[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: IARC Cancer Base No. 11; IARC Publications 2013, 2013.
[2]
Patel, A.R.; Klein, E.A. Risk factors for prostate cancer. Nat. Clin. Pract. Urol., 2009, 6(2), 87-95.
[3]
Chodak, G. Prostate cancer: Epidemiology, screening, and biomarkers. Rev. Urol., 2006, 8(2), S3-S8.
[4]
Quaresma, M.; Coleman, M.P.; Rachet, B. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971-2011: A population-based study. Lancet, 2015, 385(9974), 1206-1218.
[5]
Dong, J.T. Prevalent mutations in prostate cancer. J. Cell. Biochem., 2006, 97(3), 433-447.
[6]
Wang, E.; Lenferink, A.; O’Connor-McCourt, M. Cancer systems biology: Exploring cancer-associated genes on cellular networks. Cell. Mol. Life Sci., 2007, 64(14), 1752-1762.
[7]
Kreeger, P.K.; Lauffenburger, D.A. Cancer systems biology: A network modeling perspective. Carcinogenesis, 2010, 31(1), 2-8.
[8]
de Matos Simoes, R.; Tripathi, S.; Emmert-Streib, F. Organizational structure of the peripheral gene regulatory network in B-cell lymphoma. BMC Syst. Biol., 2012, 6, 38.
[9]
de Matos Simoes, R.; Dehmer, M.; Emmert-Streib, F. B-cell lymphoma gene regulatory networks: Biological consistency among inference methods. Front. Genet., 2013, 4, 281.
[10]
Emmert-Streib, F.; de Matos Simoes, R.; Glazko, G.; McDade, S.; Haibe-Kains, B.; Holzinger, A.; Dehmer, M.; Campbell, F. Functional and genetic analysis of the colon cancer network. BMC Bioinformatics, 2014, 15(Suppl. 6), S6.
[11]
Emmert-Streib, F.; de Matos Simoes, R.; Mullan, P.; Haibe-Kains, B.; Dehmer, M. The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks. Front. Genet., 2014, 5, 15.
[12]
de Matos Simoes, R.; Emmert-Streib, F. Bagging statistical network inference from large-scale gene expression data. PLoS One, 2012, 7(3), e33624.
[13]
Hecker, M.; Lambeck, S.; Toepfer, S.; van Someren, E.; Guthke, R. Gene regulatory network inference: Data integration in dynamic models - A review. Biosystems, 2009, 96(1), 86-103.
[14]
Hartemink, A.J. Reverse engineering gene regulatory networks. Nat. Biotechnol., 2005, 23(5), 554-555.
[15]
Emmert-Streib, F.; Dehmer, M.; Haibe-Kains, B. Untangling statistical and biological models to understand network inference: The need for a genomics network ontology. Front. Genet., 2014, 5, 299.
[16]
Emmert-Streib, F.; Dehmer, M.; Haibe-Kains, B. Gene regulatory networks and their applications: Understanding biological and medical problems in terms of networks. Front. Cell Dev. Biol., 2014, 2, 38.
[17]
Wang, Y.; Joshi, T.; Zhang, X-S.; Xu, D.; Chen, L. Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics, 2006, 22(19), 2413-2420.
[18]
Li, B.; Ruotti, V.; Stewart, R.M.; Thomson, J.A.; Dewey, C.N. RNA-seq gene expression estimation with read mapping uncertainty. Bioinformatics, 2010, 26(4), 493-500.
[19]
Newton, M.A.; Kendziorski, C.M.; Richmond, C.S.; Blattner, F.R.; Tsui, K.W. On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. J. Comput. Biol., 2001, 8(1), 37-52.
[20]
Altay, G.; Emmert-Streib, F. Structural influence of gene networks on their inference: Analysis of c3net. Biol. Direct, 2011, 6(1), 31.
[21]
Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer, 2004, 4(3), 177-183.
[22]
Dijkstra, E.W. A note on two problems in connexion with graphs. Numerische Mathematik., 1959, 1(1), 269-271.
[23]
de Matos Simoes, R.; Dehmer, M.; Emmert-Streib, F. Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information. BMC Genomics, 2013, 14(1), 324.
[24]
Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; Hornik, K.; Hothorn, T.; Huber, W.; Iacus, S.; Irizarry, R.; Leisch, F.; Li, C.; Maechler, M.; Rossini, A.J.; Sawitzki, G.; Smith, C.; Smyth, G.; Tierney, L.; Yang, J.Y.; Zhang, J. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol., 2004, 5(10), R80.
[25]
Elis, W.; Triantafellow, E.; Wolters, N.M.; Sian, K.R.; Caponigro, G.; Borawski, J.; Gaither, L.A.; Murphy, L.O.; Finan, P.M.; Mackeigan, J.P. Down-regulation of class ii phosphoinositide 3-kinase α expression below a critical threshold induces apoptotic cell death. Mol. Cancer Res., 2008, 6(4), 614-623.
[26]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-kinase-akt pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[27]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[28]
Di Lorenzo, G.; Tortora, G.; D’Armiento, F.P.; De Rosa, G.; Staibano, S.; Autorino, R.; D’Armiento, M.; De Laurentiis, M.; De Placido, S.; Catalano, G.; Bianco, A.R.; Ciardiello, F. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin. Cancer Res., 2002, 8(11), 3438-3444.
[29]
Platz, E.A.; Pollak, M.N.; Leitzmann, M.F.; Stampfer, M.J.; Willett, W.C.; Giovannucci, E. Plasma insulin- like growth factor-1 and binding protein-3 and subsequent risk of prostate cancer in the PSA era. Cancer Causes Control, 2005, 16(3), 255-262.
[30]
Chan, J.M.; Stampfer, M.J.; Giovannucci, E.; Gann, P.H.; Ma, J.; Wilkinson, P.; Hennekens, C.H.; Pollak, M. Plasma insulin-like growth factor-i and prostate cancer risk: a prospective study. Science, 1998, 279(5350), 563-566.
[31]
Bhatia-Gaur, R.; Donjacour, A.A.; Sciavolino, P.J.; Kim, M.; Desai, N.; Young, P.; Norton, C.R.; Gridley, T.; Cardiff, R.D.; Cunha, G.R.; Abate-Shen, C.; Shen, M.M. Roles for nkx3.1 in prostate development and cancer. Genes Dev., 1999, 13(8), 966-977.
[32]
Eagle, L.R.; Yin, X.; Brothman, A.R.; Williams, B.J.; Atkin, N.B.; Prochownik, E.V. Mutation of the mxi1 gene in prostate cancer. Nat. Genet., 1995, 9(3), 249-255.
[33]
Umbas, R.; Isaacs, W.B.; Bringuier, P.P.; Schaafsma, H.E.; Karthaus, H.F.; Oosterhof, G.O.; Debruyne, F.M.; Schalken, J.A. Decreased e-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res., 1994, 54(14), 3929-3933.
[34]
Kleinerman, D.I.; Troncoso, P.; Lin, S.H.; Pisters, L.L.; Sherwood, E.R.; Brooks, T.; von Eschenbach, A.C.; Hsieh, J.T. Consistent expression of an epithelial cell adhesion molecule (c-cam) during human prostate development and loss of expression in prostate cancer: Implication as a tumor suppressor. Cancer Res., 1995, 55(6), 1215-1220.
[35]
Wolk, A.; Mantzoros, C.S.; Andersson, S.O.; Bergström, R.; Signorello, L.B.; Lagiou, P.; Adami, H.O.; Trichopoulos, D. Insulin-like growth factor 1 and prostate cancer risk: A population-based, case-control study. J. Natl. Cancer Inst., 1998, 90(12), 911-915.
[36]
Wikström, P.; Stattin, P.; Franck-Lissbrant, I.; Damber, J.E.; Bergh, A. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate, 1998, 37(1), 19-29.
[37]
Olapade-Olaopa, E.O.; Moscatello, D.K.; MacKay, E.H.; Horsburgh, T.; Sandhu, D.P.; Terry, T.R.; Wong, A.J.; Habib, F.K. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br. J. Cancer, 2000, 82(1), 186-194.
[38]
Oren, M. Decision making by p53: Life, death and cancer. Cell Death Differ., 2003, 10(4), 431-442.
[39]
Farnebo, M.; Bykov, V.J.; Wiman, K.G. The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem. Biophys. Res. Commun., 2010, 396(1), 85-89.
[40]
Enari, M.; Ohmori, K.; Kitabayashi, I.; Taya, Y. Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev., 2006, 20(9), 1087-1099.
[41]
Shimada, H.; Matsubara, H.; Shiratori, T.; Shimizu, T.; Miyazaki, S.; Okazumi, S.; Nabeya, Y.; Shuto, K.; Hayashi, H.; Tanizawa, T.; Nakatani, Y.; Nakasa, H.; Kitada, M.; Ochiai, T. Phase i/ii adenovi- ral p53 gene therapy for chemoradiation resistant advanced esophageal squamous cell carcinoma. Cancer Sci., 2006, 97(6), 554-561.
[42]
Ventura, A.; Kirsch, D.G.; McLaughlin, M.E.; Tuveson, D.A.; Grimm, J.; Lintault, L.; Newman, J.; Reczek, E.E.; Weissleder, R.; Jacks, T. Restoration of p53 function leads to tumour regression in vivo. Nature, 2007, 445(7128), 661-665.
[43]
Varambally, S.; Dhanasekaran, S.M.; Zhou, M.; Barrette, T.R.; Kumar-Sinha, C.; Sanda, M.G.; Ghosh, D.; Pienta, K.J.; Sewalt, R.G.; Otte, A.P.; Rubin, M.A.; Chinnaiyan, A.M. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002, 419(6907), 624-629.
[44]
Bryant, R.J.; Cross, N.A.; Eaton, C.L.; Hamdy, F.C.; Cunliffe, V.T. EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate, 2007, 67(5), 547-556.
[45]
Choi, J.H.; Song, Y.S.; Yoon, J.S.; Song, K.W.; Lee, Y.Y. Enhancer of zeste homolog 2 expression is associated with tumor cell proliferation and metastasis in gastric cancer. APMIS, 2010, 118(3), 196-202.
[46]
Yan, M.; Xu, H.; Waddell, N.; Shield-Artin, K.; Haviv, I. kCon Fab, authors; McKay, M.J.; Fox, S.B. Enhanced RAD21 cohesin expression confers poor prognosis in BRCA2 and BRCAX, but not BRCA1 familial breast cancers. Breast Cancer Res., 2012, 14(2), R69.
[47]
Mitra, A.V.; Bancroft, E.K.; Barbachano, Y.; Page, E.C.; Foster, C.S.; Jameson, C.; Mitchell, G.; Lindeman, G.J.; Stapleton, A.; Suthers, G.; Evans, D.G.; Cruger, D.; Blanco, I.; Mercer, C.; Kirk, J.; Maehle, L.; Hodgson, S.; Walker, L.; Izatt, L.; Douglas, F.; Tucker, K.; Dorkins, H.; Clowes, V.; Male, A.; Donaldson, A.; Brewer, C.; Doherty, R.; Bulman, B.; Osther, P.J.; Salinas, M.; Eccles, D.; Axcrona, K.; Jobson, I.; Newcombe, B.; Cybulski, C.; Rubinstein, W.S.; Buys, S.; Townshend, S.; Friedman, E.; Domchek, S.; Ramon, Y.; Cajal, T.; Spigelman, A.; Teo, S.H.; Nicolai, N.; Aaronson, N.; Ardern-Jones, A.; Bangma, C.; Dearnaley, D.; Eyfjord, J.; Falconer, A.; Grönberg, H.; Hamdy, F.; Johannsson, O.; Khoo, V.; Kote-Jarai, Z.; Lilja, H.; Lubinski, J.; Melia, J.; Moynihan, C.; Peock, S.; Rennert, G.; Schröder, F.; Sibley, P.; Suri, M.; Wilson, P.; Bignon, Y.J.; Strom, S.; Tischkowitz, M.; Liljegren, A.; Ilencikova, D.; Abele, A.; Kyriacou, K.; van Asperen, C.; Kiemeney, L. IMPACT Study Collaborators Easton, D.F.; Eeles, R.A. Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: Preliminary analysis of the results of the IMPACT study. BJU Int., 2011, 107(1), 28-39.
[48]
de Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer, 2006, 6(1), 24-37.
[49]
Vasto, S.; Carruba, G.; Candore, G.; Italiano, E.; Di Bona, D.; Caruso, C. Inflammation and prostate cancer. Future Oncol., 2008, 4(5), 637-645.
[50]
Weiss, T.W.; Simak, R.; Kaun, C.; Rega, G.; Pflüger, H.; Maurer, G.; Huber, K.; Wojta, J. Oncostatin M and IL-6 induce u-PA and VEGF in prostate cancer cells and correlate in vivo. Anticancer Res., 2011, 31(10), 3273-3278.
[51]
Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer, 2008, 8(8), 579-591.
[52]
Meyer-Siegler, K.L.; Iczkowski, K.A.; Leng, L.; Bucala, R.; Vera, P.L. Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J. Immunol., 2006, 177(12), 8730-8739.
[53]
Ciavarra, R.P.; Somers, K.D.; Brown, R.R.; Glass, W.F.; Consolvo, P.J.; Wright, G.L.; Schellhammer, P.F. Flt3-ligand induces transient tumor regression in an ectopic treatment model of major histocompatibility complex-negative prostate cancer. Cancer Res., 2000, 60(8), 2081-2084.
[54]
Huang, S.P.; Lan, Y.H.; Lu, T.L.; Pao, J.B.; Chang, T.Y.; Lee, H.Z.; Yang, W.H.; Hsieh, C.J.; Chen, L.M.; Huang, L.C.; Ting, W.C.; Bao, B.Y. Clinical significance of runt-related transcription factor 1 polymorphism in prostate cancer. BJU Int., 2011, 107(3), 486-492.
[55]
Deb, S.; Huiling, X.; Thorne, H.; Willems-Jones, A.; Clouston, D.; Bolton, D.; Ramsay, R.; Fox, S.B. Rad21 overexpression is frequently observed in BRCA-X prostate cancers. Hered. Cancer Clin. Pract., 2012, 10(Suppl. 2), A59.
[56]
Zhan, P.; Ji, Y.N.; Yu, L.K. VEGF is associated with the poor survival of patients with prostate cancer: A meta-analysis. Transl. Androl. Urol., 2013, 2(2), 99-105.
[57]
Wang, Y.Z.; Wong, Y.C. Sex hormone-induced prostatic carcinogenesis in the noble rat: The role of insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) in the development of prostate cancer. Prostate, 1998, 35(3), 165-177.
[58]
Zhong, H.; Semenza, G.L.; Simons, J.W.; De Marzo, A.M. Up-regulation of hypoxia-inducible factor 1α is an early event in prostate carcinogenesis. Cancer Detect. Prev., 2004, 28(2), 88-93.
[59]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[60]
R Core Team.R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014.