Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

白藜芦醇挽救了Tau病小鼠模型中Tau诱导的认知缺陷和神经病理学

卷 16, 期 8, 2019

页: [710 - 722] 页: 13

弟呕挨: 10.2174/1567205016666190801153751

价格: $65

摘要

背景:阿尔茨海默氏病(AD)的特征是存在由微管相关蛋白tau组装的细胞外淀粉样β(Aβ)斑块和神经内神经原纤维缠结。越来越多的证据表明,tau病理学在AD进展中起重要作用。先前已证明白藜芦醇(RSV)可通过抑制Aβ生成和Aβ诱导的神经细胞毒性来发挥抗AD的神经保护作用,但其对tau病理学的作用尚不清楚。 方法:通过硫黄素T荧光和透射电镜观察RSV对tau聚集的影响。通过MTT测定评估RSV对tau寡聚物诱导的细胞毒性的作用,并通过免疫细胞化学确定N2a细胞对胞外tau的吸收。对6个月大的PS19雄性小鼠每天一次口服RSV或赋形剂治疗5周。使用莫里斯水迷宫测试,对象识别测试和Y迷宫测试确定认知能力。通过免疫印迹,免疫染色和ELISA分别评估了小鼠脑中的磷酸化tau蛋白,胶质增生,促炎细胞因子如TNF-α和IL-1β以及包括突触素和PSD95在内的突触蛋白的水平。 结果:RSV显着抑制tau聚集和tau寡聚物诱导的细胞毒性,并阻止N2a细胞摄取胞外tau寡聚物。当应用于PS19小鼠时,RSV治疗可有效挽救认知缺陷,减少小鼠大脑中磷酸化tau,神经发炎和突触丧失的水平。 结论:这些发现表明RSV对于AD和其他疾病具有潜在的治疗潜力。

关键词: 白藜芦醇,阿尔茨海默氏病,tau,低聚物,神经炎症,突触丧失。

[1]
Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 368(9533): 387-403. 2006
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[2]
Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer’s Disease Therapy and Prevention Strategies. Annu Rev Med 68: 413-30. 2017
[http://dx.doi.org/10.1146/annurev-med-042915-103753] [PMID: 28099083]
[3]
Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14(7): 399-415. 2018
[http://dx.doi.org/10.1038/s41582-018-0013-z] [PMID: 29895964]
[4]
Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci 17(1): 5-21. 2016
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[5]
Vershinin M, Carter BC, Razafsky DS, King SJ, Gross SP. Multiple-motor based transport and its regulation by Tau. Proc Natl Acad Sci USA 104(1): 87-92. 2007
[http://dx.doi.org/10.1073/pnas.0607919104] [PMID: 17190808]
[6]
Dixit R, Ross JL, Goldman YE, Holzbaur EL. Differential regulation of dynein and kinesin motor proteins by tau. Science 319(5866): 1086-9. 2008
[http://dx.doi.org/10.1126/science.1152993] [PMID: 18202255]
[7]
Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32(3): 150-9. 2009
[http://dx.doi.org/10.1016/j.tins.2008.11.007] [PMID: 19162340]
[8]
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13): 4913-7. 1986
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[9]
Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21(10): 1154-62. 2015
[http://dx.doi.org/10.1038/nm.3951] [PMID: 26390242]
[10]
Wang JZ, Grundke-Iqbal I, Iqbal K. Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2(8): 871-5. 1996
[http://dx.doi.org/10.1038/nm0896-871] [PMID: 8705855]
[11]
Mena R, Edwards PC, Harrington CR, Mukaetova-Ladinska EB, Wischik CM. Staging the pathological assembly of truncated tau protein into paired helical filaments in Alzheimer’s disease. Acta Neuropathol 91(6): 633-41. 1996
[http://dx.doi.org/10.1007/s004010050477] [PMID: 8781663]
[12]
Ittner A, Ittner LM. Dendritic tau in Alzheimer’s disease. Neuron 99(1): 13-27. 2018
[http://dx.doi.org/10.1016/j.neuron.2018.06.003] [PMID: 30001506]
[13]
Li C, Götz J. Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 16(12): 863-83. 2017
[http://dx.doi.org/10.1038/nrd.2017.155] [PMID: 28983098]
[14]
Novak P, Kontsekova E, Zilka N, Novak M. Ten years of tau-targeted immunotherapy: the path walked and the roads ahead. Front Neurosci 12: 798. 2018
[http://dx.doi.org/10.3389/fnins.2018.00798] [PMID: 30450030]
[15]
Sigurdsson EM. Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. J Alzheimers Dis 64(s1): S555-65. 2018
[http://dx.doi.org/10.3233/JAD-179937] [PMID: 29865056]
[16]
Sawda C, Moussa C, Turner RS. Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 2017. 1403(1): 142-9.
[http://dx.doi.org/10.1111/nyas.13431] [PMID: 28815614]
[17]
Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 14(1): 1. 2017
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[18]
Feng Y, Wang XP, Yang SG, Wang YJ, Zhang X, Du XT, et al. Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30(6): 986-95. 2009
[http://dx.doi.org/10.1016/j.neuro.2009.08.013] [PMID: 19744518]
[19]
Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR. Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6: 218. 2014
[http://dx.doi.org/10.3389/fnagi.2014.00218] [PMID: 25309423]
[20]
Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, et al. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct 9(12): 6414-26. 2018
[http://dx.doi.org/10.1039/C8FO00964C] [PMID: 30462117]
[21]
Anandhan A, Tamilselvam K, Vijayraja D, Ashokkumar N, Rajasankar S, Manivasagam T. Resveratrol attenuates oxidative stress and improves behaviour in 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) challenged mice. Ann Neurosci 17(3): 113-9. 2010
[http://dx.doi.org/10.5214/ans.0972-7531.1017304] [PMID: 25205886]
[22]
Pasinetti GM, Wang J, Marambaud P, Ferruzzi M, Gregor P, Knable LA, et al. Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp Neurol 232(1): 1-6. 2011
[http://dx.doi.org/10.1016/j.expneurol.2011.08.014] [PMID: 21907197]
[23]
Naia L, Rosenstock TR, Oliveira AM, Oliveira-Sousa SI, Caldeira GL, Carmo C, et al. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington’s disease models. Mol Neurobiol 54(7): 5385-99. 2017
[http://dx.doi.org/10.1007/s12035-016-0048-3] [PMID: 27590140]
[24]
Song L, Chen L, Zhang X, Li J, Le W. Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. BioMed Res Int 2014483501 2014
[http://dx.doi.org/10.1155/2014/483501] [PMID: 25057490]
[25]
Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Resveratrol: a focus on several neurodegenerative diseases. Oxid Med Cell Longev 2015392169 2015
[http://dx.doi.org/10.1155/2015/392169] [PMID: 26180587]
[26]
Drygalski K, Fereniec E, Koryciński K, Chomentowski A, Kiełczewska A, Odrzygóźdź C, et al. Resveratrol and Alzheimer’s disease. From molecular pathophysiology to clinical trials. Exp Gerontol 113: 36-47. 2018
[http://dx.doi.org/10.1016/j.exger.2018.09.019] [PMID: 30266470]
[27]
Jhang KA, Park JS, Kim HS, Chong YH. Resveratrol ameliorates tau hyperphosphorylation at ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: implication of erk1/2 and gsk-3β signaling cascades. J Agric Food Chem 65(44): 9626-34. 2017
[http://dx.doi.org/10.1021/acs.jafc.7b03252] [PMID: 29022339]
[28]
Schweiger S, Matthes F, Posey K, Kickstein E, Weber S, Hettich MM, et al. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci Rep 7(1): 13753. 2017
[http://dx.doi.org/10.1038/s41598-017-12974-4] [PMID: 29062069]
[29]
He X, Li Z, Rizak JD, Wu S, Wang Z, He R, et al. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Front Neurosci 10: 598. 2017
[http://dx.doi.org/10.3389/fnins.2016.00598] [PMID: 28197064]
[30]
Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85(16): 1383-91. 2015
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[31]
Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3): 337-51. 2007
[http://dx.doi.org/10.1016/j.neuron.2007.01.010] [PMID: 17270732]
[32]
Li W, Lee VM. Characterization of two VQIXXK motifs for tau fibrillization in vitro. Biochemistry 45(51): 15692-701. 2006
[http://dx.doi.org/10.1021/bi061422+] [PMID: 17176091]
[33]
Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 27(14): 3650-62. 2007
[http://dx.doi.org/10.1523/JNEUROSCI.0587-07.2007] [PMID: 17409229]
[34]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 4: 575-90. 2018
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[35]
Tracy TE, Gan L. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. Curr Opin Neurobiol 51: 134-8. 2018
[http://dx.doi.org/10.1016/j.conb.2018.04.027] [PMID: 29753269]
[36]
Zhu X, Wu C, Qiu S, Yuan X, Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr Metab (Lond) 14: 60. 2017
[http://dx.doi.org/10.1186/s12986-017-0217-z] [PMID: 29018489]
[37]
Zordoky BN, Robertson IM, Dyck JR. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta 1852(6): 1155-77. 2015
[http://dx.doi.org/10.1016/j.bbadis.2014.10.016] [PMID: 25451966]
[38]
Nelson PT, Jicha GA, Schmitt FA, Liu H, Davis DG, Mendiondo MS, et al. Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol 66(12): 1136-46. 2007
[http://dx.doi.org/10.1097/nen.0b013e31815c5efb] [PMID: 18090922]
[39]
Lee SH, Le Pichon CE, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-mediated targeting of tau In vivo does not require effector function and microglial engagement. Cell Rep 16(6): 1690-700. 2016
[http://dx.doi.org/10.1016/j.celrep.2016.06.099] [PMID: 27475227]
[40]
de la Monte SM. Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease. Drugs 77(1): 47-65. 2017
[http://dx.doi.org/10.1007/s40265-016-0674-0] [PMID: 27988872]
[41]
Llorens-Martín M, Jurado J, Hernández F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 7: 46. 2014
[PMID: 24904272]
[42]
Porquet D, Casadesús G, Bayod S, Vicente A, Canudas AM, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr) 35(5): 1851-65. 2013
[http://dx.doi.org/10.1007/s11357-012-9489-4] [PMID: 23129026]
[43]
Lindwall G, Cole RD. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8): 5301-5. 1984
[PMID: 6425287]
[44]
Kidd M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197: 192-3. 1963
[http://dx.doi.org/10.1038/197192b0] [PMID: 14032480]
[45]
Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem 112(6): 1353-67. 2010
[http://dx.doi.org/10.1111/j.1471-4159.2009.06511.x] [PMID: 19943854]
[46]
Shafiei SS, Guerrero-Muñoz MJ, Castillo-Carranza DL. Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front Aging Neurosci 9: 83. 2017
[http://dx.doi.org/10.3389/fnagi.2017.00083] [PMID: 28420982]
[47]
Cárdenas-Aguayo Mdel C, Gómez-Virgilio L, DeRosa S, Meraz-Ríos MA. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem Neurosci 5(12): 1178-91. 2014
[http://dx.doi.org/10.1021/cn500148z] [PMID: 25268947]
[48]
Lasagna-Reeves CA, Sengupta U, Castillo-Carranza D, Gerson JE, Guerrero-Munoz M, Troncoso JC, et al. The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2: 56. 2014
[http://dx.doi.org/10.1186/2051-5960-2-56] [PMID: 24887264]
[49]
Heneka MT, Carson MJ, El Khoury J. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4): 388-405. 2015
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[50]
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 217(2): 459-72. 2018
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[51]
Renaud J, Martinoli MG. Resveratrol as a protective molecule for neuroinflammation: a review of mechanisms. Curr Pharm Biotechnol 15(4): 318-29. 2014
[http://dx.doi.org/10.2174/1389201015666140617101332] [PMID: 24938890]
[52]
Dejanovic B, Huntley MA, De Mazière A. Meilandt WJ4, Wu T4, Srinivasan K, et alChanges in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron 100(6): 1322-1336.e7. 2018
[http://dx.doi.org/10.1016/j.neuron.2018.10.014] [PMID: 30392797]
[53]
Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4): 505-8. 2014
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[54]
Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM. Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 30(21): 7281-9. 2010
[http://dx.doi.org/10.1523/JNEUROSCI.0490-10.2010] [PMID: 20505094]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy