[1]
Toma, J.G.; Akhavan, M.; Fernandes, K.J.; Barnabé-Heider, F.; Sadikot, A.; Kaplan, D.R.; Miller, F.D. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol., 2001, 3(9), 778-784.
[2]
Dyce, P.W.; Zhu, H.; Craig, J.; Li, J. Stem cells with multilineage potential derived from porcine skin. Biochem. Biophys. Res. Commun., 2004, 316(3), 651-658.
[3]
Fernandes, K.J.; McKenzie, I.A.; Mill, P.; Smith, K.M.; Akhavan, M.; Barnabé-Heider, F.; Biernaskie, J.; Junek, A.; Kobayashi, N.R.; Toma, J.G.; Kaplan, D.R.; Labosky, P.A.; Rafuse, V.; Hui, C.C.; Miller, F.D. A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol., 2004, 6(11), 1082-1093.
[4]
Kang, H.K.; Min, S.K.; Jung, S.Y.; Jung, K.; Jang, D.H.; Kim, O.B.; Chun, G.S.; Lee, Z.H.; Min, B.M. The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo. Int. J. Mol. Med., 2011, 28(6), 1001-1011.
[5]
Mandai, M.; Kurimoto, Y.; Takahashi, M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med., 2017, 377(8), 792-793.
[6]
Biernaskie, J.; Miller, F. Skin-derived precursors (SKPs): In vivo cell fate is limited to the neural crest lineage, and is determined by tissue-specific factors. Int. J. Dev. Neurosci., 2006, 24(8), 514.
[7]
Zhao, M.T.; Whitworth, K.M.; Zhang, X.; Zhao, J.; Miao, Y.L.; Zhang, Y.; Prather, R.S. Deciphering the mesodermal potency of porcine skin-derived progenitors (SKP) by microarray analysis. Reprogram., 2010, 12(2), 161-173.
[8]
Zhong, J.; Li, L. Skin-derived precursors against UVB-induced apoptosis via Bcl-2 and Nrf2 upregulation. BioMed Res. Int., 2016, 2016(1), 6894743.
[9]
Mao, Y.; Xiong, L.; Wang, S.; Zhong, J.; Zhou, R.; Li, L. Comparison of the transcriptomes of mouse skin derived precursors (SKPs) and SKP-derived fibroblasts (SFBs) by RNA-Seq. PLoS One, 2015, 10(2), e0117739.
[10]
Li, R.; Yu, C.; Li, Y.; Lam, T.W.; Yiu, S.M.; Kristiansen, K.; Wang, J. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25(15), 1966-1967.
[11]
Jiang, M.; Sun, Z.; Dang, E.; Li, B.; Fang, H.; Li, J.; Gao, L.; Zhang, K.; Wang, G. TGFβ/SMAD/microRNA-486-3p signaling axis mediates keratin 17 expression and keratinocyte hyperproliferation in psoriasis. J. Invest. Dermatol., 2017, 137(10), 2177-2186.
[12]
Ye, H.; Yu, X.; Xia, J.; Tang, X.; Tang, L.; Chen, F. MiR-486-3p targeting ECM1 represses cell proliferation and metastasis in cervical cancer. Biomed. Pharmacother., 2016, 80, 109-114.
[13]
Tayyeb, A.; Shahzad, N.; Ali, G. Differentiation of mesenchymal stem cells towards nephrogenic lineage and their enhanced resistance to oxygen peroxide-induced oxidative stress. Iran. J. Kidney Dis., 2017, 11(4), 271-279.
[14]
Liu, R.; Li, N.; Lin, Y.; Wang, M.; Peng, Y.; Lewi, K.; Wang, Q. Glucagon like peptide-1 promotes adipocyte differentiation via the Wnt4 mediated sequestering of beta-catenin. PLoS One, 2016, 11(8), e0160212.
[15]
Zhang, Q.; Zagozewski, J.; Cheng, S.; Dixit, R.; Zhang, S.; de Melo, J.; Mu, X.; Klein, W.H.; Brown, N.L.; Wigle, J.T.; Schuurmans, C.; Eisenstat, D.D. Regulation of Brn3b by DLX1 and DLX2 is required for retinal ganglion cell differentiation in the vertebrate retina. Development, 2017, 144(9), 1698-1711.
[16]
Sun, H.; Liu, Z.; Li, B.; Dai, J.; Wang, X. Effects of DLX2 overexpression on the osteogenic differentiation of MC3T3-E1 cells. Exp. Ther. Med., 2015, 9(6), 2173-2179.
[17]
Armendáriz, B.G.; Bribian, A.; Pérez-Martínez, E.; Martínez, A.; de Castro, F.; Soriano, E.; Burgaya, F. Expression of semaphorin 4F in neurons and brain oligodendrocytes and the regulation of oligodendrocyte precursor migration in the optic nerve. Mol. Cell. Neurosci., 2012, 49(1), 54-67.
[18]
Goldstein, B.J.; Goss, G.M.; Choi, R.; Saur, D.; Seidler, B.; Hare, J.M.; Chaudhari, N. Contribution of Polycomb group proteins to olfactory basal stem cell self-renewal in a novel c-KIT+ culture model and in vivo. Development, 2016, 143(23), 4394-4404.
[19]
Liu, S.; Chen, X.; Wang, Y.; Li, L.; Wang, G.; Li, X.; Chen, H.; Guo, J.; Lin, H.; Lian, Q.Q.; Ge, R.S. A role of KIT receptor signaling for proliferation and differentiation of rat stem Leydig cells in vitro. Mol. Cell. Endocrinol., 2017, 444( 2017), 1-8.
[20]
Ding, H.; Zheng, S.; Garcia-Ruiz, D.; Hou, D.; Wei, Z.; Liao, Z.; Li, L.; Zhang, Y.; Han, X.; Zen, K.; Zhang, C.Y.; Li, J.; Jiang, X. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nat. Commun., 2016, 7( 2016), 11533.
[21]
Iyer, S.; Brooks, R.; Gumbleton, M.; Kerr, W.G. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging. Stem Cells Dev., 2015, 24(9), 1073-1081.
[22]
Xia, Z.; Ma, P.; Wu, N.; Su, X.; Chen, J.; Jiang, C.; Liu, S.; Chen, W.; Ma, B.; Yang, X.; Ma, Y.; Weng, X.; Qiu, G.; Huang, S.; Wu, Z. Altered function in cartilage derived mesenchymal stem cell leads to OA-related cartilage erosion. Am. J. Transl. Res., 2016, 8(2), 433-446.
[23]
Kim, J.H.; Yoon, S.M.; Song, S.U.; Park, S.G.; Kim, W.S.; Park, I.G.; Lee, J.; Sung, J.H. Hypoxia suppresses spontaneous mineralization and osteogenic differentiation of mesenchymal stem cells via IGFBP3 up-regulation. Int. J. Mol. Sci., 2016, 17(9), 1389.
[24]
Fujitani, M.; Zhang, S.; Fujiki, R.; Fujihara, Y.; Yamashita, T. A chromosome 16p13.11 microduplication causes hyperactivity through dysregulation of miR-484/protocadherin-19 signaling. Mol. Psychiatry, 2017, 22(3), 364-374.
[25]
Shimada, I.S.; Acar, M.; Burgess, R.J.; Zhao, Z.; Morrison, S.J. Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells. Genes Dev., 2017, 31(11), 1134-1146.
[26]
Inoue, M.; Iwai, R.; Tabata, H.; Konno, D.; Komabayashi-Suzuki, M.; Watanabe, C.; Iwanari, H.; Mochizuki, Y.; Hamakubo, T.; Matsuzaki, F.; Nagata, K.I.; Mizutani, K.I. Prdm16 is crucial for progression of the multipolar phase during neural differentiation of the developing neocortex. Development, 2017, 144(3), 385-399.
[27]
Choi, B.; Kang, S.S.; Kang, S.W.; Min, B.H.; Lee, E.J.; Song, D.H.; Kim, S.M.; Song, Y.; Yoon, S.Y.; Chang, E.J. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation. Biochem. Biophys. Res. Commun., 2014, 450(1), 105-109.