Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Human Dermal Fibroblast: A Promising Cellular Model to Study Biological Mechanisms of Major Depression and Antidepressant Drug Response

Author(s): Pierre Mesdom, Romain Colle, Elise Lebigot, Séverine Trabado, Eric Deflesselle, Bruno Fève, Laurent Becquemont, Emmanuelle Corruble and Céline Verstuyft*

Volume 18, Issue 4, 2020

Page: [301 - 318] Pages: 18

DOI: 10.2174/1570159X17666191021141057

Price: $65

Abstract

Background: Human dermal fibroblasts (HDF) can be used as a cellular model relatively easily and without genetic engineering. Therefore, HDF represent an interesting tool to study several human diseases including psychiatric disorders. Despite major depressive disorder (MDD) being the second cause of disability in the world, the efficacy of antidepressant drug (AD) treatment is not sufficient and the underlying mechanisms of MDD and the mechanisms of action of AD are poorly understood.

Objective: The aim of this review is to highlight the potential of HDF in the study of cellular mechanisms involved in MDD pathophysiology and in the action of AD response.

Methods: The first part is a systematic review following PRISMA guidelines on the use of HDF in MDD research. The second part reports the mechanisms and molecules both present in HDF and relevant regarding MDD pathophysiology and AD mechanisms of action.

Results: HDFs from MDD patients have been investigated in a relatively small number of works and most of them focused on the adrenergic pathway and metabolism-related gene expression as compared to HDF from healthy controls. The second part listed an important number of papers demonstrating the presence of many molecular processes in HDF, involved in MDD and AD mechanisms of action.

Conclusion: The imbalance in the number of papers between the two parts highlights the great and still underused potential of HDF, which stands out as a very promising tool in our understanding of MDD and AD mechanisms of action.

Keywords: Human dermal fibroblasts, human skin fibroblasts, major depression, major depressive episode, antidepressant drug, cellular model.

Graphical Abstract

[1]
Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care (New Rochelle), 2016, 5(3), 119-136.
[http://dx.doi.org/10.1089/wound.2014.0561] [PMID: 26989578]
[2]
Darby, I.A.; Laverdet, B.; Bonté, F.; Desmoulière, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol.,, 2014, (7), 301-311.
[PMID: 25395868]
[3]
Vangipuram, M.; Ting, D.; Kim, S.; Diaz, R.; Schüle, B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J. Vis. Exp., 2013, (77)e3779
[http://dx.doi.org/10.3791/3779] [PMID: 23852182]
[4]
Sherr, C.J.; DePinho, R.A. Cellular senescence: mitotic clock or culture shock? Cell, 2000, 102(4), 407-410.
[http://dx.doi.org/10.1016/S0092-8674(00)00046-5] [PMID: 10966103]
[5]
Wray, S.; Self, M.; Lewis, P.A.; Taanman, J.W.; Ryan, N.S.; Mahoney, C.J.; Liang, Y.; Devine, M.J.; Sheerin, U.M.; Houlden, H.; Morris, H.R.; Healy, D.; Marti-Masso, J.F.; Preza, E.; Barker, S.; Sutherland, M.; Corriveau, R.A.; D’Andrea, M.; Schapira, A.H.; Uitti, R.J.; Guttman, M.; Opala, G.; Jasinska-Myga, B.; Puschmann, A.; Nilsson, C.; Espay, A.J.; Slawek, J.; Gutmann, L.; Boeve, B.F.; Boylan, K.; Stoessl, A.J.; Ross, O.A.; Maragakis, N.J.; Van Gerpen, J.; Gerstenhaber, M.; Gwinn, K.; Dawson, T.M.; Isacson, O.; Marder, K.S.; Clark, L.N.; Przedborski, S.E.; Finkbeiner, S.; Rothstein, J.D.; Wszolek, Z.K.; Rossor, M.N.; Hardy, J. Creation of an open-access, mutation-defined fibroblast resource for neurological disease research. PLoS One, 2012, 7(8)e43099
[http://dx.doi.org/10.1371/journal.pone.0043099] [PMID: 22952635]
[6]
Schwartz, J.C.; Podell, E.R.; Han, S.S.; Berry, J.D.; Eggan, K.C.; Cech, T.R. FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Mol. Biol. Cell, 2014, 25(17), 2571-2578.
[http://dx.doi.org/10.1091/mbc.e14-05-1007] [PMID: 25009283]
[7]
Akin, D.; Manier, D.H.; Sanders-Bush, E.; Shelton, R.C. Decreased serotonin 5-HT2A receptor-stimulated phosphoinositide signaling in fibroblasts from melancholic depressed patients. Neuropsychopharmacology, 2004, 29(11), 2081-2087.
[http://dx.doi.org/10.1038/sj.npp.1300505] [PMID: 15187984]
[8]
Fournier, M.; Ferrari, C.; Baumann, P.S.; Polari, A.; Monin, A.; Bellier-Teichmann, T.; Wulff, J.; Pappan, K.L.; Cuenod, M.; Conus, P.; Do, K.Q. Impaired metabolic reactivity to oxidative stress in early psychosis patients. Schizophr. Bull., 2014, 40(5), 973-983.
[http://dx.doi.org/10.1093/schbul/sbu053] [PMID: 24687046]
[9]
Kálmán, S.; Garbett, K.A.; Janka, Z.; Mirnics, K. Human dermal fibroblasts in psychiatry research. Neuroscience, 2016, 320(), 105-121.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.067 ] [PMID: 26855193]
[10]
Denney, R.M.; Koch, H.; Craig, I.W. Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum. Genet.,, 1999, 105(6), 542-551.
[PMID: 10647887]
[11]
Wagner, J.R.; Busche, S.; Ge, B.; Kwan, T.; Pastinen, T.; Blanchette, M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol., 2014, 15(2), R37.
[http://dx.doi.org/10.1186/gb-2014-15-2-r37] [PMID: 24555846]
[12]
Wadman, R.I.; Stam, M.; Jansen, M.D.; van der Weegen, Y.; Wijngaarde, C.A.; Harschnitz, O.; Sodaar, P.; Braun, K.P.; Dooijes, D.; Lemmink, H.H.; van den Berg, L.H.; van der Pol, W.L. A comparative study of SMN protein and mRNA in blood and fibroblasts in patients with spinal muscular atrophy and healthy controls. PLoS One, 2016, 11(11)e0167087
[http://dx.doi.org/10.1371/journal.pone.0167087] [PMID: 27893852]
[13]
Rodriguez-Menocal, L.; Salgado, M.; Ford, D.; Van Badiavas, E. Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients. Stem Cells Transl. Med., 2012, 1(3), 221-229.
[http://dx.doi.org/10.5966/sctm.2011-0029] [PMID: 23197781]
[14]
Nuta, O.; Somaiah, N.; Boyle, S.; Chua, M.L.; Gothard, L.; Yarnold, J.; Rothkamm, K.; Herskind, C. Correlation between the radiation responses of fibroblasts cultured from individual patients and the risk of late reaction after breast radiotherapy. Cancer Lett., 2016, 374(2), 324-330.
[http://dx.doi.org/10.1016/j.canlet.2016.02.036] [PMID: 26944319]
[15]
de Paepe, B.; Smet, J.; Leroy, J.G.; Seneca, S.; George, E.; Matthys, D.; van Maldergem, L.; Scalais, E.; Lissens, W.; de Meirleir, L.; Meulemans, A.; van Coster, R. Diagnostic value of immunostaining in cultured skin fibroblasts from patients with oxidative phosphorylation defects. Pediatr. Res., 2006, 59(1), 2-6.
[http://dx.doi.org/10.1203/01.pdr.0000191294.34122.ab] [PMID: 16327006]
[16]
Bertolini, S.; Pisciotta, L.; Fasano, T.; Rabacchi, C.; Calandra, S. The study of familial hypercholesterolemia in Italy: A narrative review. Atheroscler. Suppl., 2017, 29, 1-10.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2017.07.003] [PMID: 28965614]
[17]
Millioni, R.; Puricelli, L.; Iori, E.; Trevisan, R.; Tessari, P. Skin fibroblasts as a tool for identifying the risk of nephropathy in the type 1 diabetic population. Diabetes Metab. Res. Rev., 2012, 28(1), 62-70.
[http://dx.doi.org/10.1002/dmrr.1287] [PMID: 22218755]
[18]
Auburger, G.; Klinkenberg, M.; Drost, J.; Marcus, K.; Morales-Gordo, B.; Kunz, W.S.; Brandt, U.; Broccoli, V.; Reichmann, H.; Gispert, S.; Jendrach, M. Primary skin fibroblasts as a model of Parkinson’s disease. Mol. Neurobiol., 2012, 46(1), 20-27.
[http://dx.doi.org/10.1007/s12035-012-8245-1] [PMID: 22350618]
[19]
Mocali, A.; Della Malva, N.; Abete, C.; Mitidieri Costanza, V.A.; Bavazzano, A.; Boddi, V.; Sanchez, L.; Dessì, S.; Pani, A.; Paoletti, F. Altered proteolysis in fibroblasts of Alzheimer patients with predictive implications for subjects at risk of disease. Int. J. Alzheimers Dis., 2014, 2014520152
[http://dx.doi.org/10.1155/2014/520152] [PMID: 24949214]
[20]
Pérez, M.J.; Ponce, D.P.; Osorio-Fuentealba, C.; Behrens, M.I.; Quintanilla, R.A. Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer’s Disease. Front. Neurosci., 2017, 11, 553.
[http://dx.doi.org/10.3389/fnins.2017.00553] [PMID: 29056898]
[21]
Meister, A. Glutathione biosynthesis and its inhibition. Methods Enzymol., 1995, 252, 26-30.
[http://dx.doi.org/10.1016/0076-6879(95)52005-8] [PMID: 7476360]
[22]
Gibson, S.A.; Korade, Ž.; Shelton, R.C. Oxidative stress and glutathione response in tissue cultures from persons with major depression. J. Psychiatr. Res., 2012, 46(10), 1326-1332.
[http://dx.doi.org/10.1016/j.jpsychires.2012.06.008] [PMID: 22841833]
[23]
Cataldo, A.M.; McPhie, D.L.; Lange, N.T.; Punzell, S.; Elmiligy, S.; Ye, N.Z.; Froimowitz, M.P.; Hassinger, L.C.; Menesale, E.B.; Sargent, L.W.; Logan, D.J.; Carpenter, A.E.; Cohen, B.M. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am. J. Pathol., 2010, 177(2), 575-585.
[http://dx.doi.org/10.2353/ajpath.2010.081068] [PMID: 20566748]
[24]
Money, K.M.; Olah, Z.; Korade, Z.; Garbett, K.A.; Shelton, R.C.; Mirnics, K. An altered peripheral IL6 response in major depressive disorder. Neurobiol. Dis., 2016, 89, 46-54.
[http://dx.doi.org/10.1016/j.nbd.2016.01.015] [PMID: 26804030]
[25]
Garbett, K.A.; Vereczkei, A.; Kálmán, S.; Wang, L.; Korade, Ž.; Shelton, R.C.; Mirnics, K. Fibroblasts from patients with major depressive disorder show distinct transcriptional response to metabolic stressors. Transl. Psychiatry, 2015, 5e523
[http://dx.doi.org/10.1038/tp.2015.14] [PMID: 25756806]
[26]
Janmaat, C.J.; de Rooij, K.E.; Locher, H.; de Groot, S.C.; de Groot, J.C.; Frijns, J.H.; Huisman, M.A. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins. PLoS One, 2015, 10(12)e0145235
[http://dx.doi.org/10.1371/journal.pone.0145235] [PMID: 26678612]
[27]
Nordlind, K.; Azmitia, E.C.; Slominski, A. The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp. Dermatol., 2008, 17(4), 301-311.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00670.x] [PMID: 18177349]
[28]
Palazzo, E.; Marconi, A.; Truzzi, F.; Dallaglio, K.; Petrachi, T.; Humbert, P.; Schnebert, S.; Perrier, E.; Dumas, M.; Pincelli, C. Role of neurotrophins on dermal fibroblast survival and differentiation. J. Cell. Physiol., 2012, 227(3), 1017-1025.
[http://dx.doi.org/10.1002/jcp.22811] [PMID: 21503896]
[29]
Manier, D.H.; Shelton, R.C.; Ellis, T.C.; Peterson, C.S.; Eiring, A.; Sulser, F. Human fibroblasts as a relevant model to study signal transduction in affective disorders. J. Affect. Disord., 2000, 61(1-2), 51-58.
[http://dx.doi.org/10.1016/S0165-0327(99)00190-1] [PMID: 11099740]
[30]
Mokdad, A.H.; Forouzanfar, M.H.; Daoud, F.; Mokdad, A.A.; El Bcheraoui, C.; Moradi-Lakeh, M.; Kyu, H.H.; Barber, R.M.; Wagner, J.; Cercy, K.; Kravitz, H.; Coggeshall, M.; Chew, A.; O’Rourke, K.F.; Steiner, C.; Tuffaha, M.; Charara, R.; Al-Ghamdi, E.A.; Adi, Y.; Afifi, R.A.; Alahmadi, H.; AlBuhairan, F.; Allen, N.; AlMazroa, M.; Al-Nehmi, A.A.; AlRayess, Z.; Arora, M.; Azzopardi, P.; Barroso, C.; Basulaiman, M.; Bhutta, Z.A.; Bonell, C.; Breinbauer, C.; Degenhardt, L.; Denno, D.; Fang, J.; Fatusi, A.; Feigl, A.B.; Kakuma, R.; Karam, N.; Kennedy, E.; Khoja, T.A.; Maalouf, F.; Obermeyer, C.M.; Mattoo, A.; McGovern, T.; Memish, Z.A.; Mensah, G.A.; Patel, V.; Petroni, S.; Reavley, N.; Zertuche, D.R.; Saeedi, M.; Santelli, J.; Sawyer, S.M.; Ssewamala, F.; Taiwo, K.; Tantawy, M.; Viner, R.M.; Waldfogel, J.; Zuñiga, M.P.; Naghavi, M.; Wang, H.; Vos, T.; Lopez, A.D.; Al Rabeeah, A.A.; Patton, G.C.; Murray, C.J. Global burden of diseases, injuries, and risk factors for young people’s health during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2016, 387(10036), 2383-2401.
[http://dx.doi.org/10.1016/S0140-6736(16)00648-6] [PMID: 27174305]
[31]
Kupfer, D.J.; Frank, E.; Phillips, M.L. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet, 2012, 379(9820), 1045-1055.
[http://dx.doi.org/10.1016/S0140-6736(11)60602-8] [PMID: 22189047]
[32]
Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J.; Shores-Wilson, K.; Biggs, M.M.; Balasubramani, G.K.; Fava, M.; Team, S.D.S. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry, 2006, 163(1), 28-40.
[http://dx.doi.org/10.1176/appi.ajp.163.1.28] [PMID: 16390886]
[33]
Nierenberg, A.A.; Farabaugh, A.H.; Alpert, J.E.; Gordon, J.; Worthington, J.J.; Rosenbaum, J.F.; Fava, M. Timing of onset of antidepressant response with fluoxetine treatment. Am. J. Psychiatry, 2000, 157(9), 1423-1428.
[http://dx.doi.org/10.1176/appi.ajp.157.9.1423] [PMID: 10964858]
[34]
Delgado, P.L. Depression: the case for a monoamine deficiency. J. Clin. Psychiatry, 2000, 61(Suppl. 6), 7-11.
[PMID: 10775018]
[35]
Albert, P.R.; Benkelfat, C.; Descarries, L. The neurobiology of depression--revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1601), 2378-2381.
[http://dx.doi.org/10.1098/rstb.2012.0190] [PMID: 22826338]
[36]
Kraft, J.B.; Slager, S.L.; McGrath, P.J.; Hamilton, S.P. Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol. Psychiatry, 2005, 58(5), 374-381.
[37]
Shelton, R.C.; Mainer, D.H.; Sulser, F. cAMP-dependent protein kinase activity in major depression. Am. J. Psychiatry, 1996, 153(8), 1037-1042.
[http://dx.doi.org/10.1176/ajp.153.8.1037] [PMID: 8678172]
[38]
Manier, D.H.; Eiring, A.; Shelton, R.C.; Sulser, F. Beta-adrenoceptor-linked protein kinase A (PKA) activity in human fibroblasts from normal subjects and from patients with major depression. Neuropsychopharmacology, 1996, 15(6), 555-561.
[http://dx.doi.org/10.1016/S0893-133X(96)00099-1] [PMID: 8946429]
[39]
Shelton, R.C.; Manier, D.H.; Peterson, C.S.; Ellis, T.C.; Sulser, F. Cyclic AMP-dependent protein kinase in subtypes of major depression and normal volunteers. Int. J. Neuropsychopharmacol., 1999, 2(3), 187-192.
[http://dx.doi.org/10.1017/S1461145799001509] [PMID: 11281988]
[40]
Manier, D.H.; Shelton, R.C.; Sulser, F. Cross-talk between PKA and PKC in human fibroblasts: what are the pharmacotherapeutic implications? J. Affect. Disord., 2001, 65(3), 275-279.
[http://dx.doi.org/10.1016/S0165-0327(00)00278-0] [PMID: 11511407]
[41]
Akin, D.; Manier, D.H.; Sanders-Bush, E.; Shelton, R.C. Signal transduction abnormalities in melancholic depression. Int. J. Neuropsychopharmacol., 2005, 8(1), 5-16.
[http://dx.doi.org/10.1017/S146114570400478X] [PMID: 15500705]
[42]
Lin, S.C.; Richelson, E. Low levels and lack of function of muscarinic binding sites in human skin fibroblasts from five affectively ill patients and two control subjects. Am. J. Psychiatry, 1986, 143(5), 658-660.
[http://dx.doi.org/10.1176/ajp.143.5.658] [PMID: 3457538]
[43]
Gabriela Nielsen, M.; Congiu, C.; Bortolomasi, M.; Bonvicini, C.; Bignotti, S.; Abate, M.; Milanesi, E.; Conca, A.; Cattane, N.; Tessari, E.; Gennarelli, M.; Minelli, A. MTHFR: Genetic variants, expression analysis and COMT interaction in major depressive disorder. J. Affect. Disord., 2015, 183, 179-186.
[http://dx.doi.org/10.1016/j.jad.2015.05.003] [PMID: 26021967]
[44]
Liang, S.; Rossby, S.P.; Liang, P.; Shelton, R.C.; Manier, D.H.; Chakrabarti, A.; Sulser, F. Detection of an mRNA polymorphism by differential display. Methods Mol. Biol., 2006, 317, 279-285.
[PMID: 16264236]
[45]
Liang, S.; Rossby, S.P.; Liang, P.; Shelton, R.C.; Manier, D.H.; Chakrabarti, A.; Sulser, F. Detection of an mRNA polymorphism by differential display. Mol. Biotechnol., 2001, 19(2), 121-124.
[http://dx.doi.org/10.1385/MB:19:2:121] [PMID: 11725481]
[46]
Cattane, N.; Minelli, A.; Milanesi, E.; Maj, C.; Bignotti, S.; Bortolomasi, M.; Bocchio Chiavetto, L.; Gennarelli, M. Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood. PLoS One, 2015, 10(2)e0116686
[http://dx.doi.org/10.1371/journal.pone.0116686] [PMID: 25658856]
[47]
Garbett, K.A.; Vereczkei, A.; Kálmán, S.; Brown, J.A.; Taylor, W.D.; Faludi, G.; Korade, Ž.; Shelton, R.C.; Mirnics, K. Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression. Biol. Psychiatry, 2015, 77(3), 256-265.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.015] [PMID: 25016317]
[48]
Shelton, R.C.; Liang, S.; Liang, P.; Chakrabarti, A.; Manier, D.H.; Sulser, F. Differential expression of pentraxin 3 in fibroblasts from patients with major depression. Neuropsychopharmacology, 2004, 29(1), 126-132.
[http://dx.doi.org/10.1038/sj.npp.1300307] [PMID: 14603263]
[49]
Wassef, A.A.; O’Boyle, M.; Gardner, R.; Rose, R.M.; Brown, A.; Harris, A.; Nguyen, H.; Meyer, W.J., III Glucocorticoid receptor binding in three different cell types in major depressive disorder: lack of evidence of receptor binding defect. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1992, 16(1), 65-78.
[http://dx.doi.org/10.1016/0278-5846(92)90009-4] [PMID: 1557508]
[50]
Minelli, A.; Magri, C.; Barbon, A.; Bonvicini, C.; Segala, M.; Congiu, C.; Bignotti, S.; Milanesi, E.; Trabucchi, L.; Cattane, N.; Bortolomasi, M.; Gennarelli, M. Proteasome system dysregulation and treatment resistance mechanisms in major depressive disorder. Transl. Psychiatry, 2015, 5e687
[http://dx.doi.org/10.1038/tp.2015.180] [PMID: 26624926]
[51]
Muiños-Gimeno, M.; Espinosa-Parrilla, Y.; Guidi, M.; Kagerbauer, B.; Sipilä, T.; Maron, E.; Pettai, K.; Kananen, L.; Navinés, R.; Martín-Santos, R.; Gratacòs, M.; Metspalu, A.; Hovatta, I.; Estivill, X. Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol. Psychiatry, 2011, 69(6), 526-533.
[http://dx.doi.org/10.1016/j.biopsych.2010.10.010] [PMID: 21168126]
[52]
Kawashima, H.; Numakawa, T.; Kumamaru, E.; Adachi, N.; Mizuno, H.; Ninomiya, M.; Kunugi, H.; Hashido, K. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience, 2010, 165(4), 1301-1311.
[http://dx.doi.org/10.1016/j.neuroscience.2009.11.057] [PMID: 19958814]
[53]
Wayman, G.A.; Davare, M.; Ando, H.; Fortin, D.; Varlamova, O.; Cheng, H.Y.; Marks, D.; Obrietan, K.; Soderling, T.R.; Goodman, R.H.; Impey, S. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9093-9098.
[http://dx.doi.org/10.1073/pnas.0803072105] [PMID: 18577589]
[54]
Marsden, W.N. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 43, 168-184.
[http://dx.doi.org/10.1016/j.pnpbp.2012.12.012] [PMID: 23268191]
[55]
Joca, S.R.L.; Sartim, A.G.; Roncalho, A.L.; Diniz, C.F.A.; Wegener, G. Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res., 2019, 377(1), 45-58.
[http://dx.doi.org/10.1007/s00441-018-02987-4] [PMID: 30649612]
[56]
Kessler-Becker, D.; Krieg, T.; Eckes, B. Expression of pro-inflammatory markers by human dermal fibroblasts in a three-dimensional culture model is mediated by an autocrine interleukin-1 loop. Biochem. J., 2004, 379(Pt 2), 351-358.
[http://dx.doi.org/10.1042/bj20031371] [PMID: 14686880]
[57]
Hasler, G. Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry, 2010, 9(3), 155-161.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x] [PMID: 20975857]
[58]
Wong, D.T.; Perry, K.W.; Bymaster, F.P. Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat. Rev. Drug Discov., 2005, 4(9), 764-774.
[http://dx.doi.org/10.1038/nrd1821] [PMID: 16121130]
[59]
Berton, O.; Nestler, E.J. New approaches to antidepressant drug discovery: beyond monoamines. Nat. Rev. Neurosci., 2006, 7(2), 137-151.
[http://dx.doi.org/10.1038/nrn1846] [PMID: 16429123]
[60]
Willner, P.; Scheel-Krüger, J.; Belzung, C. The neurobiology of depression and antidepressant action. Neurosci. Biobehav. Rev., 2013, 37(10 Pt 1), 2331-2371.
[http://dx.doi.org/10.1016/j.neubiorev.2012.12.007] [PMID: 23261405]
[61]
Philip, N.S.; Carpenter, L.L.; Tyrka, A.R.; Price, L.H. Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature. Psychopharmacology (Berl.), 2010, 212(1), 1-12.
[http://dx.doi.org/10.1007/s00213-010-1932-6] [PMID: 20614106]
[62]
Higley, M.J.; Picciotto, M.R. Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr. Opin. Neurobiol., 2014, 29, 88-95.
[http://dx.doi.org/10.1016/j.conb.2014.06.004] [PMID: 24983212]
[63]
Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 2012, 76(1), 116-129.
[http://dx.doi.org/10.1016/j.neuron.2012.08.036] [PMID: 23040810]
[64]
Luscher, B.; Shen, Q.; Sahir, N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry, 2011, 16(4), 383-406.
[http://dx.doi.org/10.1038/mp.2010.120] [PMID: 21079608]
[65]
Guidotti, G.; Calabrese, F.; Anacker, C.; Racagni, G.; Pariante, C.M.; Riva, M.A. Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment. Neuropsychopharmacology, 2013, 38(4), 616-627.
[http://dx.doi.org/10.1038/npp.2012.225] [PMID: 23169346]
[66]
Cowen, P.J. Not fade away: the HPA axis and depression. Psychol. Med., 2010, 40(1), 1-4.
[http://dx.doi.org/10.1017/S0033291709005558] [PMID: 19335939]
[67]
Sigalas, P.D.; Garg, H.; Watson, S.; McAllister-Williams, R.H.; Ferrier, I.N. Metyrapone in treatment-resistant depression. Ther. Adv. Psychopharmacol., 2012, 2(4), 139-149.
[http://dx.doi.org/10.1177/2045125312436597] [PMID: 23983967]
[68]
Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast.,, 2017, 20176871089(), -.
[http://dx.doi.org/10.1155/2017/6871089] [PMID: 28246558]
[69]
Miller, A.H.; Raison, C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol., 2016, 16(1), 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[70]
Anderson, G.; Berk, M.; Dean, O.; Moylan, S.; Maes, M. Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs, 2014, 28(1), 1-10.
[http://dx.doi.org/10.1007/s40263-013-0119-1] [PMID: 24150993]
[71]
Sadiq, A.; Shah, A.; Jeschke, M.G.; Belo, C.; Qasim Hayat, M.; Murad, S.; Amini-Nik, S. The Role of Serotonin during Skin Healing in Post-Thermal Injury. Int. J. Mol. Sci., 2018, 19(4), 1034.
[http://dx.doi.org/10.3390/ijms19041034] [PMID: 29596386]
[72]
Slominski, A.; Pisarchik, A.; Zbytek, B.; Tobin, D.J.; Kauser, S.; Wortsman, J. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J. Cell. Physiol., 2003, 196(1), 144-153.
[http://dx.doi.org/10.1002/jcp.10287] [PMID: 12767050]
[73]
Stegemann, A.; Sindrilaru, A.; Eckes, B.; del Rey, A.; Heinick, A.; Schulte, J.S.; Müller, F.U.; Grando, S.A.; Fiebich, B.L.; Scharffetter-Kochanek, K.; Luger, T.A.; Böhm, M. Tropisetron suppresses collagen synthesis in skin fibroblasts via α7 nicotinic acetylcholine receptor and attenuates fibrosis in a scleroderma mouse model. Arthritis Rheum., 2013, 65(3), 792-804.
[http://dx.doi.org/10.1002/art.37809] [PMID: 23440693]
[74]
Slominski, A.; Pisarchik, A.; Johansson, O.; Jing, C.; Semak, I.; Slugocki, G.; Wortsman, J. Tryptophan hydroxylase expression in human skin cells. Biochim. Biophys. Acta, 2003, 1639(2), 80-86.
[http://dx.doi.org/10.1016/S0925-4439(03)00124-8] [PMID: 14559114]
[75]
Nordquist, N.; Oreland, L. Monoallelic expression of MAO-A in skin fibroblasts. J. Neural Transm. (Vienna), 2007, 114(6), 713-716.
[http://dx.doi.org/10.1007/s00702-007-0676-x] [PMID: 17406964]
[76]
Roth, J.A.; Breakefield, X.O.; Castiglione, C.M. Monoamine oxidase and catechol-O-methyltransferase activities in cultured human skin fibroblasts. Life Sci., 1976, 19(11), 1705-1710.
[http://dx.doi.org/10.1016/0024-3205(76)90077-1] [PMID: 1004130]
[77]
Groshong, R.; Gibson, D.A.; Baldessarini, R.J. Monoamine oxidase activity in cultured human skin fibroblasts. Clin. Chim. Acta, 1977, 80(1), 113-120.
[http://dx.doi.org/10.1016/0009-8981(77)90270-4] [PMID: 908136]
[78]
Pintar, J.E.; Breakefield, X.O. Monoamine oxidase (MAO) activity as a determinant in human neurophysiology. Behav. Genet., 1982, 12(1), 53-68.
[http://dx.doi.org/10.1007/BF01065740] [PMID: 6284115]
[79]
Huang, H.M.; Gibson, G.E. Altered beta-adrenergic receptor-stimulated cAMP formation in cultured skin fibroblasts from Alzheimer donors. J. Biol. Chem., 1993, 268(20), 14616-14621.
[PMID: 8100816]
[80]
Pullar, C.E.; Isseroff, R.R. The beta 2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fibroblasts via divergent mechanisms. J. Cell Sci., 2006, 119(Pt 3), 592-602.
[http://dx.doi.org/10.1242/jcs.02772] [PMID: 16443756]
[81]
Kotanko, P.; Höglinger, O.; Skrabal, F. Beta 2-adrenoceptor density in fibroblast culture correlates with human NaCl sensitivity. Am. J. Physiol., 1992, 263(3 Pt 1), C623-C627.
[http://dx.doi.org/10.1152/ajpcell.1992.263.3.C623] [PMID: 1329521]
[82]
Berrettini, W.H.; Bardakjian, J.; Barnett, A.L., Jr; Nurnberger, J.I., Jr; Gershon, E.S. Beta-adrenoceptor function in human adult skin fibroblasts: a study of manic-depressive illness. Ciba Found.Symp., 1986, 123(), 30-41.
[PMID: 3028727]
[83]
Pullar, C.E.; Isseroff, R.R. Beta 2-adrenergic receptor activation delays dermal fibroblast-mediated contraction of collagen gels via a cAMP-dependent mechanism. Wound Repair Regen., 2005, 13(4), 405-411.
[http://dx.doi.org/10.1111/j.1067-1927.2005.130408.x] [PMID: 16008730]
[84]
Corsini, A.; Bernini, F.; Cighetti, G.; Soma, M.; Galli, G.; Fumagalli, R. Lipophilic beta-adrenoceptor antagonists stimulate cholesterol biosynthesis in human skin fibroblasts. Biochem. Pharmacol., 1987, 36(12), 1901-1906.
[http://dx.doi.org/10.1016/0006-2952(87)90486-2] [PMID: 2885001]
[85]
Chakroborty, D.; Sarkar, C.; Lu, K.; Bhat, M.; Dasgupta, P.S.; Basu, S. Activation of dopamine D1 receptors in dermal fibroblasts restores vascular endothelial growth factor-A production by these cells and subsequent angiogenesis in diabetic cutaneous wound tissues. Am. J. Pathol., 2016, 186(9), 2262-2270.
[http://dx.doi.org/10.1016/j.ajpath.2016.05.008] [PMID: 27422612]
[86]
Laengle, U.W.; Markstein, R.; Pralet, D.; Greiner, B.; Roman, D. Effects of latanoprost and GLC756, a novel dopamine D2 agonist and D1 antagonist, on cultured normal human dermal fibroblasts. Eur. J. Ophthalmol., 2006, 16(1), 67-72.
[http://dx.doi.org/10.1177/112067210601600112] [PMID: 16496248]
[87]
Vumma, R.; Johansson, J.; Venizelos, N. Proinflammatory cytokines and oxidative stress decrease the transport of dopamine precursor tyrosine in human fibroblasts. Neuropsychobiology, 2017, 75(4), 178-184.
[http://dx.doi.org/10.1159/000485130] [PMID: 29339668]
[88]
Nadi, N.S.; Nurnberger, J.I., Jr; Gershon, E.S. Muscarinic cholinergic receptors on skin fibroblasts in familial affective disorder. N. Engl. J. Med., 1984, 311(4), 225-230.
[http://dx.doi.org/10.1056/NEJM198407263110404] [PMID: 6738616]
[89]
Buchli, R.; Ndoye, A.; Rodriguez, J.G.; Zia, S.; Webber, R.J.; Grando, S.A. Human skin fibroblasts express m2, m4, and m5 subtypes of muscarinic acetylcholine receptors. J. Cell. Biochem.,, 1999, 74(2), 264-277.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19990801)74:2<264:: AID-JCB11>3.0.CO;2-Z] [PMID: 10404395]
[90]
Vestling, M.; Cowburn, R.F.; Venizelos, N.; Lannfelt, L.; Winblad, B.; Adem, A. Characterization of muscarinic acetylcholine receptors in cultured adult skin fibroblasts: effects of the Swedish Alzheimer’s disease APP 670/671 mutation on binding levels. J. Neural Transm. Park. Dis. Dement. Sect., 1995, 10(1), 1-10.
[http://dx.doi.org/10.1007/BF02256625] [PMID: 8619905 ]
[91]
Pancani, T.; Bolarinwa, C.; Smith, Y.; Lindsley, C.W.; Conn, P.J.; Xiang, Z. M4 mAChR-mediated modulation of glutamatergic transmission at corticostriatal synapses. ACS Chem. Neurosci., 2014, 5(4), 318-324.
[http://dx.doi.org/10.1021/cn500003z] [PMID: 24528004]
[92]
Anderson, A.A.; Ushakov, D.S.; Ferenczi, M.A.; Mori, R.; Martin, P.; Saffell, J.L. Morphoregulation by acetylcholinesterase in fibroblasts and astrocytes. J. Cell. Physiol., 2008, 215(1), 82-100.
[http://dx.doi.org/10.1002/jcp.21288] [PMID: 17948252]
[93]
Tan, P.H.; Yang, L.C.; Chiang, P.T.; Jang, J.S.; Chung, H.C.; Kuo, C.H. Inflammation-induced up-regulation of ionotropic glutamate receptor expression in human skin. Br. J. Anaesth., 2008, 100(3), 380-384.
[http://dx.doi.org/10.1093/bja/aem398] [PMID: 18238837]
[94]
Tremolizzo, L.; Sala, G.; Zoia, C.P.; Ferrarese, C. Assessing glutamatergic function and dysfunction in peripheral tissues. Curr. Med. Chem., 2012, 19(9), 1310-1315.
[http://dx.doi.org/10.2174/092986712799462702] [PMID: 22304709]
[95]
Nahm, W.K.; Philpot, B.D.; Adams, M.M.; Badiavas, E.V.; Zhou, L.H.; Butmarc, J.; Bear, M.F.; Falanga, V. Significance of N-methyl-D-aspartate (NMDA) receptor-mediated signaling in human keratinocytes. J. Cell. Physiol., 2004, 200(2), 309-317.
[http://dx.doi.org/10.1002/jcp.20010] [PMID: 15174101]
[96]
Zeng, Y.; Lv, X.; Zeng, S.; Shi, J. Activity-dependent neuronal control of gap-junctional communication in fibroblasts. Brain Res., 2009, 1280, 13-22.
[http://dx.doi.org/10.1016/j.brainres.2009.05.037] [PMID: 19464269]
[97]
Zhawar, V.K.; Kaur, G.; deRiel, J.K.; Kaur, G.P.; Kandpal, R.P.; Athwal, R.S. Novel spliced variants of ionotropic glutamate receptor GluR6 in normal human fibroblast and brain cells are transcribed by tissue specific promoters. Gene, 2010, 459(1-2), 1-10.
[http://dx.doi.org/10.1016/j.gene.2010.03.002] [PMID: 20230879]
[98]
Zoia, C.P.; Tagliabue, E.; Isella, V.; Begni, B.; Fumagalli, L.; Brighina, L.; Appollonio, I.; Racchi, M.; Ferrarese, C. Fibroblast glutamate transport in aging and in AD: correlations with disease severity. Neurobiol. Aging, 2005, 26(6), 825-832.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.07.007] [PMID: 15718040]
[99]
Cooper, B.; Chebib, M.; Shen, J.; King, N.J.; Darvey, I.G.; Kuchel, P.W.; Rothstein, J.D.; Balcar, V.J. Structural selectivity and molecular nature of L-glutamate transport in cultured human fibroblasts. Arch. Biochem. Biophys., 1998, 353(2), 356-364.
[http://dx.doi.org/10.1006/abbi.1998.0626] [PMID: 9606970]
[100]
Tatsumi, C.; Yorifuji, S.; Kajiyama, K.; Ueno, S.; Takahashi, M.; Tarui, S. Glutamate metabolism of leukocytes and skin fibroblasts in spinocerebellar degeneration with lowered glutamate dehydrogenase activity. Acta Neurol. Scand., 1989, 79(6), 468-475.
[http://dx.doi.org/10.1111/j.1600-0404.1989.tb03816.x] [PMID: 2782027]
[101]
Ito, K.; Tanaka, K.; Nishibe, Y.; Hasegawa, J.; Ueno, H. GABA-synthesizing enzyme, GAD67, from dermal fibroblasts: evidence for a new skin function. Biochim. Biophys. Acta, 2007, 1770(2), 291-296.
[http://dx.doi.org/10.1016/j.bbagen.2006.09.017] [PMID: 17113713]
[102]
Sałat, K.; Podkowa, A.; Malikowska, N.; Kern, F.; Pabel, J.; Wojcieszak, E.; Kulig, K.; Wanner, K. T.; Strach, B.; Wyska, E. Novel, highly potent and in vivo active inhibitor of GABA transporter subtype 1 with anticonvulsant, anxiolytic, antidepressant and antinociceptive properties. Neuropharmacology, 2017, 113(Pt A), 331-342.
[103]
Reichert, O.; Fleming, T.; Neufang, G.; Schmelz, M.; Genth, H.; Kaever, V.; Wenck, H.; Stäb, F.; Terstegen, L.; Kolbe, L.; Roggenkamp, D. Impaired glyoxalase activity is associated with reduced expression of neurotrophic factors and pro-inflammatory processes in diabetic skin cells. Exp. Dermatol., 2017, 26(1), 44-50.
[http://dx.doi.org/10.1111/exd.13118] [PMID: 27306297]
[104]
Chen, J.C.; Lin, B.B.; Hu, H.W.; Lin, C.; Jin, W.Y.; Zhang, F.B.; Zhu, Y.A.; Lu, C.J.; Wei, X.J.; Chen, R.J. NGF accelerates cutaneous wound healing by promoting the migration of dermal fibroblasts via the PI3K/Akt-Rac1-JNK and ERK pathways. BioMed Res. Int., 2014, 2014547187
[http://dx.doi.org/10.1155/2014/547187] [PMID: 25006578]
[105]
Kim, M.; Shin, D.W.; Shin, H.; Noh, M.; Shin, J.H. Tensile stimuli increase nerve growth factor in human dermal fibroblasts independent of tension-induced TGFβ production. Exp. Dermatol., 2013, 22(1), 72-74.
[http://dx.doi.org/10.1111/exd.12064] [PMID: 23278900]
[106]
Luo, L.F.; Shi, Y.; Zhou, Q.; Xu, S.Z.; Lei, T.C. Insufficient expression of the melanocortin-1 receptor by human dermal fibroblasts contributes to excess collagen synthesis in keloid scars. Exp. Dermatol., 2013, 22(11), 764-766.
[http://dx.doi.org/10.1111/exd.12250] [PMID: 24433185]
[107]
Zapletal, E.; Kraus, O.; Cupić, B.; Gabrilovac, J. Differential expression of proopiomelanocortin (POMC) transcriptional variants in human skin cells. Neuropeptides, 2013, 47(2), 99-107.
[http://dx.doi.org/10.1016/j.npep.2012.10.010] [PMID: 23218956]
[108]
Rassouli, O.; Liapakis, G.; Lazaridis, I.; Sakellaris, G.; Gkountelias, K.; Gravanis, A.; Margioris, A.N.; Karalis, K.P.; Venihaki, M. A novel role of peripheral corticotropin-releasing hormone (CRH) on dermal fibroblasts. PLoS One, 2011, 6(7)e21654
[http://dx.doi.org/10.1371/journal.pone.0021654] [PMID: 21765902]
[109]
Roberts, D.W.; Newton, R.A.; Beaumont, K.A.; Helen Leonard, J.; Sturm, R.A. Quantitative analysis of MC1R gene expression in human skin cell cultures. Pigment Cell Res., 2006, 19(1), 76-89.
[http://dx.doi.org/10.1111/j.1600-0749.2005.00286.x] [PMID: 16420249]
[110]
Hill, R.P.; MacNeil, S.; Haycock, J.W. Melanocyte stimulating hormone peptides inhibit TNF-alpha signaling in human dermal fibroblast cells. Peptides, 2006, 27(2), 421-430.
[http://dx.doi.org/10.1016/j.peptides.2005.03.061] [PMID: 16274855]
[111]
Hill, R.P.; Wheeler, P.; MacNeil, S.; Haycock, J.W. Alpha-melanocyte stimulating hormone cytoprotective biology in human dermal fibroblast cells. Peptides, 2005, 26(7), 1150-1158.
[http://dx.doi.org/10.1016/j.peptides.2005.01.019] [PMID: 15949633]
[112]
Slominski, A.; Zbytek, B.; Semak, I.; Sweatman, T.; Wortsman, J. CRH stimulates POMC activity and corticosterone production in dermal fibroblasts. J. Neuroimmunol., 2005, 162(1-2), 97-102.
[http://dx.doi.org/10.1016/j.jneuroim.2005.01.014] [PMID: 15833364]
[113]
Böhm, M.; Luger, T.A. Melanocortins in fibroblast biology--current update and future perspective for dermatology. Exp. Dermatol., 2004, 13(Suppl. 4), 16-21.
[http://dx.doi.org/10.1111/j.1600-0625.2004.00256.x] [PMID: 15507107]
[114]
Slominski, A.; Pisarchik, A.; Tobin, D.J.; Mazurkiewicz, J.E.; Wortsman, J. Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology, 2004, 145(2), 941-950.
[http://dx.doi.org/10.1210/en.2003-0851] [PMID: 14605004]
[115]
Schiller, M.; Raghunath, M.; Kubitscheck, U.; Scholzen, T.E.; Fisbeck, T.; Metze, D.; Luger, T.A.; Böhm, M. Human dermal fibroblasts express prohormone convertases 1 and 2 and produce proopiomelanocortin-derived peptides. J. Invest. Dermatol., 2001, 117(2), 227-235.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01412.x] [PMID: 11511298]
[116]
Slominski, A.; Wortsman, J.; Tuckey, R.C.; Paus, R. Differential expression of HPA axis homolog in the skin. Mol. Cell. Endocrinol., 2007, 265-266, 143-149.
[http://dx.doi.org/10.1016/j.mce.2006.12.012] [PMID: 17197073]
[117]
Slominski, A.; Zbytek, B.; Szczesniewski, A.; Wortsman, J. Cultured human dermal fibroblasts do produce cortisol. J. Invest. Dermatol., 2006, 126(5), 1177-1178.
[http://dx.doi.org/10.1038/sj.jid.5700204] [PMID: 16484985]
[118]
Harvey, W.; Grahame, R.; Panayi, G.S. Effects of steriod hormones on human fibroblasts in vitro. II. Antagonism by androgens of cortisol-induced inhibition. Ann. Rheum. Dis., 1976, 35(2), 148-151.
[http://dx.doi.org/10.1136/ard.35.2.148] [PMID: 182091]
[119]
Harvey, W.; Grahame, R. Effect of some adrenal steroid hormones on skin fibroblast replication in vitro. Ann. Rheum. Dis., 1973, 32(3), 272.
[http://dx.doi.org/10.1136/ard.32.3.272-a] [PMID: 4351823]
[120]
Gaspar, L.; van de Werken, M.; Johansson, A.S.; Moriggi, E.; Owe-Larsson, B.; Kocks, J.W.; Lundkvist, G.B.; Gordijn, M.C.; Brown, S.A. Human cellular differences in cAMP--CREB signaling correlate with light-dependent melatonin suppression and bipolar disorder. Eur. J. Neurosci., 2014, 40(1), 2206-2215.
[http://dx.doi.org/10.1111/ejn.12602] [PMID: 24898566]
[121]
Bergmann, C.; Akhmetshina, A.; Dees, C.; Palumbo, K.; Zerr, P.; Beyer, C.; Zwerina, J.; Distler, O.; Schett, G.; Distler, J.H. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway. Ann. Rheum. Dis., 2011, 70(12), 2191-2198.
[http://dx.doi.org/10.1136/ard.2010.147140] [PMID: 21873331]
[122]
Makino, T.; Jinnin, M.; Muchemwa, F.C.; Fukushima, S.; Kogushi-Nishi, H.; Moriya, C.; Igata, T.; Fujisawa, A.; Johno, T.; Ihn, H. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. Br. J. Dermatol., 2010, 162(4), 717-723.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09581.x] [PMID: 19995368]
[123]
Glasow, A.; Kiess, W.; Anderegg, U.; Berthold, A.; Bottner, A.; Kratzsch, J. Expression of leptin (Ob) and leptin receptor (Ob-R) in human fibroblasts: regulation of leptin secretion by insulin. J. Clin. Endocrinol. Metab., 2001, 86(9), 4472-4479.
[http://dx.doi.org/10.1210/jcem.86.9.7792] [PMID: 11549696]
[124]
Artlett, C.M.; Sassi-Gaha, S.; Rieger, J.L.; Boesteanu, A.C.; Feghali-Bostwick, C.A.; Katsikis, P.D. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum., 2011, 63(11), 3563-3574.
[http://dx.doi.org/10.1002/art.30568] [PMID: 21792841]
[125]
Masetti, R.; Togni, M.; Astolfi, A.; Pigazzi, M.; Indio, V.; Rivalta, B.; Manara, E.; Rutella, S.; Basso, G.; Pession, A.; Locatelli, F. Whole transcriptome sequencing of a paediatric case of de novo acute myeloid leukaemia with del(5q) reveals RUNX1-USP42 and PRDM16-SKI fusion transcripts. Br. J. Haematol., 2014, 166(3), 449-452.
[http://dx.doi.org/10.1111/bjh.12855] [PMID: 24673627]
[126]
Lippert, J.; Halfter, H.; Heidbreder, A.; Röhr, D.; Gess, B.; Boentert, M.; Osada, N.; Young, P. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia., 2014.
[PMID: 24454829]
[127]
Meyer, J.H.; Ginovart, N.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia, A.; Young, T.; Praschak-Rieder, N.; Wilson, A.A.; Houle, S. Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry, 2006, 63(11), 1209-1216.
[http://dx.doi.org/10.1001/archpsyc.63.11.1209] [PMID: 17088501]
[128]
Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature, 2008, 455(7215), 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[129]
Slominski, A.T.; Kleszczyński, K.; Semak, I.; Janjetovic, Z.; Zmijewski, M.A.; Kim, T.K.; Slominski, R.M.; Reiter, R.J.; Fischer, T.W. Local melatoninergic system as the protector of skin integrity. Int. J. Mol. Sci., 2014, 15(10), 17705-17732.
[http://dx.doi.org/10.3390/ijms151017705] [PMID: 25272227]
[130]
Brunner, H.G.; Nelen, M.; Breakefield, X.O.; Ropers, H.H.; van Oost, B.A. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 1993, 262(5133), 578-580.
[http://dx.doi.org/10.1126/science.8211186] [PMID: 8211186]
[131]
Vumma, R.; Johansson, J.; Lewander, T.; Venizelos, N. Tryptophan transport in human fibroblast cells-a functional characterization. Int. J. Tryptophan Res., 2011, 4, 19-27.
[http://dx.doi.org/10.4137/IJTR.S6913] [PMID: 22084600]
[132]
Johansson, J.; Landgren, M.; Fernell, E.; Vumma, R.; Åhlin, A.; Bjerkenstedt, L.; Venizelos, N. Altered tryptophan and alanine transport in fibroblasts from boys with attention-deficit/hyperactivity disorder (ADHD): an in vitro study. Behav. Brain Funct., 2011, 7, 40.
[http://dx.doi.org/10.1186/1744-9081-7-40] [PMID: 21942982]
[133]
Olsson, E.; Wiesel, F.A.; Bjerkenstedt, L.; Venizelos, N. Tyrosine transport in fibroblasts from healthy volunteers and patients with schizophrenia. Neurosci. Lett., 2006, 393(2-3), 211-215.
[http://dx.doi.org/10.1016/j.neulet.2005.09.070] [PMID: 16274928]
[134]
Persson, M.L.; Johansson, J.; Vumma, R.; Raita, J.; Bjerkenstedt, L.; Wiesel, F.A.; Venizelos, N. Aberrant amino acid transport in fibroblasts from patients with bipolar disorder. Neurosci. Lett., 2009, 457(1), 49-52.
[http://dx.doi.org/10.1016/j.neulet.2009.03.095] [PMID: 19429160]
[135]
Fernell, E.; Karagiannakis, A.; Edman, G.; Bjerkenstedt, L.; Wiesel, F.A.; Venizelos, N. Aberrant amino acid transport in fibroblasts from children with autism. Neurosci. Lett., 2007, 418(1), 82-86.
[http://dx.doi.org/10.1016/j.neulet.2007.03.004] [PMID: 17412511]
[136]
Antypa, N.; Drago, A.; Serretti, A. 2013.
[PMID: 23792050]
[137]
Arredondo, J.; Hall, L.L.; Ndoye, A.; Nguyen, V.T.; Chernyavsky, A.I.; Bercovich, D.; Orr-Urtreger, A.; Beaudet, A.L.; Grando, S.A. Central role of fibroblast alpha3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine., 2003.
[PMID: 12594236]
[138]
Reina, S.; Sterin-Borda, L.; Passafaro, D.; Borda, E. Muscarinic cholinoceptor activation by pilocarpine triggers apoptosis in human skin fibroblast cells. J. Cell. Physiol., 2010, 222(3), 640-647.
[PMID: 19927300]
[139]
Malpass, G.E.; Arimilli, S.; Prasad, G.L.; Howlett, A.C. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts. Toxicol. Appl. Pharmacol., 2014, 279(2), 211-219.
[http://dx.doi.org/10.1016/j.taap.2014.06.001] [PMID: 24927667]
[140]
Uehara, E.; Hokazono, H.; Sasaki, T.; Yoshioka, H.; Matsuo, N. Effects of GABA on the expression of type I collagen gene in normal human dermal fibroblasts. Biosci. Biotechnol. Biochem., 2017, 81(2), 376-379.
[http://dx.doi.org/10.1080/09168451.2016.1238296] [PMID: 27691923]
[141]
Uehara, E.; Hokazono, H.; Hida, M.; Sasaki, T.; Yoshioka, H.; Matsuo, N. GABA promotes elastin synthesis and elastin fiber formation in normal human dermal fibroblasts (HDFs). Biosci. Biotechnol. Biochem., 2017, 81(6), 1198-1205.
[http://dx.doi.org/10.1080/09168451.2017.1290518] [PMID: 28485217]
[142]
Berry, C.C.; Charles, S.; Wells, S.; Dalby, M.J.; Curtis, A.S. The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int. J. Pharm., 2004, 269(1), 211-225.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.042] [PMID: 14698593]
[143]
Karolewicz, B.; Maciag, D.; O’Dwyer, G.; Stockmeier, C.A.; Feyissa, A.M.; Rajkowska, G. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int. J. Neuropsychopharmacol., 2010, 13(4), 411-420.
[http://dx.doi.org/10.1017/S1461145709990587] [PMID: 20236554]
[144]
Göhlich, G.; Kuhn, W.; Höhn, H.; Przuntek, H. Huntington’s disease: biochemical prediction by determination of GABA synthesis of cultured fibroblasts. J. Neurol., 1984, 231(1), 50-51.
[http://dx.doi.org/10.1007/BF00313653] [PMID: 6232351s]
[145]
Cepeda, C.; Starling, A.J.; Wu, N.; Nguyen, O.K.; Uzgil, B.; Soda, T.; André, V.M.; Ariano, M.A.; Levine, M.S. Increased GABAergic function in mouse models of Huntington’s disease: reversal by BDNF. J. Neurosci. Res., 2004, 78(6), 855-867.
[http://dx.doi.org/10.1002/jnr.20344] [PMID: 15505789]
[146]
Zoia, C.P.; Riva, C.; Isella, V.; Proserpio, P.; Terruzzi, A.; Arban, S.; Salerno, D.; Cassina, V.; Mantegazza, F.; Tremolizzo, L.; Ferrarese, C. Nonfibrillar Abeta 1-42 inhibits glutamate uptake and phosphorylates p38 in human fibroblasts. Alzheimer Dis. Assoc. Disord., 2011, 25(2), 164-172.
[http://dx.doi.org/10.1097/WAD.0b013e3181f9860f] [PMID: 20921877]
[147]
Balcar, V.J.; Shen, J.; Bao, S.; King, N.J. Na(+)-dependent high affinity uptake of L-glutamate in primary cultures of human fibroblasts isolated from three different types of tissue. FEBS Lett., 1994, 339(1-2), 50-54.
[http://dx.doi.org/10.1016/0014-5793(94)80382-X] [PMID: 7906230]
[148]
Begni, B.; Brighina, L.; Sirtori, E.; Fumagalli, L.; Andreoni, S.; Beretta, S.; Oster, T.; Malaplate-Armand, C.; Isella, V.; Appollonio, I.; Ferrarese, C. Oxidative stress impairs glutamate uptake in fibroblasts from patients with Alzheimer’s disease. Free Radic. Biol. Med., 2004, 37(6), 892-901.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.05.028] [PMID: 15304259]
[149]
Batalla, A.; Bargalló, N.; Gassó, P.; Molina, O.; Pareto, D.; Mas, S.; Roca, J.M.; Bernardo, M.; Lafuente, A.; Parellada, E. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls. Transl. Psychiatry, 2015, 5e626
[http://dx.doi.org/10.1038/tp.2015.122] [PMID: 26305477]
[150]
Huang, E.J.; Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24, 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[151]
Kim, S.; Lee, Y.; Seo, J.E.; Cho, K.H.; Chung, J.H. Caveolin-1 increases basal and TGF-beta1-induced expression of type I procollagen through PI-3 kinase/Akt/mTOR pathway in human dermal fibroblasts. Cell. Signal., 2008, 20(7), 1313-1319.
[http://dx.doi.org/10.1016/j.cellsig.2008.02.020] [PMID: 18434090]
[152]
Teofoli, P.; Frezzolini, A.; Puddu, P.; De Pità, O.; Mauviel, A.; Lotti, T. The role of proopiomelanocortin-derived peptides in skin fibroblast and mast cell functions., 1999.
[PMID: 10816660]
[153]
Vitellius, G.; Trabado, S.; Hoeffel, C.; Bouligand, J.; Bennet, A.; Castinetti, F.; Decoudier, B.; Guiochon-Mantel, A.; Lombes, M.; Delemer, B. Study, i. o. t. M.-G., Significant prevalence of. Eur. J. Endocrinol., 2018, 178(4), 411-423.
[http://dx.doi.org/10.1530/EJE-17-1071] [PMID: 29444898]
[154]
Milaneschi, Y.; Simmons, W.K.; van Rossum, E.F.C.; Penninx, B.W. Depression and obesity: evidence of shared biological mechanisms., 2018.
[PMID: 29453413]
[155]
Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int. J. Neuropsychopharmacol., 2008, 11(6), 851-876.
[http://dx.doi.org/10.1017/S1461145707008401] [PMID: 18205981]
[156]
Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol., 2018, 15, 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[157]
Morris, G.; Puri, B.K.; Walker, A.J.; Berk, M.; Walder, K.; Bortolasci, C.C.; Marx, W.; Carvalho, A.F.; Maes, M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 95109708
[http://dx.doi.org/10.1016/j.pnpbp.2019.109708] [PMID: 109708]
[158]
Migliore, L.; Fontana, I.; Colognato, R.; Coppede, F.; Siciliano, G.; Murri, L. Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol. Aging, 2005, 26(5), 587-595.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.10.002] [PMID: 15708433]
[159]
Maes, M.; Galecki, P.; Chang, Y.S.; Berk, M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 676-692.20471444
[http://dx.doi.org/10.1016/j.pnpbp.2010.05.004] [PMID: ]
[160]
Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W. 2015.
[PMID: 25462890]
[161]
Gibbs, S.M. Regulation of neuronal proliferation and differentiation by nitric oxide. Mol. Neurobiol., 2003, 27(2), 107-120.
[http://dx.doi.org/10.1385/MN:27:2:107] [PMID: 12777682]
[162]
Banoujaafar, H.; Monnier, A.; Pernet, N.; Quirié, A.; Garnier, P.; Prigent-Tessier, A.; Marie, C. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide. Eur. J. Neurosci., 2016, 44(5), 2226-2235.
[http://dx.doi.org/10.1111/ejn.13301] [PMID: 27306299]
[163]
Canossa, M.; Giordano, E.; Cappello, S.; Guarnieri, C.; Ferri, S. Nitric oxide down-regulates brain-derived neurotrophic factor secretion in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3282-3287.
[http://dx.doi.org/10.1073/pnas.042504299] [PMID: 11867712]
[164]
Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9, 322.
[http://dx.doi.org/10.3389/fncel.2015.00322] [PMID: 26347610]
[165]
Gałecki, P.; Maes, M.; Florkowski, A.; Lewiński, A.; Gałecka, E.; Bieńkiewicz, M.; Szemraj, J. Association between inducible and neuronal nitric oxide synthase polymorphisms and recurrent depressive disorder. J. Affect. Disord., 2011, 129(1-3), 175-182.
[http://dx.doi.org/10.1016/j.jad.2010.09.005] [PMID: 20888049]
[166]
Talarowska, M.; Gałecki, P.; Maes, M.; Orzechowska, A.; Chamielec, M.; Bartosz, G.; Kowalczyk, E. Nitric oxide plasma concentration associated with cognitive impairment in patients with recurrent depressive disorder. Neurosci. Lett., 2012, 510(2), 127-131.
[http://dx.doi.org/10.1016/j.neulet.2012.01.018] [PMID: 22273980]
[167]
Frank, S.; Kämpfer, H.; Wetzler, C.; Pfeilschifter, J. Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int., 2002, 61(3), 882-888.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00237.x] [PMID: 11849442]
[168]
Kasahara, T.; Kato, T. What can mitochondrial DNA analysis tell us about mood disorders?, 2018.
[PMID: 29102411]
[169]
Naderi, J.; Lopez, C.; Pandey, S. Chronically increased oxidative stress in fibroblasts from Alzheimer’s disease patients causes early senescence and renders resistance to apoptosis by oxidative stress. Mech. Ageing Dev., 2006, 127(1), 25-35.
[http://dx.doi.org/10.1016/j.mad.2005.08.006] [PMID: 16188294]
[170]
Cecchi, C.; Fiorillo, C.; Sorbi, S.; Latorraca, S.; Nacmias, B.; Bagnoli, S.; Nassi, P.; Liguri, G. Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients. Free Radic. Biol. Med., 2002, 33(10), 1372-1379.
[http://dx.doi.org/10.1016/S0891-5849(02)01049-3] [PMID: 12419469]
[171]
Moreira, P.I.; Harris, P.L.; Zhu, X.; Santos, M.S.; Oliveira, C.R.; Smith, M.A.; Perry, G. Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J. Alzheimers Dis., 2007, 12(2), 195-206.
[http://dx.doi.org/10.3233/JAD-2007-12210] [PMID: 17917164]
[172]
Curti, D.; Rognoni, F.; Gasparini, L.; Cattaneo, A.; Paolillo, M.; Racchi, M.; Zani, L.; Bianchetti, A.; Trabucchi, M.; Bergamaschi, S.; Govoni, S. Oxidative metabolism in cultured fibroblasts derived from sporadic Alzheimer’s disease (AD) patients. Neurosci. Lett., 1997, 236(1), 13-16.
[http://dx.doi.org/10.1016/S0304-3940(97)00741-6] [PMID: 9404940]
[173]
Ramamoorthy, M.; Sykora, P.; Scheibye-Knudsen, M.; Dunn, C.; Kasmer, C.; Zhang, Y.; Becker, K.G.; Croteau, D.L.; Bohr, V.A. Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype. Free Radic. Biol. Med., 2012, 53(6), 1371-1380.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.018] [PMID: 22885031]
[174]
Martín-Maestro, P.; Gargini, R.; García, E.; Perry, G.; Avila, J.; García-Escudero, V. Slower dynamics and aged mitochondria in sporadic alzheimer’s disease. Oxid. Med. Cell. Longev., 2017, 20179302761
[http://dx.doi.org/10.1155/2017/9302761] [PMID: 29201274]
[175]
Gibson, G.E.; Huang, H.M. Oxidative processes in the brain and non-neuronal tissues as biomarkers of Alzheimer’s disease. Front. Biosci., 2002, 7, d1007-d1015.
[http://dx.doi.org/10.2741/gibson] [PMID: 11897553]
[176]
Xu, Z.; Jiang, H.; Zhong, P.; Yan, Z.; Chen, S.; Feng, J. Direct conversion of human fibroblasts to induced serotonergic neurons. Mol. Psychiatry, 2016, 21(1), 62-70.
[http://dx.doi.org/10.1038/mp.2015.101] [PMID: 26216300]
[177]
Vadodaria, K.C.; Mertens, J.; Paquola, A.; Bardy, C.; Li, X.; Jappelli, R.; Fung, L.; Marchetto, M.C.; Hamm, M.; Gorris, M.; Koch, P.; Gage, F.H. Generation of functional human serotonergic neurons from fibroblasts. Mol. Psychiatry, 2016, 21(1), 49-61.
[http://dx.doi.org/10.1038/mp.2015.161] [PMID: 26503761]
[178]
Vierbuchen, T.; Ostermeier, A.; Pang, Z.P.; Kokubu, Y.; Südhof, T.C.; Wernig, M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 2010, 463(7284), 1035-1041.
[http://dx.doi.org/10.1038/nature08797] [PMID: 20107439]
[179]
Hu, W.; Qiu, B.; Guan, W.; Wang, Q.; Wang, M.; Li, W.; Gao, L.; Shen, L.; Huang, Y.; Xie, G.; Zhao, H.; Jin, Y.; Tang, B.; Yu, Y.; Zhao, J.; Pei, G. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 2015, 17(2), 204-212.
[http://dx.doi.org/10.1016/j.stem.2015.07.006] [PMID: 26253202]
[180]
Pfisterer, U.; Kirkeby, A.; Torper, O.; Wood, J.; Nelander, J.; Dufour, A.; Björklund, A.; Lindvall, O.; Jakobsson, J.; Parmar, M. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10343-10348.
[http://dx.doi.org/10.1073/pnas.1105135108] [PMID: 21646515]
[181]
Xiao, D.; Liu, X.; Zhang, M.; Zou, M.; Deng, Q.; Sun, D.; Bian, X.; Cai, Y.; Guo, Y.; Liu, S.; Li, S.; Shiang, E.; Zhong, H.; Cheng, L.; Xu, H.; Jin, K.; Xiang, M. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat. Commun., 2018, 9(1), 2865.
[http://dx.doi.org/10.1038/s41467-018-05209-1] [PMID: 30030434]
[182]
Gysin, R.; Riederer, I.M.; Cuénod, M.; Do, K.Q.; Riederer, B.M. Skin fibroblast model to study an impaired glutathione synthesis: consequences of a genetic polymorphism on the proteome. Brain Res. Bull., 2009, 79(1), 46-52.
[http://dx.doi.org/10.1016/j.brainresbull.2008.10.015] [PMID: 19041695]
[183]
Slominski, A.; Wortsman, J.; Tobin, D.J. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J., 2005, 19(2), 176-194.
[http://dx.doi.org/10.1096/fj.04-2079rev] [PMID: 15677341]
[184]
Welsh, D.J.; Harnett, M.; MacLean, M.; Peacock, A.J. 2004.
[PMID: 15087293]
[185]
Honegger, U.E.; Disler, B.; Wiesmann, U.N. Chronic exposure of human cells in culture to the tricyclic antidepressant desipramine reduces the number of beta-adrenoceptors. Biochem. Pharmacol., 1986, 35(11), 1899-1902.
[http://dx.doi.org/10.1016/0006-2952(86)90309-6] [PMID: 3013202]
[186]
Romeo, B.; Choucha, W.; Fossati, P.; Rotge, J.Y. Meta-analysis of short- and mid-term efficacy of ketamine in unipolar and bipolar depression. Psychiatry Res., 2015, 230(2), 682-688.
[http://dx.doi.org/10.1016/j.psychres.2015.10.032] [PMID: 26548981]
[187]
Kim, Y.K.; Na, K.S. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 70, 117-126.
[http://dx.doi.org/10.1016/j.pnpbp.2016.03.009] [PMID: 27046518]
[188]
Deutschenbaur, L.; Beck, J.; Kiyhankhadiv, A.; Mühlhauser, M.; Borgwardt, S.; Walter, M.; Hasler, G.; Sollberger, D.; Lang, U.E. Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 325-333.
[http://dx.doi.org/10.1016/j.pnpbp.2015.02.015] [PMID: 25747801]
[189]
Ortega, F.; Pérez-Sen, R.; Morente, V.; Delicado, E.G.; Miras-Portugal, M.T. P2X7, NMDA and BDNF receptors converge on GSK3 phosphorylation and cooperate to promote survival in cerebellar granule neurons. Cell. Mol. Life Sci., 2010, 67(10), 1723-1733.
[http://dx.doi.org/10.1007/s00018-010-0278-x] [PMID: 20146080]
[190]
Castrén, E.; Antila, H. Neuronal plasticity and neurotrophic factors in drug responses. Mol. Psychiatry, 2017, 22(8), 1085-1095.
[http://dx.doi.org/10.1038/mp.2017.61] [PMID: 28397840]
[191]
Breitfeld, J.; Scholl, C.; Steffens, M.; Laje, G.; Stingl, J.C. Gene expression and proliferation biomarkers for antidepressant treatment resistance. Transl. Psychiatry, 2017, 7(3)e1061
[http://dx.doi.org/10.1038/tp.2017.16] [PMID: 28291260]
[192]
Breitfeld, J.; Scholl, C.; Steffens, M.; Brandenburg, K.; Probst-Schendzielorz, K.; Efimkina, O.; Gurwitz, D.; Ising, M.; Holsboer, F.; Lucae, S.; Stingl, J.C. Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy. Transl. Psychiatry, 2016, 6(11)e950
[http://dx.doi.org/10.1038/tp.2016.185] [PMID: 27845776]
[193]
Evans, S.J.; Choudary, P.V.; Neal, C.R.; Li, J.Z.; Vawter, M.P.; Tomita, H.; Lopez, J.F.; Thompson, R.C.; Meng, F.; Stead, J.D.; Walsh, D.M.; Myers, R.M.; Bunney, W.E.; Watson, S.J.; Jones, E.G.; Akil, H. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15506-15511.
[http://dx.doi.org/10.1073/pnas.0406788101] [PMID: 15483108]
[194]
Rodriguez-Lafrasse, C.; Rousson, R.; Bonnet, J.; Pentchev, P.G.; Louisot, P.; Vanier, M.T. Abnormal cholesterol metabolism in imipramine-treated fibroblast cultures. Similarities with Niemann-Pick type C disease. Biochim. Biophys. Acta, 1990, 1043(2), 123-128.
[http://dx.doi.org/10.1016/0005-2760(90)90284-5] [PMID: 2317521]
[195]
Hurwitz, R.; Ferlinz, K.; Sandhoff, K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts., 1994.
[PMID: 7945993]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy