General Review Article

从对p97功能机制的结构研究中洞察p97靶向小分子的设计

卷 27, 期 2, 2020

页: [298 - 316] 页: 19

弟呕挨: 10.2174/0929867326666191004162411

价格: $65

摘要

p97,也被称为含有球蛋白的蛋白或CDC48,是在真核生物中高度保守的AAA+蛋白家族中的一员。它与体内各种辅助因子结合,发挥其蛋白展开功能,并参与DNA修复、亚细胞膜蛋白降解、蛋白质量控制等过程。其功能障碍可导致多种疾病,如包涵体肌病、伴骨性和/或额颞叶痴呆的Paget s病、肌萎缩性脊髓侧索硬化症等。近年来,许多小分子抑制剂被用于p97,包括双(二乙基二硫代氨基甲酸酯)铜和CB-5083,它们进入了临床试验的第一阶段,但失败了。p97药物设计的一个瓶颈是其分子机制尚不清楚。本文综述了近年来对p97分子机制的研究,以期为设计新一代靶向p97的小分子提供参考。

关键词: p97/VCP/CDC48

[1]
Rabouille, C.; Levine, T.P.; Peters, J.M.; Warren, G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell, 1995, 82(6), 905-914.
[http://dx.doi.org/10.1016/0092-8674(95)90270-8] [PMID: 7553851]
[2]
Peters, J.M.; Walsh, M.J.; Franke, W.W. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J., 1990, 9(6), 1757-1767.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb08300.x] [PMID: 2140770]
[3]
Ramanathan, H.N.; Ye, Y. The p97 ATPase associates with EEA1 to regulate the size of early endosomes. Cell Res., 2012, 22(2), 346-359.
[http://dx.doi.org/10.1038/cr.2011.80] [PMID: 21556036]
[4]
Xu, S.; Peng, G.; Wang, Y.; Fang, S.; Karbowski, M. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell, 2011, 22(3), 291-300.
[http://dx.doi.org/10.1091/mbc.e10-09-0748] [PMID: 21118995]
[5]
Llinàs-Arias, P.; Rosselló-Tortella, M.; López-Serra, P.; Pérez-Salvia, M.; Setién, F.; Marin, S.; Muñoz, J.P.; Junza, A.; Capellades, J.; Calleja-Cervantes, M.E.; Ferreira, H.J.; de Moura, M.C.; Srbic, M.; Martínez-Cardús, A.; de la Torre, C.; Villanueva, A.; Cascante, M.; Yanes, O.; Zorzano, A.; Moutinho, C.; Esteller, M. Epigenetic loss of the endoplasmic reticulum-associated degradation inhibitor SVIP induces cancer cell metabolic reprogramming. JCI Insight, 2019, 5(8), 125888
[http://dx.doi.org/10.1172/jci.insight.125888] [PMID: 30843871]
[6]
Lan, B.; Chai, S.; Wang, P.; Wang, K. VCP/p97/Cdc48, a linking of protein homeostasis and cancer therapy. Curr. Mol. Med., 2017, 17(9), 608-618.
[http://dx.doi.org/10.2174/1566524018666180308111238] [PMID: 29521227]
[7]
Ye, Y.; Meyer, H.H.; Rapoport, T.A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol., 2003, 162(1), 71-84.
[http://dx.doi.org/10.1083/jcb.200302169] [PMID: 12847084]
[8]
Banerjee, S.; Bartesaghi, A.; Merk, A.; Rao, P.; Bulfer, S.L.; Yan, Y.; Green, N.; Mroczkowski, B.; Neitz, R.J.; Wipf, P.; Falconieri, V.; Deshaies, R.J.; Milne, J.L.S.; Huryn, D.; Arkin, M.; Subramaniam, S. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science, 2016, 351(6275), 871-875.
[http://dx.doi.org/10.1126/science.aad7974] [PMID: 26822609]
[9]
Li, G.; Zhao, G.; Schindelin, H.; Lennarz, W.J. Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD. Biochem. Biophys. Res. Commun., 2008, 375(2), 247-251.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.018] [PMID: 18706391]
[10]
Ewens, C.A.; Kloppsteck, P.; Förster, A.; Zhang, X.; Freemont, P.S. Structural and functional implications of phosphorylation and acetylation in the regulation of the AAA+ protein p97. Biochem. Cell Biol., 2010, 88(1), 41-48.
[http://dx.doi.org/10.1139/O09-128] [PMID: 20130678]
[11]
Niwa, H.; Ewens, C.A.; Tsang, C.; Yeung, H.O.; Zhang, X.; Freemont, P.S. The role of the N-domain in the ATPase activity of the mammalian AAA ATPase p97/VCP. J. Biol. Chem., 2012, 287(11), 8561-8570.
[http://dx.doi.org/10.1074/jbc.M111.302778] [PMID: 22270372]
[12]
Blythe, E.E.; Olson, K.C.; Chau, V.; Deshaies, R.J. Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP center dot NPLOC4 center dot UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proc. Natl. Acad. Sci. USA, 2017, 114(22), E4380-E4388.
[http://dx.doi.org/10.1073/pnas.1706205114] [PMID: 28512218]
[13]
Bodnar, N.O.; Rapoport, T.A. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell, 2017, 169(4), 722-735, e9.
[http://dx.doi.org/10.1016/j.cell.2017.04.020] [PMID: 28475898]
[14]
Song, C.; Wang, Q.; Li, C.C.H. ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity. J. Biol. Chem., 2003, 278(6), 3648-3655.
[http://dx.doi.org/10.1074/jbc.M208422200] [PMID: 12446676]
[15]
Wang, Q.; Song, C.; Li, C.C.H. Hexamerization of p97-VCP is promoted by ATP binding to the D1 domain and required for ATPase and biological activities. Biochem. Biophys. Res. Commun., 2003, 300(2), 253-260.
[http://dx.doi.org/10.1016/S0006-291X(02)02840-1] [PMID: 12504076]
[16]
Mouysset, J.; Deichsel, A.; Moser, S.; Hoege, C.; Hyman, A.A.; Gartner, A.; Hoppe, T. Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 12879-12884.
[http://dx.doi.org/10.1073/pnas.0805944105] [PMID: 18728180]
[17]
Franz, A.; Orth, M.; Pirson, P.A.; Sonneville, R.; Blow, J.J.; Gartner, A.; Stemmann, O.; Hoppe, T. CDC-48/p97 coordinates CDT-1 degradation with GINS chromatin dissociation to ensure faithful DNA replication. Mol. Cell, 2011, 44(1), 85-96.
[http://dx.doi.org/10.1016/j.molcel.2011.08.028] [PMID: 21981920]
[18]
Maric, M.; Maculins, T.; De Piccoli, G.; Labib, K. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science, 2014, 346(6208), 1253596
[http://dx.doi.org/10.1126/science.1253596] [PMID: 25342810]
[19]
Yamanaka, S.; Zhang, X.Y.; Maeda, M.; Miura, K.; Wang, S.; Farese, R.V. Jr.; Iwao, H.; Innerarity, T.L. Essential role of NAT1/p97/DAP5 in embryonic differentiation and the retinoic acid pathway. EMBO J., 2000, 19(20), 5533-5541.
[http://dx.doi.org/10.1093/emboj/19.20.5533] [PMID: 11032820]
[20]
Mehta, S.G.; Khare, M.; Ramani, R.; Watts, G.D.J.; Simon, M.; Osann, K.E.; Donkervoort, S.; Dec, E.; Nalbandian, A.; Platt, J.; Pasquali, M.; Wang, A.; Mozaffar, T.; Smith, C.D.; Kimonis, V.E. Genotype-phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin. Genet., 2013, 83(5), 422-431.
[http://dx.doi.org/10.1111/cge.12000] [PMID: 22909335]
[21]
Johnson, J.O.; Mandrioli, J.; Benatar, M.; Abramzon, Y.; Van Deerlin, V.M.; Trojanowski, J.Q.; Gibbs, J.R.; Brunetti, M.; Gronka, S.; Wuu, J.; Ding, J.; McCluskey, L.; Martinez-Lage, M.; Falcone, D.; Hernandez, D.G.; Arepalli, S.; Chong, S.; Schymick, J.C.; Rothstein, J.; Landi, F.; Wang, Y.D.; Calvo, A.; Mora, G.; Sabatelli, M.; Monsurrò, M.R.; Battistini, S.; Salvi, F.; Spataro, R.; Sola, P.; Borghero, G.; Galassi, G.; Scholz, S.W.; Taylor, J.P.; Restagno, G.; Chiò, A.; Traynor, B.J.; Consortium, I. ITALSGEN Consortium. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 2010, 68(5), 857-864.
[http://dx.doi.org/10.1016/j.neuron.2010.11.036] [PMID: 21145000]
[22]
Ozsoy, A.Z.; Cayli, S.; Sahin, C.; Ocakli, S.; Sanci, T.O.; Ilhan, D.B. Altered expression of p97/Valosin containing protein and impaired autophagy in preeclamptic human placenta. Placenta, 2018, 67, 45-53.
[http://dx.doi.org/10.1016/j.placenta.2018.05.013] [PMID: 29941173]
[23]
Valle, C.W.; Min, T.; Bodas, M.; Mazur, S.; Begum, S.; Tang, D.; Vij, N. Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma. PLoS One, 2011, 6(12), e29073
[http://dx.doi.org/10.1371/journal.pone.0029073] [PMID: 22216170]
[24]
Auner, H.W.; Moody, A.M.; Ward, T.H.; Kraus, M.; Milan, E.; May, P.; Chaidos, A.; Driessen, C.; Cenci, S.; Dazzi, F.; Rahemtulla, A.; Apperley, J.F.; Karadimitris, A.; Dillon, N. Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells. PLoS One, 2013, 8(9), e74415
[http://dx.doi.org/10.1371/journal.pone.0074415] [PMID: 24069311]
[25]
Anderson, D.J.; Le Moigne, R.; Djakovic, S.; Kumar, B.; Rice, J.; Wong, S.; Wang, J.; Yao, B.; Valle, E.; Kiss von Soly, S.; Madriaga, A.; Soriano, F.; Menon, M.K.; Wu, Z.Y.; Kampmann, M.; Chen, Y.; Weissman, J.S.; Aftab, B.T.; Yakes, F.M.; Shawver, L.; Zhou, H.J.; Wustrow, D.; Rolfe, M. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell, 2015, 28(5), 653-665.
[http://dx.doi.org/10.1016/j.ccell.2015.10.002] [PMID: 26555175]
[26]
van Well, E.M.; Bader, V.; Patra, M.; Sánchez-Vicente, A.; Meschede, J.; Furthmann, N.; Schnack, C.; Blusch, A.; Longworth, J.; Petrasch-Parwez, E.; Mori, K.; Arzberger, T.; Trümbach, D.; Angersbach, L.; Showkat, C.; Sehr, D.A.; Berlemann, L.A.; Goldmann, P.; Clement, A.M.; Behl, C.; Woerner, A.C.; Saft, C.; Wurst, W.; Haass, C.; Ellrichmann, G.; Gold, R.; Dittmar, G.; Hipp, M.S.; Hartl, F.U.; Tatzelt, J.; Winklhofer, K.F. A protein quality control pathway regulated by linear ubiquitination. EMBO J., 2019, 38(9), e100730
[PMID: 30886048]
[27]
Meyer, H.; Weihl, C.C. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J. Cell Sci., 2014, 127(Pt 18), 3877-3883.
[http://dx.doi.org/10.1242/jcs.093831] [PMID: 25146396]
[28]
Bebeacua, C.; Förster, A.; McKeown, C.; Meyer, H.H.; Zhang, X.; Freemont, P.S. Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA, 2012, 109(4), 1098-1103.
[http://dx.doi.org/10.1073/pnas.1114341109] [PMID: 22232657]
[29]
Rose, T.M.; Plowman, G.D.; Teplow, D.B.; Dreyer, W.J.; Hellström, K.E.; Brown, J.P. Primary structure of the human melanoma-associated antigen p97 (melanotransferrin) deduced from the mRNA sequence. Proc. Natl. Acad. Sci. USA, 1986, 83(5), 1261-1265.
[http://dx.doi.org/10.1073/pnas.83.5.1261] [PMID: 2419904]
[30]
Zhang, L.; Ashendel, C.L.; Becker, G.W.; Morré, D.J. Isolation and characterization of the principal ATPase associated with transitional endoplasmic reticulum of rat liver. J. Cell Biol., 1994, 127(6 Pt 2), 1871-1883.
[http://dx.doi.org/10.1083/jcb.127.6.1871] [PMID: 7806566]
[31]
Huyton, T.; Pye, V.E.; Briggs, L.C.; Flynn, T.C.; Beuron, F.; Kondo, H.; Ma, J.; Zhang, X.; Freemont, P.S. The crystal structure of murine p97/VCP at 3.6A. J. Struct. Biol., 2003, 144(3), 337-348.
[http://dx.doi.org/10.1016/j.jsb.2003.10.007] [PMID: 14643202]
[32]
Davies, J.M.; Brunger, A.T.; Weis, W.I. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure, 2008, 16(5), 715-726.
[http://dx.doi.org/10.1016/j.str.2008.02.010] [PMID: 18462676]
[33]
Tang, W.K.; Li, D.; Li, C.C.; Esser, L.; Dai, R.; Guo, L.; Xia, D. A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants. EMBO J., 2010, 29(13), 2217-2229.
[http://dx.doi.org/10.1038/emboj.2010.104] [PMID: 20512113]
[34]
Tang, W.K.; Xia, D. Structural and functional deviations in disease-associated p97 mutants. J. Struct. Biol., 2012, 179(2), 83-92.
[http://dx.doi.org/10.1016/j.jsb.2012.04.024] [PMID: 22579784]
[35]
Tang, W.K.; Xia, D. Altered intersubunit communication is the molecular basis for functional defects of pathogenic p97 mutants. J. Biol. Chem., 2013, 288(51), 36624-36635.
[http://dx.doi.org/10.1074/jbc.M113.488924] [PMID: 24196964]
[36]
Beuron, F.; Dreveny, I.; Yuan, X.; Pye, V.E.; McKeown, C.; Briggs, L.C.; Cliff, M.J.; Kaneko, Y.; Wallis, R.; Isaacson, R.L.; Ladbury, J.E.; Matthews, S.J.; Kondo, H.; Zhang, X.; Freemont, P.S. Conformational changes in the AAA ATPase p97-p47 adaptor complex. EMBO J., 2006, 25(9), 1967-1976.
[http://dx.doi.org/10.1038/sj.emboj.7601055] [PMID: 16601695]
[37]
Huang, R.; Ripstein, Z.A.; Rubinstein, J.L.; Kay, L.E. Cooperative subunit dynamics modulate p97 function. Proc. Natl. Acad. Sci. USA, 2019, 116(1), 158-167.
[http://dx.doi.org/10.1073/pnas.1815495116] [PMID: 30584095]
[38]
Rouiller, I.; Butel, V.M.; Latterich, M.; Milligan, R.A.; Wilson-Kubalek, E.M. A major conformational change in p97 AAA ATPase upon ATP binding. Mol. Cell, 2000, 6(6), 1485-1490.
[http://dx.doi.org/10.1016/S1097-2765(00)00144-1] [PMID: 11163220]
[39]
Zhang, X.; Shaw, A.; Bates, P.A.; Newman, R.H.; Gowen, B.; Orlova, E.; Gorman, M.A.; Kondo, H.; Dokurno, P.; Lally, J.; Leonard, G.; Meyer, H.; van Heel, M.; Freemont, P.S. Structure of the AAA ATPase p97. Mol. Cell, 2000, 6(6), 1473-1484.
[http://dx.doi.org/10.1016/S1097-2765(00)00143-X] [PMID: 11163219]
[40]
Ripstein, Z.A.; Huang, R.; Augustyniak, R.; Kay, L.E.; Rubinstein, J.L. Structure of a AAA+ unfoldase in the process of unfolding substrate. eLife, 2017, 6, pii: e25754
[http://dx.doi.org/10.7554/eLife.25754] [PMID: 28390173]
[41]
Schuller, J.M.; Beck, F.; Lössl, P.; Heck, A.J.R.; Förster, F. Nucleotide-dependent conformational changes of the AAA+ ATPase p97 revisited. FEBS Lett., 2016, 590(5), 595-604.
[http://dx.doi.org/10.1002/1873-3468.12091] [PMID: 26849035]
[42]
Rothballer, A.; Tzvetkov, N.; Zwickl, P. Mutations in p97/VCP induce unfolding activity. FEBS Lett., 2007, 581(6), 1197-1201.
[http://dx.doi.org/10.1016/j.febslet.2007.02.031] [PMID: 17346713]
[43]
Tang, W.K.; Zhang, T.; Ye, Y.; Xia, D. Structural basis for nucleotide-modulated p97 association with the ER membrane. Cell Discov., 2017, 3, 17045.
[http://dx.doi.org/10.1038/celldisc.2017.45] [PMID: 29238611]
[44]
Schuetz, A.K.; Kay, L.E. A Dynamic molecular basis for malfunction in disease mutants of p97/VCP. eLife, 2016, 5, pii: e20143
[http://dx.doi.org/10.7554/eLife.20143] [PMID: 27828775]
[45]
Nishikori, S.; Esaki, M.; Yamanaka, K.; Sugimoto, S.; Ogura, T. Positive cooperativity of the p97 AAA ATPase is critical for essential functions. J. Biol. Chem., 2011, 286(18), 15815-15820.
[http://dx.doi.org/10.1074/jbc.M110.201400] [PMID: 21454554]
[46]
Chou, T.F.; Bulfer, S.L.; Weihl, C.C.; Li, K.; Lis, L.G.; Walters, M.A.; Schoenen, F.J.; Lin, H.J.; Deshaies, R.J.; Arkin, M.R. Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains. J. Mol. Biol., 2014, 426(15), 2886-2899.
[http://dx.doi.org/10.1016/j.jmb.2014.05.022] [PMID: 24878061]
[47]
Li, G.; Huang, C.; Zhao, G.; Lennarz, W.J. Interprotomer motion-transmission mechanism for the hexameric AAA ATPase p97. Proc. Natl. Acad. Sci. USA, 2012, 109(10), 3737-3741.
[http://dx.doi.org/10.1073/pnas.1200255109] [PMID: 22355145]
[48]
DeLaBarre, B.; Brunger, A.T. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat. Struct. Biol., 2003, 10(10), 856-863.
[http://dx.doi.org/10.1038/nsb972] [PMID: 12949490]
[49]
Tang, W.K.; Xia, D. Role of the D1-D2 linker of human VCP/p97 in the asymmetry and ATPase activity of the D1-domain. Sci. Rep., 2016, 6, 20037.
[http://dx.doi.org/10.1038/srep20037] [PMID: 26818443]
[50]
Huang, C.; Li, G.; Lennarz, W.J. Dynamic flexibility of the ATPase p97 is important for its interprotomer motion transmission. Proc. Natl. Acad. Sci. USA, 2012, 109(25), 9792-9797.
[http://dx.doi.org/10.1073/pnas.1205853109] [PMID: 22675116]
[51]
Buchberger, A.; Schindelin, H.; Hänzelmann, P. Control of p97 function by cofactor binding. FEBS Lett., 2015, 589(19 Pt A), 2578-2589.
[http://dx.doi.org/10.1016/j.febslet.2015.08.028] [PMID: 26320413]
[52]
Sasagawa, Y.; Yamanaka, K.; Saito-Sasagawa, Y.; Ogura, T. Caenorhabditis elegans UBX cofactors for CDC-48/p97 control spermatogenesis. Genes Cells, 2010, 15(12), 1201-1215.
[http://dx.doi.org/10.1111/j.1365-2443.2010.01454.x] [PMID: 20977550]
[53]
Böhm, S.; Lamberti, G.; Fernández-Sáiz, V.; Stapf, C.; Buchberger, A. Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol. Cell. Biol., 2011, 31(7), 1528-1539.
[http://dx.doi.org/10.1128/MCB.00962-10] [PMID: 21282470]
[54]
Schaeffer, V.; Akutsu, M.; Olma, M.H.; Gomes, L.C.; Kawasaki, M.; Dikic, I. Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol. Cell, 2014, 54(3), 349-361.
[http://dx.doi.org/10.1016/j.molcel.2014.03.016] [PMID: 24726327]
[55]
Yang, F.C.; Lin, Y.H.; Chen, W.H.; Huang, J.Y.; Chang, H.Y.; Su, S.H.; Wang, H.T.; Chiang, C.Y.; Hsu, P.H.; Tsai, M.D.; Tan, B.C.; Lee, S.C. Interaction between salt-inducible kinase 2 (SIK2) and p97/valosin-containing protein (VCP) regulates endoplasmic reticulum (ER)-associated protein degradation in mammalian cells. J. Biol. Chem., 2013, 288(47), 33861-33872.
[http://dx.doi.org/10.1074/jbc.M113.492199] [PMID: 24129571]
[56]
Elia, A.E.; Boardman, A.P.; Wang, D.C.; Huttlin, E.L.; Everley, R.A.; Dephoure, N.; Zhou, C.; Koren, I.; Gygi, S.P.; Elledge, S.J. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell, 2015, 59(5), 867-881.
[http://dx.doi.org/10.1016/j.molcel.2015.05.006] [PMID: 26051181]
[57]
Wu, Q.; Cheng, Z.; Zhu, J.; Xu, W.; Peng, X.; Chen, C.; Li, W.; Wang, F.; Cao, L.; Yi, X.; Wu, Z.; Li, J.; Fan, P. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line. Sci. Rep., 2015, 5, 9520.
[http://dx.doi.org/10.1038/srep09520] [PMID: 25825284]
[58]
Matic, I.; van Hagen, M.; Schimmel, J.; Macek, B.; Ogg, S.C.; Tatham, M.H.; Hay, R.T.; Lamond, A.I.; Mann, M.; Vertegaal, A.C.O. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics, 2008, 7(1), 132-144.
[http://dx.doi.org/10.1074/mcp.M700173-MCP200] [PMID: 17938407]
[59]
Hendriks, I.A.; Lyon, D.; Young, C.; Jensen, L.J.; Vertegaal, A.C.; Nielsen, M.L. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat. Struct. Mol. Biol., 2017, 24(3), 325-336.
[http://dx.doi.org/10.1038/nsmb.3366] [PMID: 28112733]
[60]
Hänzelmann, P.; Schindelin, H. The interplay of cofactor interactions and post-translational modifications in the regulation of the AAA+ ATPase p97. Front. Mol. Biosci., 2017, 4, 21.
[http://dx.doi.org/10.3389/fmolb.2017.00021] [PMID: 28451587]
[61]
Tonddast-Navaei, S.; Stan, G. Mechanism of transient binding and release of substrate protein during the allosteric cycle of the p97 nanomachine. J. Am. Chem. Soc., 2013, 135(39), 14627-14636.
[http://dx.doi.org/10.1021/ja404051b] [PMID: 24007343]
[62]
DeLaBarre, B.; Christianson, J.C.; Kopito, R.R.; Brunger, A.T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell, 2006, 22(4), 451-462.
[http://dx.doi.org/10.1016/j.molcel.2006.03.036] [PMID: 16713576]
[63]
Meyer, H.J.; Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell, 2014, 157(4), 910-921.
[http://dx.doi.org/10.1016/j.cell.2014.03.037] [PMID: 24813613]
[64]
Stach, L.; Freemont, P.S. The AAA+ ATPase p97, a cellular multitool. Biochem. J., 2017, 474(17), 2953-2976.
[http://dx.doi.org/10.1042/BCJ20160783] [PMID: 28819009]
[65]
Xia, D.; Tang, W.K.; Ye, Y. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene, 2016, 583(1), 64-77.
[http://dx.doi.org/10.1016/j.gene.2016.02.042] [PMID: 26945625]
[66]
Ernst, R.; Mueller, B.; Ploegh, H.L.; Schlieker, C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell, 2009, 36(1), 28-38.
[http://dx.doi.org/10.1016/j.molcel.2009.09.016] [PMID: 19818707]
[67]
Sasset, L.; Petris, G.; Cesaratto, F.; Burrone, O.R. The VCP/p97 and YOD1 proteins have different substrate-dependent activities in endoplasmic reticulum-associated degradation (ERAD). J. Biol. Chem., 2015, 290(47), 28175-28188.
[http://dx.doi.org/10.1074/jbc.M115.656660] [PMID: 26463207]
[68]
Cesaratto, F.; Sasset, L.; Myers, M.P.; Re, A.; Petris, G.; Burrone, O.R. BiP/GRP78 mediates ERAD targeting of proteins produced by membrane-bound ribosomes stalled at the STOP-Codon. J. Mol. Biol., 2019, 431(2), 123-141.
[http://dx.doi.org/10.1016/j.jmb.2018.10.009] [PMID: 30367842]
[69]
Papadopoulos, C.; Kirchner, P.; Bug, M.; Grum, D.; Koerver, L.; Schulze, N.; Poehler, R.; Dressler, A.; Fengler, S.; Arhzaouy, K.; Lux, V.; Ehrmann, M.; Weihl, C.C.; Meyer, H. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J., 2017, 36(2), 135-150.
[http://dx.doi.org/10.15252/embj.201695148] [PMID: 27753622]
[70]
Zhang, X.; Zhang, H.; Wang, Y. Phosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle. J. Cell Sci., 2014, 127(Pt 1), 172-181.
[http://dx.doi.org/10.1242/jcs.134668] [PMID: 24163436]
[71]
Uchiyama, K.; Jokitalo, E.; Kano, F.; Murata, M.; Zhang, X.; Canas, B.; Newman, R.; Rabouille, C.; Pappin, D.; Freemont, P.; Kondo, H. VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J. Cell Biol., 2002, 159(5), 855-866.
[http://dx.doi.org/10.1083/jcb.200208112] [PMID: 12473691]
[72]
He, J.; Zhu, Q.; Wani, G.; Sharma, N.; Wani, A.A. Valosin-containing Protein (VCP)/p97 Segregase Mediates Proteolytic Processing of Cockayne Syndrome Group B (CSB) in Damaged Chromatin. J. Biol. Chem., 2016, 291(14), 7396-7408.
[http://dx.doi.org/10.1074/jbc.M115.705350] [PMID: 26826127]
[73]
Li, Z.H.; Wang, Y.; Xu, M.; Jiang, T. Crystal structures of the UBX domain of human UBXD7 and its complex with p97 ATPase. Biochem. Biophys. Res. Commun., 2017, 486(1), 94-100.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.005] [PMID: 28274878]
[74]
Alexandru, G.; Graumann, J.; Smith, G.T.; Kolawa, N.J.; Fang, R.; Deshaies, R.J. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell, 2008, 134(5), 804-816.
[http://dx.doi.org/10.1016/j.cell.2008.06.048] [PMID: 18775313]
[75]
Lee, J.N.; Kim, H.; Yao, H.; Chen, Y.; Weng, K.; Ye, J. Identification of Ubxd8 protein as a sensor for unsaturated fatty acids and regulator of triglyceride synthesis. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21424-21429.
[http://dx.doi.org/10.1073/pnas.1011859107] [PMID: 21115839]
[76]
Olzmann, J.A.; Richter, C.M.; Kopito, R.R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. USA, 2013, 110(4), 1345-1350.
[http://dx.doi.org/10.1073/pnas.1213738110] [PMID: 23297223]
[77]
Hänzelmann, P.; Schindelin, H. Characterization of an additional binding surface on the p97 N-Terminal domain involved in bipartite cofactor interactions. Structure, 2016, 24(1), 140-147.
[http://dx.doi.org/10.1016/j.str.2015.10.027] [PMID: 26712280]
[78]
Zhang, X.; Gui, L.; Zhang, X.; Bulfer, S.L.; Sanghez, V.; Wong, D.E.; Lee, Y.; Lehmann, L.; Lee, J.S.; Shih, P.Y.; Lin, H.J.; Iacovino, M.; Weihl, C.C.; Arkin, M.R.; Wang, Y.; Chou, T.F. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc. Natl. Acad. Sci. USA, 2015, 112(14), E1705-E1714.
[http://dx.doi.org/10.1073/pnas.1418820112] [PMID: 25775548]
[79]
Park, E.S.; Yoo, Y.J.; Elangovan, M. The opposite role of two UBA-UBX containing proteins, p47 and SAKS1 in the degradation of a single ERAD substrate, α-TCR. Mol. Cell. Biochem., 2017, 425(1-2), 37-45.
[http://dx.doi.org/10.1007/s11010-016-2860-5] [PMID: 27785701]
[80]
Song, J.; Park, J.K.; Lee, J.J.; Choi, Y.S.; Ryu, K.S.; Kim, J.H.; Kim, E.; Lee, K.J.; Jeon, Y.H.; Kim, E.E. Structure and interaction of ubiquitin-associated domain of human Fas-associated factor 1. Protein Sci., 2009, 18(11), 2265-2276.
[http://dx.doi.org/10.1002/pro.237] [PMID: 19722279]
[81]
Ewens, C.A.; Panico, S.; Kloppsteck, P.; McKeown, C.; Ebong, I.O.; Robinson, C.; Zhang, X.; Freemont, P.S. The p97-FAF1 protein complex reveals a common mode of p97 adaptor binding. J. Biol. Chem., 2014, 289(17), 12077-12084.
[http://dx.doi.org/10.1074/jbc.M114.559591] [PMID: 24619421]
[82]
Xie, F.; Jin, K.; Shao, L.; Fan, Y.; Tu, Y.; Li, Y.; Yang, B.; van Dam, H.; Ten Dijke, P.; Weng, H.; Dooley, S.; Wang, S.; Jia, J.; Jin, J.; Zhou, F.; Zhang, L. FAF1 phosphorylation by AKT accumulates TGF-β type II receptor and drives breast cancer metastasis. Nat. Commun., 2017, 8, 15021.
[http://dx.doi.org/10.1038/ncomms15021] [PMID: 28443643]
[83]
LaLonde, D.P.; Bretscher, A. The UBX protein SAKS1 negatively regulates endoplasmic reticulum-associated degradation and p97-dependent degradation. J. Biol. Chem., 2011, 286(6), 4892-4901.
[http://dx.doi.org/10.1074/jbc.M110.158030] [PMID: 21135095]
[84]
Madsen, L.; Andersen, K.M.; Prag, S.; Moos, T.; Semple, C.A.; Seeger, M.; Hartmann-Petersen, R. Ubxd1 is a novel co-factor of the human p97 ATPase. Int. J. Biochem. Cell Biol., 2008, 40(12), 2927-2942.
[http://dx.doi.org/10.1016/j.biocel.2008.06.008] [PMID: 18656546]
[85]
Fang, S.; Ferrone, M.; Yang, C.; Jensen, J.P.; Tiwari, S.; Weissman, A.M. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA, 2001, 98(25), 14422-14427.
[http://dx.doi.org/10.1073/pnas.251401598] [PMID: 11724934]
[86]
Zhang, T.; Xu, Y.; Liu, Y.; Ye, Y. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum. Mol. Biol. Cell, 2015, 26(24), 4438-4450.
[http://dx.doi.org/10.1091/mbc.E15-06-0354] [PMID: 26424800]
[87]
Orme, C.M.; Bogan, J.S. The ubiquitin regulatory X (UBX) domain-containing protein TUG regulates the p97 ATPase and resides at the endoplasmic reticulum-golgi intermediate compartment. J. Biol. Chem., 2012, 287(9), 6679-6692.
[http://dx.doi.org/10.1074/jbc.M111.284232] [PMID: 22207755]
[88]
Laço, M.N.; Cortes, L.; Travis, S.M.; Paulson, H.L.; Rego, A.C. Valosin-containing protein (VCP/p97) is an activator of wild-type ataxin-3. PLoS One, 2012, 7(9), e43563
[http://dx.doi.org/10.1371/journal.pone.0043563] [PMID: 22970133]
[89]
Li, X.; Liu, H.; Fischhaber, P.L.; Tang, T.S. Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog. Neurobiol., 2015, 132, 34-58.
[http://dx.doi.org/10.1016/j.pneurobio.2015.06.004] [PMID: 26123252]
[90]
Sirisaengtaksin, N.; Gireud, M.; Yan, Q.; Kubota, Y.; Meza, D.; Waymire, J.C.; Zage, P.E.; Bean, A.J. UBE4B protein couples ubiquitination and sorting machineries to enable epidermal growth factor receptor (EGFR) degradation. J. Biol. Chem., 2014, 289(5), 3026-3039.
[http://dx.doi.org/10.1074/jbc.M113.495671] [PMID: 24344129]
[91]
Ackermann, L.; Schell, M.; Pokrzywa, W.; Kevei, É.; Gartner, A.; Schumacher, B.; Hoppe, T. E4 ligase-specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis. Nat. Struct. Mol. Biol., 2016, 23(11), 995-1002.
[http://dx.doi.org/10.1038/nsmb.3296] [PMID: 27669035]
[92]
Stieglitz, B.; Rana, R.R.; Koliopoulos, M.G.; Morris-Davies, A.C.; Schaeffer, V.; Christodoulou, E.; Howell, S.; Brown, N.R.; Dikic, I.; Rittinger, K. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature, 2013, 503(7476), 422-426.
[http://dx.doi.org/10.1038/nature12638] [PMID: 24141947]
[93]
Bodnar, N.O.; Kim, K.H.; Ji, Z.; Wales, T.E.; Svetlov, V.; Nudler, E.; Engen, J.R.; Walz, T.; Rapoport, T.A. Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Nat. Struct. Mol. Biol., 2018, 25(7), 616-622.
[http://dx.doi.org/10.1038/s41594-018-0085-x] [PMID: 29967539]
[94]
Maric, M.; Mukherjee, P.; Tatham, M.H.; Hay, R.; Labib, K. Ufd1-Npl4 recruit Cdc48 for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. Cell Rep., 2017, 18(13), 3033-3042.
[http://dx.doi.org/10.1016/j.celrep.2017.03.020] [PMID: 28355556]
[95]
Hülsmann, J.; Kravic, B.; Weith, M.; Gstaiger, M.; Aebersold, R.; Collins, B.C.; Meyer, H. AP-SWATH reveals direct involvement of VCP/p97 in integrated stress response signaling through facilitating CReP/PPP1R15B degradation. Mol. Cell. Proteomics, 2018, 17(7), 1295-1307.
[http://dx.doi.org/10.1074/mcp.RA117.000471] [PMID: 29599191]
[96]
Rageul, J.; Park, J.J.; Jo, U.; Weinheimer, A.S.; Vu, T.T.M.; Kim, H. Conditional degradation of SDE2 by the Arg/N-End rule pathway regulates stress response at replication forks. Nucleic Acids Res., 2019, 47(8), 3996-4010.
[http://dx.doi.org/10.1093/nar/gkz054] [PMID: 30698750]
[97]
Le, L.T.; Kang, W.; Kim, J.Y.; Le, O.T.; Lee, S.Y.; Yang, J.K. Structural Details of Ufd1 Binding to p97 and Their Functional Implications in ER-Associated Degradation. PLoS One, 2016, 11(9), e0163394
[http://dx.doi.org/10.1371/journal.pone.0163394] [PMID: 27684549]
[98]
Isaacson, R.L.; Pye, V.E.; Simpson, P.; Meyer, H.H.; Zhang, X.; Freemont, P.S.; Matthews, S. Detailed structural insights into the p97-Npl4-Ufd1 interface. J. Biol. Chem., 2007, 282(29), 21361-21369.
[http://dx.doi.org/10.1074/jbc.M610069200] [PMID: 17491009]
[99]
Kondo, H.; Rabouille, C.; Newman, R.; Levine, T.P.; Pappin, D.; Freemont, P.; Warren, G. p47 is a cofactor for p97-mediated membrane fusion. Nature, 1997, 388(6637), 75-78.
[http://dx.doi.org/10.1038/40411] [PMID: 9214505]
[100]
Dreveny, I.; Kondo, H.; Uchiyama, K.; Shaw, A.; Zhang, X.; Freemont, P.S. Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47. EMBO J., 2004, 23(5), 1030-1039.
[http://dx.doi.org/10.1038/sj.emboj.7600139] [PMID: 14988733]
[101]
Meyer, H.H. Golgi reassembly after mitosis: the AAA family meets the ubiquitin family. Biochim. Biophys. Acta, 2005, 1744(2), 108-119.
[http://dx.doi.org/10.1016/j.bbamcr.2005.03.011] [PMID: 15878210]
[102]
Uchiyama, K.; Kondo, H. p97/p47-Mediated biogenesis of Golgi and ER. J. Biochem., 2005, 137(2), 115-119.
[http://dx.doi.org/10.1093/jb/mvi028] [PMID: 15749824]
[103]
Shibata, Y.; Oyama, M.; Kozuka-Hata, H.; Han, X.; Tanaka, Y.; Gohda, J.; Inoue, J. p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO. Nat. Commun., 2012, 3, 1061.
[http://dx.doi.org/10.1038/ncomms2068] [PMID: 22990857]
[104]
Yeung, H.O.; Kloppsteck, P.; Niwa, H.; Isaacson, R.L.; Matthews, S.; Zhang, X.; Freemont, P.S. Insights into adaptor binding to the AAA protein p97. Biochem. Soc. Trans., 2008, 36(Pt 1), 62-67.
[http://dx.doi.org/10.1042/BST0360062] [PMID: 18208387]
[105]
Bruderer, R.M.; Brasseur, C.; Meyer, H.H. The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism. J. Biol. Chem., 2004, 279(48), 49609-49616.
[http://dx.doi.org/10.1074/jbc.M408695200] [PMID: 15371428]
[106]
Hurley, J.H.; Lee, S.; Prag, G. Ubiquitin-binding domains. Biochem. J., 2006, 399(3), 361-372.
[http://dx.doi.org/10.1042/BJ20061138] [PMID: 17034365]
[107]
Kloppsteck, P.; Ewens, C.A.; Förster, A.; Zhang, X.; Freemont, P.S. Regulation of p97 in the ubiquitin-proteasome system by the UBX protein-family. Biochim. Biophys. Acta, 2012, 1823(1), 125-129.
[http://dx.doi.org/10.1016/j.bbamcr.2011.09.006] [PMID: 21963883]
[108]
Bandau, S.; Knebel, A.; Gage, Z.O.; Wood, N.T.; Alexandru, G. UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1α accumulation. BMC Biol., 2012, 10, 36.
[http://dx.doi.org/10.1186/1741-7007-10-36] [PMID: 22537386]
[109]
Cross, B.C.; McKibbin, C.; Callan, A.C.; Roboti, P.; Piacenti, M.; Rabu, C.; Wilson, C.M.; Whitehead, R.; Flitsch, S.L.; Pool, M.R.; High, S.; Swanton, E. Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J. Cell Sci., 2009, 122(Pt 23), 4393-4400.
[http://dx.doi.org/10.1242/jcs.054494] [PMID: 19903691]
[110]
Fiebiger, E.; Hirsch, C.; Vyas, J.M.; Gordon, E.; Ploegh, H.L.; Tortorella, D. Dissection of the dislocation pathway for type I membrane proteins with a new small molecule inhibitor, eeyarestatin. Mol. Biol. Cell, 2004, 15(4), 1635-1646.
[http://dx.doi.org/10.1091/mbc.e03-07-0506] [PMID: 14767067]
[111]
Wang, Q.; Li, L.; Ye, Y. Inhibition of p97-dependent protein degradation by Eeyarestatin I. J. Biol. Chem., 2008, 283(12), 7445-7454.
[http://dx.doi.org/10.1074/jbc.M708347200] [PMID: 18199748]
[112]
Wang, Q.; Shinkre, B.A.; Lee, J.G.; Weniger, M.A.; Liu, Y.; Chen, W.; Wiestner, A.; Trenkle, W.C.; Ye, Y. The ERAD inhibitor Eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS One, 2010, 5(11), e15479
[http://dx.doi.org/10.1371/journal.pone.0015479] [PMID: 21124757]
[113]
Chou, T.F.; Brown, S.J.; Minond, D.; Nordin, B.E.; Li, K.; Jones, A.C.; Chase, P.; Porubsky, P.R.; Stoltz, B.M.; Schoenen, F.J.; Patricelli, M.P.; Hodder, P.; Rosen, H.; Deshaies, R.J. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 4834-4839.
[http://dx.doi.org/10.1073/pnas.1015312108] [PMID: 21383145]
[114]
Walworth, K.; Bodas, M.; Campbell, R.J.; Swanson, D.; Sharma, A.; Vij, N. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression. PLoS One, 2016, 11(7), e0158507
[http://dx.doi.org/10.1371/journal.pone.0158507] [PMID: 27434122]
[115]
Chou, T.F.; Li, K.; Frankowski, K.J.; Schoenen, F.J.; Deshaies, R.J. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem, 2013, 8(2), 297-312.
[http://dx.doi.org/10.1002/cmdc.201200520] [PMID: 23316025]
[116]
Zhou, H.J.; Wang, J.; Yao, B.; Wong, S.; Djakovic, S.; Kumar, B.; Rice, J.; Valle, E.; Soriano, F.; Menon, M.K.; Madriaga, A.; Kiss von Soly, S.; Kumar, A.; Parlati, F.; Yakes, F.M.; Shawver, L.; Le Moigne, R.; Anderson, D.J.; Rolfe, M.; Wustrow, D. Discovery of a First-in-Class, Potent, Selective, and Orally Bioavailable Inhibitor of the p97 AAA ATPase (CB-5083). J. Med. Chem., 2015, 58(24), 9480-9497.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01346] [PMID: 26565666]
[117]
Bursavich, M.G.; Parker, D.P.; Willardsen, J.A.; Gao, Z.H.; Davis, T.; Ostanin, K.; Robinson, R.; Peterson, A.; Cimbora, D.M.; Zhu, J.F.; Richards, B. 2-Anilino-4-aryl-1,3-thiazole inhibitors of valosin-containing protein (VCP or p97). Bioorg. Med. Chem. Lett., 2010, 20(5), 1677-1679.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.058] [PMID: 20137940]
[118]
Magnaghi, P.; D’Alessio, R.; Valsasina, B.; Avanzi, N.; Rizzi, S.; Asa, D.; Gasparri, F.; Cozzi, L.; Cucchi, U.; Orrenius, C.; Polucci, P.; Ballinari, D.; Perrera, C.; Leone, A.; Cervi, G.; Casale, E.; Xiao, Y.; Wong, C.; Anderson, D.J.; Galvani, A.; Donati, D.; O’Brien, T.; Jackson, P.K.; Isacchi, A. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol., 2013, 9(9), 548-556.
[http://dx.doi.org/10.1038/nchembio.1313] [PMID: 23892893]
[119]
Cervi, G.; Magnaghi, P.; Asa, D.; Avanzi, N.; Badari, A.; Borghi, D.; Caruso, M.; Cirla, A.; Cozzi, L.; Felder, E.; Galvani, A.; Gasparri, F.; Lomolino, A.; Magnuson, S.; Malgesini, B.; Motto, I.; Pasi, M.; Rizzi, S.; Salom, B.; Sorrentino, G.; Troiani, S.; Valsasina, B.; O’Brien, T.; Isacchi, A.; Donati, D.; D’Alessio, R. Discovery of 2-(cyclohexylmethylamino)pyrimidines as a new class of reversible valosine containing protein inhibitors. J. Med. Chem., 2014, 57(24), 10443-10454.
[http://dx.doi.org/10.1021/jm501313x] [PMID: 25474526]
[120]
Sasazawa, Y.; Kanagaki, S.; Tashiro, E.; Nogawa, T.; Muroi, M.; Kondoh, Y.; Osada, H.; Imoto, M. Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein. ACS Chem. Biol., 2012, 7(5), 892-900.
[http://dx.doi.org/10.1021/cb200492h] [PMID: 22360440]
[121]
Alverez, C.; Arkin, M.R.; Bulfer, S.L.; Colombo, R.; Kovaliov, M.; LaPorte, M.G.; Lim, C.; Liang, M.; Moore, W.J.; Neitz, R.J.; Yan, Y.; Yue, Z.; Huryn, D.M.; Wipf, P. Structure-activity study of bioisosteric trifluoromethyl and pentafluorosulfanyl indole inhibitors of the AAA ATPase p97. ACS Med. Chem. Lett., 2015, 6(12), 1225-1230.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00364] [PMID: 26713109]
[122]
Alverez, C.; Bulfer, S.L.; Chakrasali, R.; Chimenti, M.S.; Deshaies, R.J.; Green, N.; Kelly, M.; LaPorte, M.G.; Lewis, T.S.; Liang, M.; Moore, W.J.; Neitz, R.J.; Peshkov, V.A.; Walters, M.A.; Zhang, F.; Arkin, M.R.; Wipf, P.; Huryn, D.M. Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway. ACS Med. Chem. Lett., 2015, 7(2), 182-187.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00396] [PMID: 26985295]
[123]
Lyupina, Y.V.; Erokhov, P.A.; Kravchuk, O.I.; Finoshin, A.D.; Abaturova, S.B.; Orlova, O.V.; Beljelarskaya, S.N.; Kostyuchenko, M.V.; Mikhailov, V.S. Essential function of VCP/p97 in infection cycle of the nucleopolyhedrovirus AcMNPV in Spodoptera frugiperda Sf9 cells. Virus Res., 2018, 253, 68-76.
[http://dx.doi.org/10.1016/j.virusres.2018.06.001] [PMID: 29890203]
[124]
Her, N.G.; Toth, J.I.; Ma, C.T.; Wei, Y.; Motamedchaboki, K.; Sergienko, E.; Petroski, M.D. p97 composition changes caused by allosteric inhibition are suppressed by an on-target mechanism that increases the enzyme’s ATPase activity. Cell Chem. Biol., 2016, 23(4), 517-528.
[http://dx.doi.org/10.1016/j.chembiol.2016.03.012] [PMID: 27105284]
[125]
Iljin, K.; Ketola, K.; Vainio, P.; Halonen, P.; Kohonen, P.; Fey, V.; Grafström, R.C.; Perälä, M.; Kallioniemi, O. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin. Cancer Res., 2009, 15(19), 6070-6078.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1035] [PMID: 19789329]
[126]
Cvek, B. Nonprofit drugs as the salvation of the world’s healthcare systems: the case of Antabuse (disulfiram). Drug Discov. Today, 2012, 17(9-10), 409-412.
[http://dx.doi.org/10.1016/j.drudis.2011.12.010] [PMID: 22192884]
[127]
Allensworth, J.L.; Evans, M.K.; Bertucci, F.; Aldrich, A.J.; Festa, R.A.; Finetti, P.; Ueno, N.T.; Safi, R.; McDonnell, D.P.; Thiele, D.J.; Van Laere, S.; Devi, G.R. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol. Oncol., 2015, 9(6), 1155-1168.
[http://dx.doi.org/10.1016/j.molonc.2015.02.007] [PMID: 25769405]
[128]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[129]
Huang, E.Y.; To, M.; Tran, E.; Dionisio, L.T.A.; Cho, H.J.; Baney, K.L.M.; Pataki, C.I.; Olzmann, J.A. A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates. Mol. Biol. Cell, 2018, 29(9), 1021-1030.
[http://dx.doi.org/10.1091/mbc.E17-08-0514] [PMID: 29514927]
[130]
Bastola, P.; Minn, K.; Chien, J. Heterozygous mutations in p97 and resistance to p97 inhibitors. bioRxiv, 2018.
[http://dx.doi.org/10.1101/380964]
[131]
Wei, Y.; Toth, J.I.; Blanco, G.A.; Bobkov, A.A.; Petroski, M.D. Adapted ATPase domain communication overcomes the cytotoxicity of p97 inhibitors. J. Biol. Chem., 2018, 293(52), 20169-20180.
[http://dx.doi.org/10.1074/jbc.RA118.004301] [PMID: 30381397]
[132]
Vekaria, P.H.; Kumar, A.; Subramaniam, D.; Dunavin, N.; Vallurupalli, A.; Schoenen, F.; Ganguly, S.; Anant, S.; McGuirk, J.P.; Jensen, R.A.; Rao, R. Functional cooperativity of p97 and histone deacetylase 6 in mediating DNA repair in mantle cell lymphoma cells. Leukemia, 2019, 33(7), 1675-1686.
[http://dx.doi.org/10.1038/s41375-018-0355-y] [PMID: 30664664]
[133]
Tang, W.K.; Odzorig, T.; Jin, W.; Xia, D. Structural basis of p97 inhibition by the site-selective anticancer compound CB-5083. Mol. Pharmacol., 2019, 95(3), 286-293.
[http://dx.doi.org/10.1124/mol.118.114256] [PMID: 30591537]
[134]
Kang, M.J.; Wu, T.; Wijeratne, E.M.; Lau, E.C.; Mason, D.J.; Mesa, C.; Tillotson, J.; Zhang, D.D.; Gunatilaka, A.A.; La Clair, J.J.; Chapman, E. Functional chromatography reveals three natural products that target the same protein with distinct mechanisms of action. ChemBioChem, 2014, 15(14), 2125-2131.
[http://dx.doi.org/10.1002/cbic.201402258] [PMID: 25125376]
[135]
Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu, L.; Wang, T.; Zheng, Q.; Huang, Y.; Wang, J.; Liu, L. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. J. Am. Chem. Soc., 2016, 138(23), 7429-7435.
[http://dx.doi.org/10.1021/jacs.6b04031] [PMID: 27268299]
[136]
Tang, S.; Liang, L.J.; Si, Y.Y.; Gao, S.; Wang, J.X.; Liang, J.; Mei, Z.; Zheng, J.S.; Liu, L. Practical chemical synthesis of atypical ubiquitin chains by using an isopeptide-linked Ub isomer. Angew. Chem. Int. Ed. Engl., 2017, 56(43), 13333-13337.
[http://dx.doi.org/10.1002/anie.201708067] [PMID: 28873270]
[137]
Chu, G.C.; Pan, M.; Li, J.; Liu, S.; Zuo, C.; Tong, Z.B.; Bai, J.S.; Gong, Q.; Ai, H.; Fan, J.; Meng, X.; Huang, Y.C.; Shi, J.; Deng, H.; Tian, C.; Li, Y.M.; Liu, L. Cysteine-aminoethylation-assisted chemical ubiquitination of recombinant histones. J. Am. Chem. Soc., 2019, 141(8), 3654-3663.
[http://dx.doi.org/10.1021/jacs.8b13213] [PMID: 30758956]
[138]
Morgan, M.; Jbara, M.; Brik, A.; Wolberger, C. Semisynthesis of ubiquitinated histone H2B with a native or nonhydrolyzable linkage. Methods Enzymol., 2019, 618, 1-27.
[http://dx.doi.org/10.1016/bs.mie.2019.01.003] [PMID: 30850047]
[139]
Meledin, R.; Mali, S.M.; Kleifeld, O.; Brik, A. Activity-based probes developed by applying a sequential dehydroalanine formation strategy to expressed proteins reveal a potential α-globin-modulating deubiquitinase. Angew. Chem. Int. Ed. Engl., 2018, 57(20), 5645-5649.
[http://dx.doi.org/10.1002/anie.201800032] [PMID: 29527788]
[140]
Sun, H.; Mali, S.M.; Singh, S.K.; Meledin, R.; Brik, A.; Kwon, Y.T.; Kravtsova-Ivantsiv, Y.; Bercovich, B.; Ciechanover, A. Diverse fate of ubiquitin chain moieties: The proximal is degraded with the target, and the distal protects the proximal from removal and recycles. Proc. Natl. Acad. Sci. USA, 2019, 116(16), 7805-7812.
[http://dx.doi.org/10.1073/pnas.1822148116] [PMID: 30867293]
[141]
Sun, H.; Meledin, R.; Mali, S.M.; Brik, A. Total chemical synthesis of ester-linked ubiquitinated proteins unravels their behavior with deubiquitinases. Chem. Sci. (Camb.), 2018, 9(6), 1661-1665.
[http://dx.doi.org/10.1039/C7SC04518B] [PMID: 29675213]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy