Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Common Pathological Mechanisms and Risk Factors for Alzheimer’s Disease and Type-2 Diabetes: Focus on Inflammation

Author(s): Emmanuel Moyse, Mohamed Haddad, Camelia Benlabiod, Charles Ramassamy and Slavica Krantic*

Volume 16, Issue 11, 2019

Page: [986 - 1006] Pages: 21

DOI: 10.2174/1567205016666191106094356

Price: $65

Abstract

Background: Diabetes is considered as a risk factor for Alzheimer’s Disease, but it is yet unclear whether this pathological link is reciprocal. Although Alzheimer’s disease and diabetes appear as entirely different pathological entities affecting the Central Nervous System and a peripheral organ (pancreas), respectively, they share a common pathological core. Recent evidence suggests that in the pancreas in the case of diabetes, as in the brain for Alzheimer’s Disease, the initial pathological event may be the accumulation of toxic proteins yielding amyloidosis. Moreover, in both pathologies, amyloidosis is likely responsible for local inflammation, which acts as a driving force for cell death and tissue degeneration. These pathological events are all inter-connected and establish a vicious cycle resulting in the progressive character of both pathologies.

Objective: To address the literature supporting the hypothesis of a common pathological core for both diseases.

Discussion: We will focus on the analogies and differences between the disease-related inflammatory changes in a peripheral organ, such as the pancreas, versus those observed in the brain. Recent evidence suggesting an impact of peripheral inflammation on neuroinflammation in Alzheimer’s disease will be presented.

Conclusion: We propose that it is now necessary to consider whether neuroinflammation in Alzheimer’s disease affects inflammation in the pancreas related to diabetes.

Keywords: Amyloidosis, insulin resistance, hyperglycemia, vasculopathy, innate immune response, microglia, cytokines, advanced glycation end products.

[1]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580): 353-6.(2002);
[2]
Prince M, Albanese E, Guerchet M, Prina M. Dementia and risk reduction: an analysis of protective and modifiable factors. World Alzheimer Report 66-83.(2014);
[3]
World Alzheimer's Disease Report. The state of the art of dementia research. Available from. wwwalzcouk/research/WorldAlzheimerReport2018pdf2018
[4]
Organization WH. Global report on diabetes: executive summary. World Health Organization (2016).
[6]
Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333-66.(2006);
[7]
Muller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18(5): 281-98.(2017);
[8]
Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7): 812-8.(2010);
[9]
Dunys J, Valverde A, Checler F. Are N- and C-terminally truncated Abeta species key pathological triggers in Alzheimer’s disease? J Biol Chem 293(40): 15419-28.(2018);
[10]
Schmechel DE, Goldgaber D, Burkhart DS, Gilbert JR, Gajdusek DC, Roses AD. Cellular localization of messenger RNA encoding amyloid-beta-protein in normal tissue and in Alzheimer disease. Alzheimer Dis Assoc Disord 2(2): 96-111.(1988);
[11]
Batarseh YS, Duong QV, Mousa YM, Al Rihani SB, Elfakhri K, Kaddoumi A. Amyloid-beta and astrocytes interplay in amyloid-beta related disorders. Int J Mol Sci 17(3): 338.(2016);
[12]
Yu Y, Ye RD. Microglial Abeta receptors in Alzheimer’s disease. Cell Mol Neurobiol 35(1): 71-83.(2015);
[13]
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Abeta in Alzheimer’s disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 74(12): 2167-201.(2017);
[14]
Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 587(8): 1119-27.(2013);
[15]
Boyle CN, Lutz TA, Le Foll C. Amylin - Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab 8: 203-10.(2018);
[16]
Press M, Jung T, Konig J, Grune T, Hohn A. Protein aggregates and proteostasis in aging: amylin and beta-cell function. Mech Ageing Dev 177: 46-54.(2019);
[17]
Westermark GT, Westermark P. Localized amyloids important in diseases outside the brain--lessons from the islets of Langerhans and the thoracic aorta. FEBS J 278(20): 3918-29.(2011);
[18]
Kiriyama Y, Nochi H. Role and Cytotoxicity of amylin and protection of pancreatic islet β-cells from amylin cytotoxicity. Cells 7(8): 95.(2018);
[19]
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23(7): 804-14.(2017);
[20]
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4): 2133-223.(2018);
[21]
Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 19(1): 31-44.(2018);
[22]
Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis 7(1): 63-80.(2005);
[23]
de la Monte SM. Type 3 diabetes is sporadic Alzheimer's disease: mini-review. Eur Neuropsychopharmacol 24(12): 1954-60.(2014);
[24]
Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24(8): 855-72.(2000);
[25]
Zhang Q, Guo S, Zhang X, Tang S, Wang L, Han X, et al. Amyloid beta oligomer-induced ERK1/2-dependent serine 636/639 phosphorylation of insulin receptor substrate-1 impairs insulin signaling and glycogen storage in human astrocytes. Gene 561(1): 76-81.(2015);
[26]
Han X, Yang L, Du H, Sun Q, Wang X, Cong L, et al. Insulin attenuates beta-amyloid-associated insulin/Akt/EAAT signaling perturbations in human astrocytes. Cell Mol Neurobiol 36(6): 851-64.(2016);
[27]
Long-Smith CM, Manning S, McClean PL, Coakley MF, O’Halloran DJ, Holscher C, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-beta plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromolecular Med 15(1): 102-14.(2013);
[28]
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012: 21.(2012);
[29]
Havrankova J, Roth J, Brownstein MJ. Concentrations of insulin and insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents. J Clin Invest 64(2): 636-42.(1979);
[30]
Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 122(4): 1339-53.(2012);
[31]
Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, et al. TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s beta-amyloid oligomers in mice and monkeys. Cell Metab 18(6): 831-43.(2013);
[32]
Clarke JR, Lyra ESNM, Figueiredo CP, Frozza RL, Ledo JH, Beckman D, et al. Alzheimer-associated Abeta oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7(2): 190-210.(2015);
[33]
Leboucher A, Ahmed T, Caron E, Tailleux A, Raison S, Joly-Amado A, et al. Brain insulin response and peripheral metabolic changes in a Tau transgenic mouse model. Neurobiol Dis 125: 14-22.(2019);
[34]
Gratuze M, Julien J, Petry FR, Morin F, Planel E. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology. Sci Rep 7: 46359.(2017);
[35]
Clodfelder-Miller B, De Sarno P, Zmijewska AA, Song L, Jope RS. Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J Biol Chem 280(48): 39723-31.(2005);
[36]
Qu Z, Jiao Z, Sun X, Zhao Y, Ren J, Xu G. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res 1383: 300-6.(2011);
[37]
Hart PA, Bellin MD, Andersen DK, Bradley D, Cruz-Monserrate Z, Forsmark CE, et al. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol 1(3): 226-37.(2016);
[38]
Liochev SI. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60: 1-4.(2013);
[39]
Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27(4): 570-5.(2006);
[40]
Masters SL, O’Neill LA. Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 17(5): 276-82.(2011);
[41]
Du Y, Chen X, Wei X, Bales KR, Berg DT, Paul SM, et al. NF-(kappa)B mediates amyloid beta peptide-stimulated activity of the human apolipoprotein E gene promoter in human astroglial cells. Brain Res Mol Brain Res 136(1-2): 177-88.(2005);
[42]
Tzioras M, Davies C, Newman A, Jackson R, Spires-Jones T. Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer’s disease. Neuropathol Appl Neurobiol 45(4): 327-46.(2018);
[43]
Vidal J, Verchere CB, Andrikopoulos S, Wang F, Hull RL, Cnop M, et al. The effect of apolipoprotein E deficiency on islet amyloid deposition in human islet amyloid polypeptide transgenic mice. Diabetologia 46(1): 71-9.(2003);
[44]
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, et al. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 286(2): 241-78.(2019);
[45]
Gonzalez-Teuber V, Albert-Gasco H, Auyeung VC, Papa FR, Mallucci GR, Hetz C. Small molecules to improve er proteostasis in disease. Trends Pharmacol Sci 40(9): 684-95.(2019);
[46]
Gerakis Y, Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J 285(6): 995-1011.(2018);
[47]
Maly DJ, Papa FR. Druggable sensors of the unfolded protein response. Nat Chem Biol 10(11): 892-901.(2014);
[48]
Berry C, Lal M, Binukumar BK. Crosstalk between the unfolded protein response, MicroRNAs, and insulin signaling pathways: In search of biomarkers for the diagnosis and treatment of type 2 diabetes. Front Endocrinol 9: 210-10.(2018);
[49]
Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W. The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4): 1241-51.(2009);
[50]
Lee JH, Won SM, Suh J, Son SJ, Moon GJ, Park UJ, et al. Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med 42(5): 386-94.(2010);
[51]
van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, et al. Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279(5348): 242-7.(1998);
[52]
Duran-Aniotz C, Cornejo VH, Espinoza S, Ardiles AO, Medinas DB, Salazar C, et al. IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. Acta Neuropathol 134(3): 489-506.(2017);
[53]
Hashimoto S, Saido TC. Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer’s disease. Open Biol 8(4)(2018);
[54]
Nafisa A, Gray SG, Cao Y, Wang T, Xu S, Wattoo FH, et al. Endothelial function and dysfunction: Impact of metformin. Pharmacol Ther 192: 150-62.(2018);
[55]
Dogne S, Flamion B, Caron N. Endothelial glycocalyx as a shield against diabetic vascular complications: involvement of hyaluronan and hyaluronidases. Arterioscler Thromb Vasc Biol 38(7): 1427-39.(2018);
[56]
Mundi S, Massaro M, Scoditti E, Carluccio MA, van Hinsbergh VWM, Iruela-Arispe ML, et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res 114(1): 35-52.(2018);
[57]
Sweeney MD, Montagne A, Sagare AP, Nation DA, Schneider LS, Chui HC, et al. Vascular dysfunction-The disregarded partner of Alzheimer’s disease. Alzheimers Dement 15(1): 158-67.(2019);
[58]
Yarchoan M, Xie SX, Kling MA, Toledo JB, Wolk DA, Lee EB, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain 135(Pt 12): 3749-56.(2012);
[59]
Koizumi K, Wang G, Park L. Endothelial dysfunction and amyloid-beta-induced neurovascular alterations. Cell Mol Neurobiol 36(2): 155-65.(2016);
[60]
Yamazaki Y, Kanekiyo T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer’s Disease. Int J Mol Sci 18(9): 1965.(2017);
[61]
Manyevitch R, Protas M, Scarpiello S, Deliso M, Bass B, Nanajian A, et al. Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer’s disease (AD): a meta-analysis of CSF markers. Curr Alzheimer Res 15(2): 164-81.(2018);
[62]
Bedse G, Di Domenico F, Serviddio G, Cassano T. Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front Neurosci 9: 204.(2015);
[63]
Marciniak E, Leboucher A, Caron E, Ahmed T, Tailleux A, Dumont J, et al. Tau deletion promotes brain insulin resistance. J Exp Med 214(8): 2257-69.(2017);
[64]
Blum D, Buee L. Alzheimer’s disease risk, obesity and tau: is insulin resistance guilty? Expert Rev Neurother 13(5): 461-3.(2013);
[65]
Okin D, Medzhitov R. Evolution of inflammatory diseases. Curr Biol 22(17): R733-40.(2012);
[66]
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 140(6): 805-20.(2010);
[67]
Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell 54(2): 281-8.(2014);
[68]
Estes ML, McAllister AK. Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation. Brain Pathol 24(6): 623-30.(2014);
[69]
Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96(Pt A): 70-82.(2015);
[70]
Cavanagh C, Colby-Milley J, Farso M, Krantic S, Quirion R. Early molecular and synaptic dysfunctions in the prodromal stages of Alzheimer’s disease: focus on TNF-α and IL-1β. Future Neurol 6(6): 757-69.(2011);
[71]
Varnum MM, Ikezu T. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 60(4): 251-66.(2012);
[72]
Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 181(6): 3733-9.(2008);
[73]
Serrano-Pozo A, Mielke ML, Gomez-Isla T, Betensky RA, Growdon JH, Frosch MP, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol 179(3): 1373-84.(2011);
[74]
Malm TM, Jay TR, Landreth GE. The evolving biology of microglia in Alzheimer’s disease. Neurotherapeutics 12(1): 81-93.(2015);
[75]
Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci 12: 72.(2018);
[76]
Itagaki S, McGeer PL, Akiyama H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neurosci Lett 91(3): 259-64.(1988);
[77]
Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9(4): 339-49.(1988);
[78]
Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124(1-2): 83-92.(2002);
[79]
Zhang J, Ke KF, Liu Z, Qiu YH, Peng YP. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of abeta1-42-induced Alzheimer’s disease model rats. PLoS One 8(10) e75786(2013);
[80]
Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KH, Lynch MA. IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol 190(5): 2241-51.(2013);
[81]
Ferretti MT, Merlini M, Spani C, Gericke C, Schweizer N, Enzmann G, et al. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav Immun 54: 211-25.(2016);
[82]
Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, et al. Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14(6): 681-7.(2008);
[83]
Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab 24(7): 351-60.(2013);
[84]
Ramsey ML, Conwell DL, Hart PA. Complications of Chronic Pancreatitis. Dig Dis Sci 62(7): 1745-50.(2017);
[85]
Nicol LE, Grant WF, Comstock SM, Nguyen ML, Smith MS, Grove KL, et al. Pancreatic inflammation and increased islet macrophages in insulin-resistant juvenile primates. J Endocrinol 217(2): 207-13.(2013);
[86]
Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA. Islet Inflammation in Type 2 Diabetes. From metabolic stress to therapy 31(Supplement 2): S161-64.(2008);
[87]
Miklossy JMR, Darbinian N, Khalili K, McGeer P. Type 2 diabetes: Local inflammation and direct effect of bacterial toxic components. Open Pathol J 2: 86. 952008
[88]
Xia C, Rao X, Zhong J. Role of T Lymphocytes in type 2 diabetes and diabetes-associated inflammation. J Diabetes Res 2017 6494795(2017);
[89]
Li S, Joseph C, Becourt C, Klibi J, Luce S, Dubois-Laforgue D, et al. Potential role of IL-17-producing iNKT cells in type 1 diabetes. PLoS One 9(4) e96151(2014);
[90]
Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J 38(6): 484-95.(2015);
[91]
Song DK, Im YB, Jung JS, Cho J, Suh HW, Kim YH. Central beta-amyloid peptide-induced peripheral interleukin-6 responses in mice. J Neurochem 76(5): 1326-35.(2001);
[92]
Zhang ZG, Li Y, Ng CT, Song YQ. Inflammation in Alzheimer’s disease and molecular genetics: recent update. Arch Immunol Ther Exp (Warsz) 63(5): 333-44.(2015);
[93]
Banks WA. The blood-brain barrier as an endocrine tissue. Nat Rev Endocrinol 15(8): 444-55.(2019);
[94]
King E, O’Brien JT, Donaghy P, Morris C, Barnett N, Olsen K, et al. Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias. J Neurol Neurosurg Psychiatry 89(4): 339-45.(2018);
[95]
Bettcher BM, Johnson SC, Fitch R, Casaletto KB, Heffernan KS, Asthana S, et al. Cerebrospinal fluid and plasma levels of inflammation differentially relate to CNS markers of Alzheimer’s disease pathology and neuronal damage. J Alzheimers Dis 62(1): 385-97.(2018);
[96]
Lueg G, Gross CC, Lohmann H, Johnen A, Kemmling A, Deppe M, et al. Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer’s disease. Neurobiol Aging 36(1): 81-9.(2015);
[97]
Baglio F, Saresella M, Preti MG, Cabinio M, Griffanti L, Marventano I, et al. Neuroinflammation and brain functional disconnection in Alzheimer’s disease. Front Aging Neurosci 5: 81-1.(2013);
[98]
Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10): 930-41.(2010);
[99]
Francisco CO, Catai AM, Moura-Tonello SC, Arruda LC, Lopes SL, Benze BG, et al. Cytokine profile and lymphocyte subsets in type 2 diabetes. Braz J Med Biol Res 49(4) e5062(2016);
[100]
Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3): 327-34.(2001);
[101]
Zhang C, Xiao C, Wang P, Xu W, Zhang A, Li Q, et al. The alteration of Th1/Th2/Th17/Treg paradigm in patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Hum Immunol 75(4): 289-96.(2014);
[102]
Thorand B, Kolb H, Baumert J, Koenig W, Chambless L, Meisinger C, et al. Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984-2002. Diabetes 54(10): 2932-8.(2005);
[103]
Frimat M, Daroux M, Litke R, Neviere R, Tessier FJ, Boulanger E. Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 131(11): 1069-92.(2017);
[104]
Thornalley PJ. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification--a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol 27(4): 565-73.(1996);
[105]
Sena CM, Matafome P, Crisóstomo J, Rodrigues L, Fernandes R, Pereira P, et al. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res 65(5): 497-506.(2012);
[106]
Shekhtman A, Ramasamy R, Schmidt AM. Glycation & the RAGE axis: targeting signal transduction through DIAPH1. Expert Rev Proteomics 14(2): 147-56.(2017);
[107]
Guglielmotto M, Aragno M, Tamagno E, Vercellinatto I, Visentin S, Medana C, et al. AGEs/RAGE complex upregulates BACE1 via NF-kappaB pathway activation. Neurobiol Aging 33(1): 196. e1327(2012);
[108]
Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging 33(7): 1400-10.(2012);
[109]
Matsui T, Oda E, Higashimoto Y, Yamagishi S. Glyceraldehyde-derived pyridinium (GLAP) evokes oxidative stress and inflammatory and thrombogenic reactions in endothelial cells via the interaction with RAGE. Cardiovasc Diabetol 14: 1.(2015);
[110]
Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375(Pt 3): 581-92.(2003);
[111]
Ahmed N, Ahmed U, Thornalley PJ, Hager K, Fleischer G, Munch G. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J Neurochem 92(2): 255-63.(2005);
[112]
Mey JT, Haus JM. Dicarbonyl stress and glyoxalase-1 in skeletal muscle: implications for insulin resistance and type 2 diabetes. Front Cardiovasc Med 5: 117-7.(2018);
[113]
Heimfarth L, Loureiro SO, Pierozan P, de Lima BO, Reis KP, Torres EB, et al. Methylglyoxal-induced cytotoxicity in neonatal rat brain: a role for oxidative stress and MAP kinases. Metab Brain Dis 28(3): 429-38.(2013);
[114]
Chu JM, Lee DK, Wong DP, Wong GT, Yue KK. Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals. Metab Brain Dis 31(5): 1055-64.(2016);
[115]
Li XH, Xie JZ, Jiang X, Lv BL, Cheng XS, Du LL, et al. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromol Med 14(4): 338-48.(2012);
[116]
Ledesma MD, Medina M, Avila J. The in vitro formation of recombinant tau polymers: effect of phosphorylation and glycation. Mol Chem Neuropathol 27(3): 249-58.(1996);
[117]
Zhang JH, Xu HZ, Shen QF, Lin YZ, Sun CK, Sha L, et al. Nepsilon-(carboxymethyl)-lysine, white matter, and cognitive function in diabetes patients. Can J Neurol Sci 43(4): 518-22.(2016);
[118]
Girones X, Guimera A, Cruz-Sanchez CZ, Ortega A, Sasaki N, Makita Z, et al. N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer’s disease. Free Radic Biol Med 36(10): 1241-7.(2004);
[119]
Luth HJ, Ogunlade V, Kuhla B, Kientsch-Engel R, Stahl P, Webster J, et al. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb Cortex 15(2): 211-20.(2005);
[120]
Horie K, Miyata T, Yasuda T, Takeda A, Yasuda Y, Maeda K, et al. Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer’s disease and aged neurons. Biochem Biophys Res Commun 236(2): 327-32.(1997);
[121]
Ko LW, Ko EC, Nacharaju P, Liu WK, Chang E, Kenessey A, et al. An immunochemical study on tau glycation in paired helical filaments. Brain Res 830(2): 301-13.(1999);
[122]
Kimura T, Takamatsu J, Araki N, Goto M, Kondo A, Miyakawa T, et al. Are advanced glycation end-products associated with amyloidosis in Alzheimer’s disease? Neuroreport 6(6): 866-8.(1995);
[123]
Loske C, Gerdemann A, Schepl W, Wycislo M, Schinzel R, Palm D, et al. Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem 267(13): 4171-8.(2000);
[124]
Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91(11): 4766-70.(1994);
[125]
Li XH, Du LL, Cheng XS, Jiang X, Zhang Y, Lv BL, et al. Glycation exacerbates the neuronal toxicity of beta-amyloid. Cell Death Dis 4 e673(2013);
[126]
Chen C, Li XH, Tu Y, Sun HT, Liang HQ, Cheng SX, et al. Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience 257: 1-10.(2014);
[127]
Dei R, Takeda A, Niwa H, Li M, Nakagomi Y, Watanabe M, et al. Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol 104(2): 113-22.(2002);
[128]
Ko SY, Ko HA, Chu KH, Shieh TM, Chi TC, Chen HI, et al. The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS One 10(11) e0143345(2015);
[129]
Monacelli F, Borghi R, Cammarata S, Nencioni A, Piccini A, Tabaton M, et al. Amnestic mild cognitive impairment and conversion to Alzheimer’s disease: insulin resistance and glycoxidation as early biomarker clusters. J Alzheimers Dis 45(1): 89-95.(2015);
[130]
Vieira MNN, Lima-Filho RAS, De Felice FG. Connecting Alzheimer's disease to diabetes: underlying mechanisms and potential therapeutic targets. Neuropharmacology 136(Pt B): 160-71.(2018);
[131]
Haddad M, Perrotte M, Landri S, Lepage A, Fulop T, Ramassamy C. Circulating and extracellular vesicles levels of N-(1-carboxymethyl)-L-lysine (CML) differentiate early to moderate Alzheimer’s disease. J Alzheimers Dis 69(3): 751-62.(2019);
[132]
Dhar A, Dhar I, Jiang B, Desai KM, Wu L. Chronic methylglyoxal infusion by minipump causes pancreatic beta-cell dysfunction and induces type 2 diabetes in Sprague-Dawley rats. Diabetes 60(3): 899-908.(2011);
[133]
Jud P, Sourij H. Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Res Clin Pract 148: 54-63.(2018);
[134]
Strachan MW, Reynolds RM, Marioni RE, Price JF. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 7(2): 108-14.(2011);
[135]
Kuhla B, Boeck K, Schmidt A, Ogunlade V, Arendt T, Munch G, et al. Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol Aging 28(1): 29-41.(2007);
[136]
Abedini A, Derk J, Schmidt AM. The receptor for advanced glycation endproducts is a mediator of toxicity by IAPP and other proteotoxic aggregates: Establishing and exploiting common ground for novel amyloidosis therapies. Protein Sci 27(7): 1166-80.(2018);
[137]
MacPherson KP, Sompol P, Kannarkat GT, Chang J, Sniffen L, Wildner ME, et al. Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. Neurobiol Dis 102: 81-95.(2017);
[138]
Cavanagh C, Colby-Milley J, Bouvier D, Farso M, Chabot JG, Quirion R, et al. betaCTF-correlated burst of hippocampal TNFalpha occurs at a very early, pre-plaque stage in the TgCRND8 mouse model of Alzheimer’s disease. J Alzheimers Dis 36(2): 233-8.(2013);
[139]
Domene A, Cavanagh C, Page G, Bodard S, Klein C, Delarasse C, et al. Expression of phenotypic astrocyte marker is increased in a transgenic mouse model of Alzheimer’s disease versus age-matched controls: a presymptomatic stage study. Int J Alzheimers Dis 2016 5696241(2016);
[140]
Cavanagh C, Tse YC, Nguyen HB, Krantic S, Breitner JC, Quirion R, et al. Inhibiting tumor necrosis factor-alpha before amyloidosis prevents synaptic deficits in an Alzheimer’s disease model. Neurobiol Aging 47: 41-9.(2016);
[141]
Paouri E, Tzara O, Kartalou GI, Zenelak S, Georgopoulos S. Peripheral tumor necrosis factor-alpha (TNF-alpha) modulates amyloid pathology by regulating blood-derived immune cells and glial response in the brain of AD/TNF transgenic mice. J Neurosci 37(20): 5155-71.(2017);
[142]
Chou RC, Kane M, Ghimire S, Gautam S, Gui J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: a nested case-control analysis. CNS Drugs 30(11): 1111-20.(2016);
[143]
Kyrkanides S, Tallents RH, Miller JN, Olschowka ME, Johnson R, Yang M, et al. Osteoarthritis accelerates and exacerbates Alzheimer’s disease pathology in mice. J Neuroinflammation 8: 112.(2011);
[144]
Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, Calle V, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139(Pt 4): 1237-51.(2016);
[145]
Marra M, Campanati A, Testa R, Sirolla C, Bonfigli AR, Franceschi C, et al. Effect of etanercept on insulin sensitivity in nine patients with psoriasis. Int J Immunopathol Pharmacol 20(4): 731-6.(2007);
[146]
Farrokhi F, Taylor HC, McBride NM. Etanercept-induced hypoglycemia and improved glycemic control in a patient with type 2 diabetes. Endocr Pract 17(2): 306-7.(2011);
[147]
Pfeifer EC, Saxon DR, Janson RW. Etanercept-induced hypoglycemia in a patient with psoriatic arthritis and diabetes. J Investig Med High Impact Case Rep 5(3) 2324709617727760(2017);
[148]
Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev 2016 7239639(2016);
[149]
Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 47(8): 600-11.(2017);
[150]
Du Z, Li Y, Li J, Zhou C, Li F, Yang X. Physical activity can improve cognition in patients with Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Clin Interv Aging 13: 1593-603.(2018);
[151]
Salas IH, De Strooper B. Diabetes and Alzheimer’s disease: a link not as simple as it seems. Neurochem Res 44(6): 1271-8.(2019);
[152]
Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53(9): 1937-42.(1999);
[153]
Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci USA 107(15): 7036-41.(2010);
[154]
Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56(7): 1817-24.(2007);
[155]
Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53(2): 474-81.(2004);
[156]
Movassat J, Delangre E, Liu J, Gu Y, Janel N. Hypothesis and Theory: Circulating Alzheimer’s-Related Biomarkers in Type 2 Diabetes. Insight From the Goto-Kakizaki Rat. Front Neurol 10(649)(2019);
[157]
Bozluolcay M, Andican G, Firtina S, Erkol G, Konukoglu D. Inflammatory hypothesis as a link between Alzheimer’s disease and diabetes mellitus. Geriatr Gerontol Int 16(10): 1161-6.(2016);
[158]
Barbagallo M, Dominguez LJ. Type 2 diabetes mellitus and Alzheimer’s disease. World J of Diabetes 5(6): 889-93.(2014);
[159]
De Pablo-Fernandez E, Sierra-Hidalgo F, Benito-Leon J, Bermejo-Pareja F. Association between Parkinson’s disease and diabetes: Data from NEDICES study. Acta Neurol Scand 136(6): 732-6.(2017);
[160]
Boyko AA, Troyanova NI, Kovalenko EI, Sapozhnikov AM. Similarity and differences in inflammation-related characteristics of the peripheral immune system of patients with Parkinson’s and Alzheimer’s diseases. Int J Mol Sci 18(12)(2017);
[161]
Morris JK, Vidoni ED, Mahnken JD, Montgomery RN, Johnson DK, Thyfault JP, et al. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin. Neurobiol Aging 39: 19-24.(2016);
[162]
Adler BL, Yarchoan M, Hwang HM, Louneva N, Blair JA, Palm R, et al. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol Aging 35(4): 793-801.(2014);
[163]
Mietlicki-Baase EG. Amylin in Alzheimer's disease: Pathological peptide or potential treatment? Neuropharmacology 136(Pt B): 287-97.(2018);
[164]
Banks WA, Kastin AJ. Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19(5): 883-9.(1998);
[165]
Miklossy J, McGeer PL. Common mechanisms involved in Alzheimer’s disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY) 8(4): 575-88.(2016);
[166]
Kamer AR, Dasanayake AP, Craig RG, Glodzik-Sobanska L, Bry M, de Leon MJ. Alzheimer’s disease and peripheral infections: the possible contribution from periodontal infections, model and hypothesis. J Alzheimers Dis 13(4): 437-49.(2008);
[167]
Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 18(1): 83-90.(2018);
[168]
Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 120: 149-63.(2018);
[169]
Ulrich JD, Ulland TK, Colonna M, Holtzman DM. Elucidating the Role of TREM2 in Alzheimer’s Disease. Neuron 94(2): 237-48.(2017);
[170]
Subramanian S, Pallati PK, Sharma P, Agrawal DK, Nandipati KC. TREM-1 associated macrophage polarization plays a significant role in inducing insulin resistance in obese population. J Transl Med 15(1): 85.(2017);
[171]
Spencer SJ, Basri B, Sominsky L, Soch A, Ayala MT, Reineck P, et al. High-fat diet worsens the impact of aging on microglial function and morphology in a region-specific manner. Neurobiol Aging 74: 121-34.(2019);
[172]
Spencer SJ, D’Angelo H, Soch A, Watkins LR, Maier SF, Barrientos RM. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal- and amygdalar-dependent memory. Neurobiol Aging 58: 88-101.(2017);
[173]
Holman RR. Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract 40(Suppl.): S21-5.(1998);
[174]
Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, et al. The impairment of insulin signaling in Alzheimer’s disease. IUBMB Life 64(12): 951-7.(2012);
[175]
Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci 15(8): 1096-101.(2012);
[176]
Brosseron F, Traschutz A, Widmann CN, Kummer MP, Tacik P, Santarelli F, et al. Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimers Res Ther 10(1): 25.(2018);
[177]
Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener 11(1): 3.(2016);
[178]
Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM, et al. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131(6): 925-33.(2016);
[179]
Suarez-Calvet M, Kleinberger G, Araque CMA, Brendel M, Rominger A, Alcolea D, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8(5): 466-76.(2016);
[180]
Henjum K, Almdahl IS, Årskog V, Minthon L, Hansson O, Fladby T, et al. Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease. Alzheimers Res Ther 8(1): 17.(2016);
[181]
Tanaka M, Yamakage H, Masuda S, Inoue T, Ohue-Kitano R, Araki R, et al. Serum soluble TREM2 is a potential novel biomarker of cognitive impairment in Japanese non-obese patients with diabetes. Diabetes Metab 45(1): 86-9.(2019);
[182]
Alcolea D, Vilaplana E, Suarez-Calvet M, Illan-Gala I, Blesa R, Clarimon J, et al. CSF sAPPbeta, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology 89(2): 178-88.(2017);
[183]
Baldacci F, Toschi N, Lista S, Zetterberg H, Blennow K, Kilimann I, et al. Two-level diagnostic classification using cerebrospinal fluid YKL-40 in Alzheimer’s disease. Alzheimers Dement 13(9): 993-1003.(2017);
[184]
Antonell A, Mansilla A, Rami L, Llado A, Iranzo A, Olives J, et al. Cerebrospinal fluid level of YKL-40 protein in preclinical and prodromal Alzheimer’s disease. J Alzheimers Dis 42(3): 901-8.(2014);
[185]
Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68(10): 903-12.(2010);
[186]
Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, Xiong C, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimers Res Ther 7(1): 59.(2015);
[187]
Rosen C, Andersson CH, Andreasson U, Molinuevo JL, Bjerke M, Rami L, et al. Increased levels of chitotriosidase and YKL-40 in cerebrospinal fluid from patients with Alzheimer’s disease. Dement Geriatr Cogn Disord Extra 4(2): 297-304.(2014);
[188]
Wennstrom M, Surova Y, Hall S, Nilsson C, Minthon L, Hansson O, et al. The inflammatory marker YKL-40 Is elevated in cerebrospinal fluid from patients with Alzheimer’s but Not Parkinson’s disease or dementia with lewy bodies. PLoS One 10(8) e0135458(2015);
[189]
Sutphen CL, McCue L, Herries EM, Xiong C, Ladenson JH, Holtzman DM, et al. Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer’s disease. Alzheimers Dement 14(7): 869-79.(2018);
[190]
Choi J, Lee HW, Suk K. Plasma level of chitinase 3-like 1 protein increases in patients with early Alzheimer’s disease. J Neurol 258(12): 2181-5.(2011);
[191]
Umapathy D, Dornadula S, Krishnamoorthy E, Mariappanadar V, Viswanathan V, Ramkumar KM. YKL-40: a biomarker for early nephropathy in type 2 diabetic patients and its association with inflammatory cytokines. Immunobiology 223(11): 718-27.(2018);
[192]
Naka KK, Papathanassiou K, Bechlioulis A, Pappas K, Tigas S, Makriyiannis D, et al. Association of vascular indices with novel circulating biomarkers as prognostic factors for cardiovascular complications in patients with type 2 diabetes mellitus. Clin Biochem 53: 31-7.(2018);
[193]
Deng X, Liu Y, Luo M, Wu J, Ma R, Wan Q, et al. Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget 8(38): 63038-46.(2017);
[194]
Han JY, Ma XY, Yu LJ, Shao Y, Wang QY. Correlation between serum YKL-40 levels and albuminuria in type 2 diabetes. Genet Mol Res 14(4): 18596-603.(2015);
[195]
Lin CH, Li HY, Jiang YD, Chang TJ, Chuang LM. Plasma YKL-40 predicts 10-year cardiovascular and all-cause mortality in individuals with type 2 diabetes. Clin Endocrinol (Oxf) 79(2): 185-91.(2013);
[196]
Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, et al. Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol 63(4): 538-43.(2006);
[197]
Galimberti D, Venturelli E, Fenoglio C, Lovati C, Guidi I, Scalabrini D, et al. IP-10 serum levels are not increased in mild cognitive impairment and Alzheimer’s disease. Eur J Neurol 14(4): e3-4.(2007);
[198]
Xu H, Nakayama K, Ogawa S, Sugiura A, Kato T, Sato T, et al. Elevated plasma concentration of IP-10 in patients with type 2 diabetes mellitus. Nippon Jinzo Gakkai Shi 47(5): 524-30.(2005);
[199]
Sajadi SM, Khoramdelazad H, Hassanshahi G, Rafatpanah H, Hosseini J, Mahmoodi M, et al. Plasma levels of CXCL1 (GRO-alpha) and CXCL10 (IP-10) are elevated in type 2 diabetic patients: evidence for the involvement of inflammation and angiogenesis/angiostasis in this disease state. Clin Lab 59(1-2): 133-7.(2013);
[200]
Chang C-C, Wu C-L, Su W-W, Shih K-L, Tarng D-C, Chou C-T, et al. Interferon gamma-induced protein 10 is associated with insulin resistance and incident diabetes in patients with nonalcoholic fatty liver disease. Sci Rep 5: 10096.(2015);
[201]
Dickerson MT, Bogart AM, Altman MK, et al. Cytokine-mediated changes in K+ channel activity promotes an adaptive Ca2+ response that sustains beta-cell insulin secretion during inflammation. Sci Rep 8(1): 1158.(2018);

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy