] [PMID: 2777932]
[40]
Chen, M.H.; Bullock, R.; Graham, D.I.; Miller, J.D.; McCulloch, J. Ischemic neuronal damage after acute subdural hematoma in the rat: effects of pretreatment with a glutamate antagonist. J. Neurosurg., 1991, 74(6), 944-950.
[http://dx.doi.org/10.3171/jns.1991.74.6.0944] [PMID: 2033455]
[41]
Hayes, R.L.; Jenkins, L.W.; Lyeth, B.G.; Balster, R.L.; Robinson, S.E.; Clifton, G.L.; Stubbins, J.F.; Young, H.F. Pretreatment with phencyclidine, an N-methyl-D-aspartate antagonist, attenuates long-term behavioral deficits in the rat produced by traumatic brain injury. J. Neurotrauma, 1988, 5(4), 259-274.
[http://dx.doi.org/10.1089/neu.1988.5.259] [PMID: 2854855]
[42]
Palmer, A.M.; Marion, D.W.; Botscheller, M.L.; Swedlow, P.E.; Styren, S.D.; DeKosky, S.T. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J. Neurochem., 1993, 61(6), 2015-2024.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb07437.x] [PMID: 7504079]
[43]
Koizumi, H.; Fujisawa, H.; Ito, H.; Maekawa, T.; Di, X.; Bullock, R. Effects of mild hypothermia on cerebral blood flow-independent changes in cortical extracellular levels of amino acids following contusion trauma in the rat. Brain Res., 1997, 747(2), 304-312.
[http://dx.doi.org/10.1016/S0006-8993(96)01240-1] [PMID: 9046006]
[44]
Danbolt, N.C. Glutamate uptake. Prog. Neurobiol., 2001, 65(1), 1-105.
[http://dx.doi.org/10.1016/S0301-0082(00)00067-8] [PMID: 11369436]
[45]
Rothstein, J.D.; Martin, L.; Levey, A.I.; Dykes-Hoberg, M.; Jin, L.; Wu, D.; Nash, N.; Kuncl, R.W. Localization of neuronal and glial glutamate transporters. Neuron, 1994, 13(3), 713-725.
[http://dx.doi.org/10.1016/0896-6273(94)90038-8] [PMID: 7917301]
[46]
Berger, U.V.; Hediger, M.A. Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization. Anat. Embryol. (Berl.), 1998, 198(1), 13-30.
[http://dx.doi.org/10.1007/s004290050161] [PMID: 9683064]
[47]
Kugler, P.; Schmitt, A. Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system. Glia, 1999, 27(2), 129-142.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199908)27:2<129:AID-GLIA3>3.0.CO;2-Y] [PMID: 10417812]
[48]
Mendelow, A.D.; Bullock, R.; Teasdale, G.M.; Graham, D.I.; McCulloch, J. Intracranial haemorrhage induced at arterial pressure in the rat. Part 2: Short term changes in local cerebral blood flow measured by autoradiography. Neurol. Res., 1984, 6(4), 189-193.
[http://dx.doi.org/10.1080/01616412.1984.11739688] [PMID: 6152313]
[49]
Ansari, M.A.; Roberts, K.N.; Scheff, S.W. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic. Biol. Med., 2008, 45(4), 443-452.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.038] [PMID: 18501200]
[50]
Shao, C.; Roberts, K.N.; Markesbery, W.R.; Scheff, S.W.; Lovell, M.A. Oxidative stress in head trauma in aging. Free Radic. Biol. Med., 2006, 41(1), 77-85.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.03.007] [PMID: 16781455]
[51]
Bayir, H.; Kagan, V.E.; Clark, R.S.; Janesko-Feldman, K.; Rafikov, R.; Huang, Z.; Zhang, X.; Vagni, V.; Billiar, T.R.; Kochanek, P.M. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J. Neurochem., 2007, 101(1), 168-181.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04353.x] [PMID: 17394464]
[52]
Singh, I.N.; Sullivan, P.G.; Hall, E.D. Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers. J. Neurosci. Res., 2007, 85(10), 2216-2223.
[http://dx.doi.org/10.1002/jnr.21360] [PMID: 17510982]
[53]
Azbill, R.D.; Mu, X.; Bruce-Keller, A.J.; Mattson, M.P.; Springer, J.E. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res., 1997, 765(2), 283-290.
[http://dx.doi.org/10.1016/S0006-8993(97)00573-8] [PMID: 9313901]
[54]
McCall, J.M.; Braughler, J.M.; Hall, E.D. Lipid peroxidation and the role of oxygen radicals in CNS injury. Acta Anaesthesiol. Belg., 1987, 38(4), 373-379.
[PMID: 3126621]
[55]
Mathew, P.; Graham, D.I.; Bullock, R.; Maxwell, W.; McCulloch, J.; Teasdale, G. Focal brain injury: histological evidence of delayed inflammatory response in a new rodent model of focal cortical injury. Acta Neurochir. Suppl. (Wien), 1994, 60, 428-430.
[http://dx.doi.org/10.1007/978-3-7091-9334-1_116] [PMID: 7976609]
[56]
Ghirnikar, R.S.; Lee, Y.L.; Eng, L.F. Inflammation in traumatic brain injury: Role of cytokines and chemokines. Neurochem. Res., 1998, 23(3), 329-340.
[http://dx.doi.org/10.1023/A:1022453332560] [PMID: 9482245]
[57]
Gahm, C.; Holmin, S.; Mathiesen, T. Temporal profiles and cellular sources of three nitric oxide synthase isoforms in the brain after experimental contusion. Neurosurgery, 2000, 46(1), 169-177.
[http://dx.doi.org/10.1093/neurosurgery/46.1.169] [PMID: 10626947]
[58]
Gahm, C.; Holmin, S.; Mathiesen, T. Nitric oxide synthase expression after human brain contusion. Neurosurgery, 2002, 50(6), 1319-1326.
[PMID: 12015851]
[59]
Orihara, Y.; Ikematsu, K.; Tsuda, R.; Nakasono, I. Induction of nitric oxide synthase by traumatic brain injury. Forensic Sci. Int., 2001, 123(2-3), 142-149.
[http://dx.doi.org/10.1016/S0379-0738(01)00537-0] [PMID: 11728740]
[60]
Clark, R.S.; Kochanek, P.M.; Chen, M.; Watkins, S.C.; Marion, D.W.; Chen, J.; Hamilton, R.L.; Loeffert, J.E.; Graham, S.H. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J., 1999, 13(8), 813-821.
[http://dx.doi.org/10.1096/fasebj.13.8.813] [PMID: 10224225]
[61]
Castillo, J.; Dávalos, A.; Alvarez-Sabín, J.; Pumar, J.M.; Leira, R.; Silva, Y.; Montaner, J.; Kase, C.S. Molecular signatures of brain injury after intracerebral hemorrhage. Neurology, 2002, 58(4), 624-629.
[http://dx.doi.org/10.1212/WNL.58.4.624] [PMID: 11865143]
[62]
Graham, S.H.; Chen, J.; Clark, R.S. Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. J. Neurotrauma, 2000, 17(10), 831-841.
[http://dx.doi.org/10.1089/neu.2000.17.831] [PMID: 11063051]
[63]
Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[64]
Raghupathi, R. Cell death mechanisms following traumatic brain injury. Brain Pathol., 2004, 14(2), 215-222.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00056.x] [PMID: 15193035]
[65]
Raghupathi, R.; Graham, D.I.; McIntosh, T.K. Apoptosis after traumatic brain injury. J. Neurotrauma, 2000, 17(10), 927-938.
[http://dx.doi.org/10.1089/neu.2000.17.927] [PMID: 11063058]
[66]
Darzynkiewicz, Z.; Li, X.; Gong, J. Assays of cell viability: discrimination of cells dying by apoptosis. Methods Cell Biol., 1994, 41, 15-38.
[http://dx.doi.org/10.1016/S0091-679X(08)61707-0] [PMID: 7861963]
[67]
Eldadah, B.A.; Faden, A.I. Caspase pathways, neuronal apoptosis, and CNS injury. J. Neurotrauma, 2000, 17(10), 811-829.
[http://dx.doi.org/10.1089/neu.2000.17.811] [PMID: 11063050]
[68]
Clark, R.S.; Kochanek, P.M.; Watkins, S.C.; Chen, M.; Dixon, C.E.; Seidberg, N.A.; Melick, J.; Loeffert, J.E.; Nathaniel, P.D.; Jin, K.L.; Graham, S.H. Caspase-3 mediated neuronal death after traumatic brain injury in rats. J. Neurochem., 2000, 74(2), 740-753.
[http://dx.doi.org/10.1046/j.1471-4159.2000.740740.x] [PMID: 10646526]
[69]
Dash, P.K.; Kobori, N.; Moore, A.N. A molecular description of brain trauma pathophysiology using microarray technology: an overview. Neurochem. Res., 2004, 29(6), 1275-1286.
[http://dx.doi.org/10.1023/B:NERE.0000023614.30084.eb] [PMID: 15176484]
[70]
Stoicea, N.; Du, A.; Lakis, D.C.; Tipton, C.; Arias-Morales, C.E.; Bergese, S.D. The MiRNA journey from theory to practice as a CNS biomarker. Front. Genet., 2016, 7, 11.
[http://dx.doi.org/10.3389/fgene.2016.00011] [PMID: 26904099]
[71]
Li, M.A.; He, L. MicroRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays, 2012, 34(8), 670-680.
[http://dx.doi.org/10.1002/bies.201200019] [PMID: 22674461]
[72]
Gauthier, B.R.; Wollheim, C.B. MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat. Med., 2006, 12(1), 36-38.
[http://dx.doi.org/10.1038/nm0106-36] [PMID: 16397558]
[73]
Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res., 2005, 65(14), 6029-6033.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0137] [PMID: 16024602]
[74]
Bi, Y.; Liu, G.; Yang, R. MicroRNAs: novel regulators during the immune response. J. Cell. Physiol., 2009, 218(3), 467-472.
[http://dx.doi.org/10.1002/jcp.21639] [PMID: 19034913]
[75]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1), 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[76]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[77]
Szafranski, K.; Abraham, K.J.; Mekhail, K. Non-coding RNA in neural function, disease, and aging. Front. Genet., 2015, 6, 87.
[http://dx.doi.org/10.3389/fgene.2015.00087] [PMID: 25806046]
[78]
Zafari, S.; Backes, C.; Meese, E.; Keller, A. Circulating biomarker panels in Alzheimer’s disease. Gerontology, 2015, 61(6), 497-503.
[http://dx.doi.org/10.1159/000375236] [PMID: 25720553]
[79]
Pinchi, E.; Frati, A.; Cantatore, S.; D’Errico, S.; Russa, R.; Maiese, A.; Palmieri, M.; Pesce, A.; Viola, R.V.; Frati, P.; Fineschi, V. Acute Spinal cord injury: A systematic review investigating miRNA families involved. Int. J. Mol. Sci., 2019, 20(8), 1841.
[http://dx.doi.org/10.3390/ijms20081841] [PMID: 31013946]
[80]
Vishnoi, A.; Rani, S. MiRNA biogenesis and regulation of diseases: An overview. Methods Mol. Biol., 2017, 1509, 1-10.
[http://dx.doi.org/10.1007/978-1-4939-6524-3_1] [PMID: 27826912]
[81]
Bayraktar, R.; Van Roosbroeck, K.; Calin, G.A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol., 2017, 11(12), 1673-1686.
[http://dx.doi.org/10.1002/1878-0261.12144] [PMID: 29024380]
[82]
Shao, N.Y.; Hu, H.Y.; Yan, Z.; Xu, Y.; Hu, H.; Menzel, C.; Li, N.; Chen, W.; Khaitovich, P. Comprehensive survey of human brain microRNA by deep sequencing. BMC Genomics, 2010, 11, 409.
[http://dx.doi.org/10.1186/1471-2164-11-409] [PMID: 20591156]
[83]
Barry, G. Integrating the roles of long and small non-coding RNA in brain function and disease. Mol. Psychiatry, 2014, 19(4), 410-416.
[http://dx.doi.org/10.1038/mp.2013.196] [PMID: 24468823]
[84]
Chen, W.; Qin, C. General hallmarks of microRNAs in brain evolution and development. RNA Biol., 2015, 12(7), 701-708.
[http://dx.doi.org/10.1080/15476286.2015.1048954] [PMID: 26000728]
[85]
Eda, A.; Takahashi, M.; Fukushima, T.; Hohjoh, H. Alteration of microRNA expression in the process of mouse brain growth. Gene, 2011, 485(1), 46-52.
[http://dx.doi.org/10.1016/j.gene.2011.05.034] [PMID: 21718763]
[86]
Fiore, R.; Schratt, G. MicroRNAs in vertebrate synapse development. ScientificWorldJournal, 2007, 7, 167-177.
[http://dx.doi.org/10.1100/tsw.2007.196] [PMID: 17982590]
[87]
Balakathiresan, N.; Bhomia, M.; Chandran, R.; Chavko, M.; McCarron, R.M.; Maheshwari, R.K. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J. Neurotrauma, 2012, 29(7), 1379-1387.
[http://dx.doi.org/10.1089/neu.2011.2146] [PMID: 22352906]
[88]
Hu, Z.; Yu, D.; Almeida-Suhett, C.; Tu, K.; Marini, A.M.; Eiden, L.; Braga, M.F.; Zhu, J.; Li, Z. Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS One, 2012, 7(6) e39357
[http://dx.doi.org/10.1371/journal.pone.0039357] [PMID: 22761770]
[89]
Lei, P.; Li, Y.; Chen, X.; Yang, S.; Zhang, J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res., 2009, 1284, 191-201.
[http://dx.doi.org/10.1016/j.brainres.2009.05.074] [PMID: 19501075]
[90]
Redell, J.B.; Liu, Y.; Dash, P.K. Traumatic brain injury alters expression of hippocampal microRNAs: Potential regulators of multiple pathophysiological processes. J. Neurosci. Res., 2009, 87(6), 1435-1448.
[http://dx.doi.org/10.1002/jnr.21945] [PMID: 19021292]
[91]
Redell, J.B.; Moore, A.N.; Ward, N.H., III; Hergenroeder, G.W.; Dash, P.K. Human traumatic brain injury alters plasma microRNA levels. J. Neurotrauma, 2010, 27(12), 2147-2156.
[http://dx.doi.org/10.1089/neu.2010.1481] [PMID: 20883153]
[92]
Redell, J.B.; Zhao, J.; Dash, P.K. Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J. Neurosci. Res., 2011, 89(2), 212-221.
[http://dx.doi.org/10.1002/jnr.22539] [PMID: 21162128]
[93]
Truettner, J.S.; Alonso, O.F.; Bramlett, H.M.; Dietrich, W.D. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J. Cereb. Blood Flow Metab., 2011, 31(9), 1897-1907.
[http://dx.doi.org/10.1038/jcbfm.2011.33] [PMID: 21505482]
[94]
Sharma, A.; Chandran, R.; Barry, E.S.; Bhomia, M.; Hutchison, M.A.; Balakathiresan, N.S.; Grunberg, N.E.; Maheshwari, R.K. Identification of serum microRNA signatures for diagnosis of mild traumatic brain injury in a closed head injury model. PLoS One, 2014, 9(11)e112019
[http://dx.doi.org/10.1371/journal.pone.0112019] [PMID: 25379886]
[95]
Bhomia, M.; Balakathiresan, N.S.; Wang, K.K.; Papa, L.; Maheshwari, R.K. A panel of serum MiRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans. Sci. Rep., 2016, 6, 28148.
[http://dx.doi.org/10.1038/srep28148] [PMID: 27338832]
[96]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[97]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[98]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[99]
Bartel, D.P. Metazoan microRNAs. Cell, 2018, 173(1), 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[100]
Lee, Y.; Jeon, K.; Lee, J.T.; Kim, S.; Kim, V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J., 2002, 21(17), 4663-4670.
[http://dx.doi.org/10.1093/emboj/cdf476] [PMID: 12198168]
[101]
Hutvágner, G.; McLachlan, J.; Pasquinelli, A.E.; Bálint, E.; Tuschl, T.; Zamore, P.D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293(5531), 834-838.
[http://dx.doi.org/10.1126/science.1062961] [PMID: 11452083]
[102]
Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature, 2008, 455(7209), 64-71.
[http://dx.doi.org/10.1038/nature07242] [PMID: 18668037]
[103]
Atif, H.; Hicks, S.D. A review of MicroRNA biomarkers in traumatic brain injury. J. Exp. Neurosci., 2019, 131179069519832286
[http://dx.doi.org/10.1177/1179069519832286] [PMID: 30886525]
[104]
Holbourn, H. Mechanics of head injuries. Lancet, 1943, 2, 438-441.
[http://dx.doi.org/10.1016/S0140-6736(00)87453-X]
[105]
Feeney, D.M.; Boyeson, M.G.; Linn, R.T.; Murray, H.M.; Dail, W.G. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res., 1981, 211(1), 67-77.
[http://dx.doi.org/10.1016/0006-8993(81)90067-6] [PMID: 7225844]
[106]
Flierl, M.A.; Stahel, P.F.; Beauchamp, K.M.; Morgan, S.J.; Smith, W.R.; Shohami, E. Mouse closed head injury model induced by a weight-drop device. Nat. Protoc., 2009, 4(9), 1328-1337.
[http://dx.doi.org/10.1038/nprot.2009.148] [PMID: 19713954]
[107]
Hayes, R.L.; Stalhammar, D.; Povlishock, J.T.; Allen, A.M.; Galinat, B.J.; Becker, D.P.; Stonnington, H.H. A new model of concussive brain injury in the cat produced by extradural fluid volume loading: II. Physiological and neuropathological observations. Brain Inj., 1987, 1(1), 93-112.
[http://dx.doi.org/10.3109/02699058709034449] [PMID: 3454676]
[108]
Dixon, C.E.; Lyeth, B.G.; Povlishock, J.T.; Findling, R.L.; Hamm, R.J.; Marmarou, A.; Young, H.F.; Hayes, R.L. A fluid percussion model of experimental brain injury in the rat. J. Neurosurg., 1987, 67(1), 110-119.
[http://dx.doi.org/10.3171/jns.1987.67.1.0110] [PMID: 3598659]
[109]
McIntosh, T.K.; Noble, L.; Andrews, B.; Faden, A.I. Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent. Nerv. Syst. Trauma, 1987, 4(2), 119-134.
[http://dx.doi.org/10.1089/cns.1987.4.119] [PMID: 3690695]
[110]
Lighthall, J.W. Controlled cortical impact: a new experimental brain injury model. J. Neurotrauma, 1988, 5(1), 1-15.
[http://dx.doi.org/10.1089/neu.1988.5.1] [PMID: 3193461]
[111]
Dixon, C.E.; Clifton, G.L.; Lighthall, J.W.; Yaghmai, A.A.; Hayes, R.L. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods, 1991, 39(3), 253-262.
[http://dx.doi.org/10.1016/0165-0270(91)90104-8] [PMID: 1787745]
[112]
Carey, M.E.; Sarna, G.S.; Farrell, J.B.; Happel, L.T. Experimental missile wound to the brain. J. Neurosurg., 1989, 71(5 Pt 1), 754-764.
[http://dx.doi.org/10.3171/jns.1989.71.5.0754] [PMID: 2509646]
[113]
Williams, A.J.; Hartings, J.A.; Lu, X.C.; Rolli, M.L.; Dave, J.R.; Tortella, F.C. Characterization of a new rat model of penetrating ballistic brain injury. J. Neurotrauma, 2005, 22(2), 313-331.
[http://dx.doi.org/10.1089/neu.2005.22.313] [PMID: 15716636]
[114]
Plantman, S.; Ng, K.C.; Lu, J.; Davidsson, J.; Risling, M. Characterization of a novel rat model of penetrating traumatic brain injury. J. Neurotrauma, 2012, 29(6), 1219-1232.
[http://dx.doi.org/10.1089/neu.2011.2182] [PMID: 22181060]
[115]
Ono, K.; Kikuchi, A.; Nakamura, M.; Kobayashi, H.; Nakamura, N. Human head tolerance to sagittal impact reliable estimation deduced from experimental head injury using subhuman primates and human cadaver skulls; SAE Technical, 1980, p. 801303.
[116]
Cernak, I.; Vink, R.; Zapple, D.N.; Cruz, M.I.; Ahmed, F.; Chang, T.; Fricke, S.T.; Faden, A.I. The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol. Dis., 2004, 17(1), 29-43.
[http://dx.doi.org/10.1016/j.nbd.2004.05.011] [PMID: 15350963]
[117]
Maruichi, K.; Kuroda, S.; Chiba, Y.; Hokari, M.; Shichinohe, H.; Hida, K.; Iwasaki, Y. Graded model of diffuse axonal injury for studying head injury-induced cognitive dysfunction in rats. Neuropathology, 2009, 29(2), 132-139.
[http://dx.doi.org/10.1111/j.1440-1789.2008.00956.x] [PMID: 18702633]
[118]
Marmarou, A.; Foda, M.A.; van den Brink, W.; Campbell, J.; Kita, H.; Demetriadou, K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J. Neurosurg., 1994, 80(2), 291-300.
[http://dx.doi.org/10.3171/jns.1994.80.2.0291] [PMID: 8283269]
[119]
Gennarelli, T.A.; Adams, J.H.; Graham, D.I. Acceleration induced head injury in the monkey.I. The model, its mechanical and physiological correlates. Acta Neuropathol. Suppl., 1981, 7, 23-25.
[http://dx.doi.org/10.1007/978-3-642-81553-9_7] [PMID: 6939241]
[120]
Gutierrez, E.; Huang, Y.; Haglid, K.; Bao, F.; Hansson, H.A.; Hamberger, A.; Viano, D. A new model for diffuse brain injury by rotational acceleration: I model, gross appearance, and astrocytosis. J. Neurotrauma, 2001, 18(3), 247-257.
[http://dx.doi.org/10.1089/08977150151070874] [PMID: 11284546]
[121]
Rostami, E.; Davidsson, J.; Ng, K.C.; Lu, J.; Gyorgy, A.; Walker, J.; Wingo, D.; Plantman, S.; Bellander, B.M.; Agoston, D.V.; Risling, M. A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers. Front. Neurol., 2012, 3, 115.
[http://dx.doi.org/10.3389/fneur.2012.00115] [PMID: 22837752]
[122]
Davidsson, J.; Risling, M. A new model to produce sagittal plane rotational induced diffuse axonal injuries. Front. Neurol., 2011, 2, 41.
[http://dx.doi.org/10.3389/fneur.2011.00041] [PMID: 21747777]
[123]
Martinez, B.; Peplow, P.V. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury. Neural Regen. Res., 2017, 12(11), 1749-1761.
[http://dx.doi.org/10.4103/1673-5374.219025] [PMID: 29239310]
[124]
Geyer, C.; Ulrich, A.; Gräfe, G.; Stach, B.; Till, H. Diagnostic value of S100B and neuron-specific enolase in mild pediatric traumatic brain injury. J. Neurosurg. Pediatr., 2009, 4(4), 339-344.
[http://dx.doi.org/10.3171/2009.5.PEDS08481] [PMID: 19795965]
[125]
Papa, L.; Akinyi, L.; Liu, M.C.; Pineda, J.A.; Tepas, J.J., III; Oli, M.W.; Zheng, W.; Robinson, G.; Robicsek, S.A.; Gabrielli, A.; Heaton, S.C.; Hannay, H.J.; Demery, J.A.; Brophy, G.M.; Layon, J.; Robertson, C.S.; Hayes, R.L.; Wang, K.K. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit. Care Med., 2010, 38(1), 138-144.
[http://dx.doi.org/10.1097/CCM.0b013e3181b788ab] [PMID: 19726976]
[126]
Balakathiresan, N.S.; Chandran, R.; Bhomia, M.; Jia, M.; Li, H.; Maheshwari, R.K.; Maheshwari, R.K. Serum and amygdala microRNA signatures of posttraumatic stress: fear correlation and biomarker potential. J. Psychiatr. Res., 2014, 57, 65-73.
[http://dx.doi.org/10.1016/j.jpsychires.2014.05.020] [PMID: 24998397]
[127]
Pinchi, E.; Frati, A.; Cipolloni, L.; Aromatario, M.; Gatto, V.; La Russa, R.; Pesce, A.; Santurro, A.; Fraschetti, F.; Frati, P.; Fineschi, V. Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis. Sci. Rep., 2018, 8(1), 2387.
[http://dx.doi.org/10.1038/s41598-018-20699-1] [PMID: 29402984]
[128]
Liu, W.; Chen, X.; Zhang, Y. Effects of microRNA-21 and microRNA-24 inhibitors on neuronal apoptosis in ischemic stroke. Am. J. Transl. Res., 2016, 8(7), 3179-3187.
[PMID: 27508039]
[129]
Sessa, F.; Maglietta, F.; Bertozzi, G.; Salerno, M.; Di Mizio, G.; Messina, G.; Montana, A.; Ricci, P.; Pomara, C. Human bBrain Injury and miRNAs: An experimental study. Int. J. Mol. Sci., 2019, 20(7), 1546.
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[130]
Hua, Y.J.; Tang, Z.Y.; Tu, K.; Zhu, L.; Li, Y.X.; Xie, L.; Xiao, H.S. Identification and target prediction of miRNAs specifically expressed in rat neural tissue. BMC Genomics, 2009, 10, 214.
[http://dx.doi.org/10.1186/1471-2164-10-214] [PMID: 19426523]
[131]
Liu, N.K.; Xu, X.M. MicroRNA in central nervous system trauma and degenerative disorders. Physiol. Genomics, 2011, 43(10), 571-580.
[http://dx.doi.org/10.1152/physiolgenomics.00168.2010] [PMID: 21385946]
[132]
Liu, L.; Sun, T.; Liu, Z.; Chen, X.; Zhao, L.; Qu, G.; Li, Q. Traumatic brain injury dysregulates microRNAs to modulate cell signaling in rat hippocampus. PLoS One, 2014, 9(8)e103948
[http://dx.doi.org/10.1371/journal.pone.0103948] [PMID: 25089700]
[133]
Yang, T.; Song, J.; Bu, X.; Wang, C.; Wu, J.; Cai, J.; Wan, S.; Fan, C.; Zhang, C.; Wang, J. Elevated serum miR-93, miR-191, and miR-499 are noninvasive biomarkers for the presence and progression of traumatic brain injury. J. Neurochem., 2016, 137(1), 122-129.
[http://dx.doi.org/10.1111/jnc.13534] [PMID: 26756543]
[134]
Pasinetti, G.M.; Ho, L.; Dooley, C.; Abbi, B.; Lange, G. Select non-coding RNA in blood components provide novel clinically accessible biological surrogates for improved identification of traumatic brain injury in OEF/OIF Veterans. Am. J. Neurodegener. Dis., 2012, 1(1), 88-98.
[PMID: 22737634]
[135]
Mitra, B.; Rau, T.F.; Surendran, N.; Brennan, J.H.; Thaveenthiran, P.; Sorich, E.; Fitzgerald, M.C.; Rosenfeld, J.V.; Patel, S.A. Plasma micro-RNA biomarkers for diagnosis and prognosis after traumatic brain injury: A pilot study. J. Clin. Neurosci., 2017, 38, 37-42.
[http://dx.doi.org/10.1016/j.jocn.2016.12.009] [PMID: 28117263]
[136]
Zhangjie, S.; Davies, D.; Wang, M.; Evans, S.; Hill, L.; Grey, M.; Bell, A. Circulating microRNA as novel early biomarker of concussion in elite athletes. Br. J. Sports Med., 2017, 51, A2-A3.
[137]
Qin, X.; Li, L.; Lv, Q.; Shu, Q.; Zhang, Y.; Wang, Y. Expression profile of plasma microRNAs and their roles in diagnosis of mild to severe traumatic brain injury. PLoS One, 2018, 13(9)e0204051
[http://dx.doi.org/10.1371/journal.pone.0204051] [PMID: 30226895]
[138]
Di Pietro, V.; Porto, E.; Ragusa, M.; Barbagallo, C.; Davies, D.; Forcione, M.; Logan, A.; Di Pietro, C.; Purrello, M.; Grey, M.; Hammond, D.; Sawlani, V.; Barbey, A.K.; Belli, A. Salivary microRNAs: diagnostic markers of mild traumatic brain injury in contact-sport. Front. Mol. Neurosci., 2018, 11, 290.
[http://dx.doi.org/10.3389/fnmol.2018.00290] [PMID: 30177873]
[139]
LaRocca, D.; Barns, S.; Hicks, S.D.; Brindle, A.; Williams, J.; Uhlig, R.; Johnson, P.; Neville, C.; Middleton, F.A. Comparison of serum and saliva miRNAs for identification and characterization of mTBI in adult mixed martial arts fighters. PLoS One, 2019, 14(1)e0207785
[http://dx.doi.org/10.1371/journal.pone.0207785] [PMID: 30601825]
[140]
Hicks, S.D.; Johnson, J.; Carney, M.C.; Bramley, H.; Olympia, R.P.; Loeffert, A.C.; Thomas, N.J.; Olympia, R.P.; Loeffert, A.C.; Thomas, N.J. Overlapping microRNA expression in saliva and cerebrospinal fluid accurately identifies pediatric traumatic brain injury. J. Neurotrauma, 2018, 35(1), 64-72.
[http://dx.doi.org/10.1089/neu.2017.5111] [PMID: 28762893]
[141]
Johnson, J.J.; Loeffert, A.C.; Stokes, J.; Olympia, R.P.; Bramley, H.; Hicks, S.D. Association of salivary microRNA changes with prolonged concussion symptoms. JAMA Pediatr., 2018, 172(1), 65-73.
[http://dx.doi.org/10.1001/jamapediatrics.2017.3884] [PMID: 29159407]
[142]
Patz, S.; Trattnig, C.; Grünbacher, G.; Ebner, B.; Gülly, C.; Novak, A.; Rinner, B.; Leitinger, G.; Absenger, M.; Tomescu, O.A.; Thallinger, G.G.; Fasching, U.; Wissa, S.; Archelos-Garcia, J.; Schäfer, U. More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs, and proteins. J. Neurotrauma, 2013, 30(14), 1232-1242.
[http://dx.doi.org/10.1089/neu.2012.2596] [PMID: 23360174]
[143]
You, W.D.; Tang, Q.L.; Wang, L.; Lei, J.; Feng, J.F.; Mao, Q.; Gao, G.Y.; Jiang, J.Y. Alteration of microRNA expression in cerebrospinal fluid of unconscious patients after traumatic brain injury and a bioinformatic analysis of related single nucleotide polymorphisms. Chin. J. Traumatol., 2016, 19(1), 11-15.
[http://dx.doi.org/10.1016/j.cjtee.2016.01.004] [PMID: 27033266]
[144]
Stein, D.M.; Kufera, J.A.; Lindell, A.; Murdock, K.R.; Menaker, J.; Bochicchio, G.V.; Aarabi, B.; Scalea, T.M. Association of CSF biomarkers and secondary insults following severe traumatic brain injury. Neurocrit. Care, 2011, 14(2), 200-207.
[http://dx.doi.org/10.1007/s12028-010-9496-1] [PMID: 21210304]
[145]
Li, Y.; Zhang, L.; Kallakuri, S.; Cohen, A.; Cavanaugh, J.M. Correlation of mechanical impact responses and biomarker levels: A new model for biomarker evaluation in TBI. J. Neurol. Sci., 2015, 359(1-2), 280-286.
[http://dx.doi.org/10.1016/j.jns.2015.08.035] [PMID: 26671128]
[146]
Pinchi, E.; Frati, P.; Aromatario, M.; Cipolloni, L.; Fabbri, M.; La Russa, R.; Maiese, A.; Neri, M.; Santurro, A.; Scopetti, M.; Viola, R.V.; Turillazzi, E.; Fineschi, V. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J. Cell. Mol. Med., 2019, 23(9), 6005-6016.
[http://dx.doi.org/10.1111/jcmm.14463] [PMID: 31240830]
[147]
Dai, W.; He, J.; Zheng, L.; Bi, M.; Hu, F.; Chen, M.; Niu, H.; Yang, J.; Luo, Y.; Tang, W.; Sheng, M. miR-148b-3p, miR-190b, and miR-429 regulate cell progression and act as potential biomarkers for breast cancer. J. Breast Cancer, 2019, 22(2), 219-236.
[http://dx.doi.org/10.4048/jbc.2019.22.e19] [PMID: 31281725]
[148]
Herrera-Espejo, S.; Santos-Zorrozua, B.; Álvarez-González, P.; Lopez-Lopez, E.; Garcia-Orad, Á. A Systematic review of microRNA expression as biomarker of late-onset Alzheimer’s disease. Mol. Neurobiol., 2019, 56(12), 8376-8391.
[http://dx.doi.org/10.1007/s12035-019-01676-9] [PMID: 31240600]
[149]
Basso, C.; Burke, M.; Fornes, P.; Gallagher, P.J.; de Gouveia, R.H.; Sheppard, M.; Thiene, G.; van der Wal, A. Association for european cardiovascular pathology. Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch., 2008, 452(1), 11-18.
[http://dx.doi.org/10.1007/s00428-007-0505-5] [PMID: 17952460]
[150]
Liu, N.K.; Wang, X.F.; Lu, Q.B.; Xu, X.M. Altered microRNA expression following traumatic spinal cord injury. Exp. Neurol., 2009, 219(2), 424-429.
[http://dx.doi.org/10.1016/j.expneurol.2009.06.015] [PMID: 19576215]
[151]
Bedreag, O.H.; Sandesc, D.; Chiriac, S.D.; Rogobete, A.F.; Cradigati, A.C.; Sarandan, M.; Dumache, R.; Nartita, R.; Papurica, M. The use of circulating miRNAs as Biomarkers for oxidative stress in critically Ill polytrauma patients. Clin. Lab., 2016, 62(3), 263-274.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150740] [PMID: 27156313]
[152]
Sun, T.Y.; Chen, X.R.; Liu, Z.L.; Zhao, L.L.; Jiang, Y.X.; Qu, G.Q.; Wang, R.S.; Huang, S.Z.; Liu, L. Expression profiling of microRNAs in hippocampus of rats following traumatic brain injury. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, 34(4), 548-553.
[http://dx.doi.org/10.1007/s11596-014-1313-1] [PMID: 25135725]
[153]
Huang, C.; Xiao, X.; Chintagari, N.R.; Breshears, M.; Wang, Y.; Liu, L. MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome. BMC Med. Genomics, 2014, 7, 46.
[http://dx.doi.org/10.1186/1755-8794-7-46] [PMID: 25070658]
[154]
Neri, M.; Frati, A.; Turillazzi, E.; Cantatore, S.; Cipolloni, L.; Di Paolo, M.; Frati, P.; La Russa, R.; Maiese, A.; Scopetti, M.; Santurro, A.; Sessa, F.; Zamparese, R.; Fineschi, V. Immunohistochemical evaluation of aquaporin-4 and its correlation with CD68, IBA-1, HIF-1_, GFAP, and CD15 expressions in fatal traumatic brain injury. Int. J. Mol. Sci., 2018, 19(11), 3544.
[http://dx.doi.org/10.3390/ijms19113544] [PMID: 30423808]
[155]
Zaninotto, A.L.; Vicentini, J.E.; Fregni, F.; Rodrigues, P.A.; Botelho, C.; de Lucia, M.C.S.; Paiva, W.S. Updates and current perspectives of psychiatric assessments after traumatic brain injury: A systematic review. Front. Psychiatry, 2016, 7, 95.
[http://dx.doi.org/10.3389/fpsyt.2016.00095] [PMID: 27378949]
[156]
Dambinova, S.A.; Bettermann, K.; Glynn, T.; Tews, M.; Olson, D.; Weissman, J.D.; Sowell, R.L. Diagnostic potential of the NMDA receptor peptide assay for acute ischemic stroke. PLoS One, 2012, 7(7)e42362
[http://dx.doi.org/10.1371/journal.pone.0042362] [PMID: 22848761]
[157]
Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.R.; Valadka, A.; Manley, G.T. Workshop scientific team and advisory panel members. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma, 2008, 25(7), 719-738.
[http://dx.doi.org/10.1089/neu.2008.0586] [PMID: 18627252]
[158]
Di Pietro, V.; Yakoub, K.M.; Scarpa, U.; Di Pietro, C.; Belli, A. MicroRNA signature of traumatic brain injury: From the biomarker discovery to the point-of-care. Front. Neurol., 2018, 9, 429.
[http://dx.doi.org/10.3389/fneur.2018.00429] [PMID: 29963002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy