Abstract
Spinal Muscular Atrophy (SMA) is a progressive neurodegenerative disorder characterised by the loss of upper and/or lower motor neurons. SMA is the leading genetic cause of infant mortality with an incidence of 1 in 6000 live births and a carrier frequency of about 1 in 50. Different types of disease (from SMAI to SMAV) have been described based on clinical severity and age of onset. The SMA-determining gene, Survival of Motor Neurons (SMN), is part of a 500 kb-inverted duplication on chromosome 5q13. Within the duplicated genes SMN1 and SMN2 can be found. Most (95%) SMA patients have deletions or conversion events of SMN1. The SMN2 gene primarily produces a transcript which lacks exon 7 and of which only 10-20% of its protein is functional. Although a variety of therapeutic trials are ongoing, only life-prolonging treatments are being developed. The knowledge gained regarding the pathogenesis of SMA remains limited, because the precise function of SMN is not yet known. Furthermore, it is not quite clear why motor neurons of the patients are the only cell type for which SMN expression level are unadequate for their normal activity, even if the affected genes have “housekeeping” functions. Both pharmacological or genetic approaches have been conducted for the therapy of SMA. Moreover, stem cells provide a further aspect to be analysed. In fact, the genetic modification of a small number of stem cells could give rise to a dividing population of therapeutic cells. These innovative approaches when united could be usefully adopted to replace lost cells and at the same time protect surviving motor neurons in SMA patients.
Keywords: Spinal Muscular Atrophy, gene therapy, gene targeting, pharmacological treatment, survival motor neuron gene
Current Genomics
Title: Therapeutic Strategies for the Treatment of Spinal Muscular Atrophy (SMA) Disease
Volume: 7 Issue: 6
Author(s): Federica Sangiuolo, Annalisa Botta, Antonio Filareto, Paola Spitalieri and Giuseppe Novelli
Affiliation:
Keywords: Spinal Muscular Atrophy, gene therapy, gene targeting, pharmacological treatment, survival motor neuron gene
Abstract: Spinal Muscular Atrophy (SMA) is a progressive neurodegenerative disorder characterised by the loss of upper and/or lower motor neurons. SMA is the leading genetic cause of infant mortality with an incidence of 1 in 6000 live births and a carrier frequency of about 1 in 50. Different types of disease (from SMAI to SMAV) have been described based on clinical severity and age of onset. The SMA-determining gene, Survival of Motor Neurons (SMN), is part of a 500 kb-inverted duplication on chromosome 5q13. Within the duplicated genes SMN1 and SMN2 can be found. Most (95%) SMA patients have deletions or conversion events of SMN1. The SMN2 gene primarily produces a transcript which lacks exon 7 and of which only 10-20% of its protein is functional. Although a variety of therapeutic trials are ongoing, only life-prolonging treatments are being developed. The knowledge gained regarding the pathogenesis of SMA remains limited, because the precise function of SMN is not yet known. Furthermore, it is not quite clear why motor neurons of the patients are the only cell type for which SMN expression level are unadequate for their normal activity, even if the affected genes have “housekeeping” functions. Both pharmacological or genetic approaches have been conducted for the therapy of SMA. Moreover, stem cells provide a further aspect to be analysed. In fact, the genetic modification of a small number of stem cells could give rise to a dividing population of therapeutic cells. These innovative approaches when united could be usefully adopted to replace lost cells and at the same time protect surviving motor neurons in SMA patients.
Export Options
About this article
Cite this article as:
Sangiuolo Federica, Botta Annalisa, Filareto Antonio, Spitalieri Paola and Novelli Giuseppe, Therapeutic Strategies for the Treatment of Spinal Muscular Atrophy (SMA) Disease, Current Genomics 2006; 7 (6) . https://dx.doi.org/10.2174/138920206778948691
DOI https://dx.doi.org/10.2174/138920206778948691 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Non-steroidal Anti-inflammatory Drugs and Cyclooxygenase in Alzheimer s Disease
Current Drug Targets Medicinal Chemistry of A2A Adenosine Receptor Antagonists
Current Topics in Medicinal Chemistry Antidotal Effects of Curcumin Against Agents-Induced Cardiovascular Toxicity
Cardiovascular & Hematological Disorders-Drug Targets Cholinesterase Inhibitor 6-Chlorotacrine - In Vivo Toxicological Profile and Behavioural Effects
Current Alzheimer Research Current Clinical Applications of In Vivo Magnetic Resonance Spectroscopy and Spectroscopic Imaging
Current Medical Imaging Animal Models for Testing Anti-Prion Drugs
Current Topics in Medicinal Chemistry The Potential Therapeutic Role of the HMGB1-TLR Pathway in Epilepsy
Current Drug Targets Recent Developments in the Regulation of Monoamine Oxidase Form and Function: Is the Current Model Restricting Our Understanding of the Breadth of Contribution of Monoamine Oxidase to Brain [dys]Function?
Current Topics in Medicinal Chemistry Aptamers as Innovative Diagnostic and Therapeutic Agents in the Central Nervous System
CNS & Neurological Disorders - Drug Targets Mitochondria as a Therapeutic Target in Alzheimers Disease and Diabetes
CNS & Neurological Disorders - Drug Targets “Connecting the Dots” from Blood Brain Barrier Dysfunction to Neuroinflammation and Alzheimer’s Disease
Current Neurovascular Research Pentameric models as alternative molecular targets for the design of new antiaggregant agents
Current Protein & Peptide Science Are Circulating Monocytes as Microglia Orthologues Appropriate Biomarker Targets for Neuronal Diseases? (Supplementry Table)
Central Nervous System Agents in Medicinal Chemistry Glutaminase Isoenzymes as Key Regulators in Metabolic and Oxidative Stress Against Cancer
Current Molecular Medicine Natural Antioxidants: Therapeutic Prospects for Cancer and Neurological Diseases
Mini-Reviews in Medicinal Chemistry Prolyl-Specific Peptidases and Their Inhibitors in Biological Processes
Current Chemical Biology Structure and Function Relationship in Prolyl Oligopeptidase
CNS & Neurological Disorders - Drug Targets Therapeutic Effects of Rivastigmine and Alfa-Lipoic Acid Combination in the Charles Bonnet Syndrome: Electroencephalography Correlates
Current Clinical Pharmacology N-Aryl-5-aminopyrazole: A Versatile Architecture in Medicinal Chemistry
Mini-Reviews in Medicinal Chemistry Flavonoids and its Neuroprotective Effects on Brain Ischemia and Neurodegenerative Diseases
Current Drug Targets