[1]
Thomas, S.M.; Grandis, J.R. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat. Rev., 2004, 30(3), 255-268.
[2]
Kaur, J.; Tikoo, K. p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(5), 1028-1040.
[3]
Brannon-Peppas, L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int. J. Pharm., 1995, 116(1), 1-9.
[4]
Choonara, B.F.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Pillay, V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol. Adv., 2014, 32(7), 1269-1282.
[5]
Yadav, K.S.; Sawant, K.K. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation. Curr. Drug Deliv., 2010, 7(1), 51-64.
[6]
Mehta, A.K.; Yadav, K.S.; Sawant, K.K. Nimodipine loaded PLGA nanoparticles: Formulation optimization using factorial design, characterization and in vitro evaluation. Curr. Drug Deliv., 2007, 4(3), 185-193.
[7]
Prajapati, V.D.; Jani, G.K.; Kapadia, J.R. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin. Drug Deliv., 2015, 12(8), 1283-1299.
[8]
Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci., 2014, 15(3), 3640-3659.
[9]
Zimmer, A.; Kreuter, J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev., 1995, 16, 61-73.
[10]
Gajra, B.; Dalwadi, C.; Patel, R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design. DARU J. Pharm. Sci., 2015, 23(1), 3.
[11]
Soni, G.; Yadav, K.S. High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharm. Dev. Technol., 2014, 19(6), 651-661.
[12]
Saini, R.; Singh, S.K.; Verma, P.R.P. Evaluation of carvedilol-loaded microsponges with nanometric pores using response surface methodology. J. Exp. Nanosci., 2014, 9(8), 831-850.
[13]
Bragagni, M.; Gil-Alegre, M.E.; Mura, P.; Cirri, M.; Ghelardini, C.; Mannelli, L.D.C. Improving the therapeutic efficacy of prilocaine by PLGA microparticles: Preparation, characterization and in vivo evaluation. Int. J. Pharm., 2018, 547(1), 24-30.
[14]
Patil, S.B.; Sawant, K.K. Development, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal delivery. J. Microencapsul., 2009, 26(5), 432-443.
[15]
Gurunathan, S.; Jeong, J.K.; Han, J.W.; Zhang, X.F.; Park, J.H.; Kim, J.H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett., 2015, 10(1), 35.
[16]
Yadav, K.S.; Jacob, S.; Sachdeva, G.; Sawant, K.K. Intracellular delivery of etoposide loaded biodegradable nanoparticles: Cytotoxicity and cellular uptake studies. J. Nanosci. Nanotechnol., 2011, 11(8), 6657-6667.
[17]
Srinivas, N.S.K.; Verma, R.; Kulyadi, G.P.; Kumar, L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: Formulation, in vitro, and in vivo characterization. Int. J. Nanomedicine, 2017, 12, 15.
[18]
Liang, Y.C.; Wu, G.; Cheng, J.; Yu, D.D.; Wu, H.G. Gefitinib-induced intestinal obstruction in advanced non-small cell lung carcinoma: A case report. Oncol. Lett., 2015, 10(3), 1277-1280.
[19]
Leech, D.P.; Scott, J.T. Nanotechnology documentary standards. J. Technol. Transf., 2017, 42(1), 78-97.
[20]
Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G.Y. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencap., 2010, 27(3), 187-197.
[21]
Soni, G.; Yadav, K.S. Fast-dissolving films of sumatriptan succinate: factorial design to optimize in vitro dispersion time. J. Pharm. Innov., 2015, 10(2), 166-174.
[22]
Kaur, G.; Rath, G.; Heer, H.; Goyal, A.K. Optimization of protocell of silica nanoparticles using 3 2 factorial designs. AAPS PharmSciTech, 2012, 13(1), 167-173.
[23]
Chen, W.; Palazzo, A.; Hennink, W.E.; Kok, R.J. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol. Pharm., 2016, 14(2), 459-467.
[24]
Özkan, Y.; Dıkmen, N.; Işimer, A.; Günhan, Ö.; Aboul-Enein, H.Y. Clarithromycin targeting to lung: Characterization, size distribution and in vivo evaluation of the human serum albumin microspheres. Farmaco, 2000, 55(4), 303-307.
[25]
Ramaiah, B.; Nagaraja, S.H.; Kapanigowda, U.G.; Boggarapu, P.R.; Subramanian, R. High azithromycin concentration in lungs by way of bovine serum albumin microspheres as targeted drug delivery: Lung targeting efficiency in albino mice. DARU J. Pharm. Sci., 2016, 24(1), 14.
[26]
Ghasemian, E.; Vatanara, A.; Najafabadi, A.R.; Rouini, M.R.; Gilani, K.; Darabi, M. Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design. DARU J. Pharm. Sci., 2013, 21(1), 68.
[27]
Kohane, D.S.; Langer, R. Biocompatibility and drug delivery systems. Chem. Sci., 2010, 1(4), 441-446.
[28]
Kohane, D.S.; Smith, S.E.; Louis, D.N.; Colombo, G.; Ghoroghchian, P.; Hunfeld, N.G.; Berde, C.B.; Langer, R. Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain, 2003, 104(1-2), 415-421.